Degradable Alternatives to Single-Use Plastics: Mechanisms, Materials, and Strategies for Sustainable Polyolefin Replacement
Abstract
1. Introduction
2. Mechanisms of Plastic Degradation
3. Environmental Conditions for Degradation and Standards
4. Soil and Landfill Conditions
5. Marine and Aquatic Environments
6. Standardized Test Methods
7. Biodegradable Alternatives to PP and PE
- Polylactic Acid (PLA):
- Repeating unit: –[C3H4O2]–n, structure: –[–O–CH(CH3)–CO–]–n
- Polyhydroxyalkanoates (PHAs):
- General structure: –[O–CHR–CH2–CO]–n, e.g., PHB: –[O–CH(CH3)–CH2–CO]–n [48]
- Poly (butylene succinate) (PBS) and other Biodegradable Polyesters:
- Repeating unit: –[O–(CH2)4–O–CO–(CH2)2–CO]–n [49]
- Starch-Based Plastics:
- Polymer of α-D-glucose units linked mainly by α(1 → 4) bonds
- Cellulose and Derivatives:
- Polymer of β-D-glucose units linked by β(1 → 4) bonds [55]
8. Structural Modification of PE and PP for Enhanced Biodegradability
9. Copolymerization and Cleavable Bonds in the Backbone
10. Pro-Degradant Additives and Oxo-Biodegradable Plastics
11. Controversy and Performance
12. Blending with Biodegradable Polymers or Fillers
13. Surface Functionalization and Chemical Treatments
14. Enzyme-Assisted and Biological Approaches
15. Photocatalytic and Nanoparticle Additives
16. Challenges, Future Directions, and Circular Integration
17. Future Directions
18. Proposed Research Hypotheses and Experimental Methodologies
19. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- PubChem. Polypropylene. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Polypropylene (accessed on 9 September 2025).
- PubChem. Poly(lactic Acid) (PLA). 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/poly_lactic-acid_-_PLA (accessed on 9 September 2025).
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Patel, M.K. Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chem. Rev. 2011, 112, 2082–2099. [Google Scholar] [CrossRef]
- Abdelmoez, W.; Dahab, I.; Ragab, E.M.; Abdelsalam, O.A.; Mustafa, A. Bio- and oxo-degradable plastics: Insights on facts and challenges. Polym. Adv. Technol. 2021, 32, 1981–1996. [Google Scholar] [CrossRef]
- Surendren, A.; Mohanty, A.K.; Liu, Q.; Misra, M. A review of biodegradable thermoplastic starches, their blends and composites: Recent developments and opportunities for single-use plastic packaging alternatives. Green Chem. 2022, 24, 8606–8636. [Google Scholar] [CrossRef]
- Heimowska, A. Environmental Degradation of Oxo-Biodegradable Polyethylene Bags. Water 2023, 15, 4059. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Wu, W.-M.; Zhao, J.; Song, Y.; Gao, L.; Yang, R.; Jiang, L. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environ. Sci. Technol. 2015, 49, 12080–12086. [Google Scholar] [CrossRef]
- Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, Q.; Yu, L.; Patrick, C.; Leong, K.; et al. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 2011, 36, 1015–1049. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef]
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.-E. Polymer biodegradation: Mechanisms and estimation techniques—A review. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2007, 93, 561–584. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus 2013, 2, 398. [Google Scholar] [CrossRef]
- Ojeda, T.; Freitas, A.; Birck, K.; Dalmolin, E.; Jacques, R.; Bento, F.; Camargo, F. Degradability of linear polyolefins under natural weathering. Polym. Degrad. Stab. 2010, 96, 703–707. [Google Scholar] [CrossRef]
- Wei, R.; Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 2017, 10, 1308–1322. [Google Scholar] [CrossRef]
- Restrepo-Flórez, J.-M.; Bassi, A.; Thompson, M.R. Microbial degradation and deterioration of polyethylene—A review. Int. Biodeterior. Biodegrad. 2014, 88, 83–90. [Google Scholar] [CrossRef]
- Sanluis-Verdes, A.; Colomer-Vidal, P.; Rodriguez-Ventura, F.; Bello-Villarino, M.; Spinola-Amilibia, M.; Ruiz-Lopez, E.; Illanes-Vicioso, R.; Castroviejo, P.; Cigliano, R.A.; Montoya, M.; et al. Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. Nat. Commun. 2022, 13, 5568. [Google Scholar] [CrossRef]
- Son, J.-S.; Lee, S.; Hwang, S.; Jeong, J.; Jang, S.; Gong, J.; Choi, J.Y.; Je, Y.H.; Ryu, C.-M. Enzymatic oxidation of polyethylene by Galleria mellonella intestinal cytochrome P450s. J. Hazard. Mater. 2024, 480, 136264. [Google Scholar] [CrossRef] [PubMed]
- Fogašová, M.; Figalla, S.; Danišová, L.; Medlenová, E.; Hlaváčiková, S.; Vanovčanová, Z.; Omaníková, L.; Baco, A.; Horváth, V.; Mikolajová, M.; et al. PLA/PHB-Based Materials Fully Biodegradable under Both Industrial and Home-Composting Conditions. Polymers 2022, 14, 4113. [Google Scholar] [CrossRef]
- Kale, G.; Auras, R.; Singh, S.P.; Narayan, R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 2007, 26, 1049–1061. [Google Scholar] [CrossRef]
- Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures. Available online: https://store.astm.org/d5338-15r21.html (accessed on 17 October 2025).
- Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities. Available online: https://store.astm.org/d6400-21.html (accessed on 17 October 2025).
- ISO 17088:2021; Plastics—Organic Recycling—Specifications for Compostable Plastics. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/74994.html (accessed on 17 October 2025).
- Manger, C. EN 13432 Certified Bioplastics Performance in Industrial Composting; European Bioplastics e.V: Bruxelles, Belgium, 2023; Available online: https://www.european-bioplastics.org/en-13432-certified-bioplastics-performance-in-industrial-composting/ (accessed on 17 October 2025).
- D5988-18; Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil. ASTM: West Conshohocken, PA, USA, 2018. Available online: https://store.astm.org/d5988-18.html (accessed on 17 October 2025).
- AS 5810-2010; Biodegradable Plastics—Biodegradable Plastics Suitable for Home Composting. Standards Australia Store: Sydney, Australia, 2010. Available online: https://store.standards.org.au/product/as-5810-2010?utm_source=standards.org.au&utm_medium=referral&utm_campaign=standards-catalogue (accessed on 17 October 2025).
- ISO 17556:2019; Plastics—Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Evolved. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/74993.html#:~:text=Abstract,exposed%20soil%20can%20be%20used (accessed on 17 October 2025).
- Šerá, J.; Serbruyns, L.; De Wilde, B.; Koutný, M. Accelerated biodegradation testing of slowly degradable polyesters in soil. Polym. Degrad. Stab. 2019, 171, 109031. [Google Scholar] [CrossRef]
- Briassoulis, D.; Mistriotis, A. Key parameters in testing biodegradation of bio-based materials in soil. Chemosphere 2018, 207, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2016, 59, 526–536. [Google Scholar] [CrossRef]
- Choe, S.; Kim, Y.; Won, Y.; Myung, J. Bridging Three Gaps in Biodegradable Plastics: Misconceptions and Truths About Biodegradation. Front. Chem. 2021, 9, 671750. [Google Scholar] [CrossRef]
- Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials Under High-Solids Anaerobic-Digestion Conditions. Available online: https://store.astm.org/d5511-18.html (accessed on 17 October 2025).
- Dilkes-Hoffman, L.S.; Lant, P.A.; Laycock, B.; Pratt, S. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Mar. Pollut. Bull. 2019, 142, 15–24. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the Marine Environment; Marine Pollution Bulletin; Department of Chemical and Biomolecular Engineering, North Carolina State University: Raleigh, NC, USA, 2011; pp. 1596–1605. [Google Scholar]
- Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or Natural Sea Water Inoculum. Available online: https://store.astm.org/d6691-17.html (accessed on 17 October 2025).
- Standard Test Method for Determining Aerobic Biodegradation of Plastics Buried in Sandy Marine Sediment Under Controlled Laboratory Conditions. Available online: https://store.astm.org/d7991-22.html (accessed on 17 October 2025).
- ISO 22403:2020; Plastics—Assessment of the Intrinsic Biodegradability of Materials Exposed to Marine Inocula Under Mesophilic Aerobic Laboratory Conditions—Test Methods and Requirements. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/73121.html (accessed on 17 October 2025).
- ISO 14855-2:2018; Determination of the Ultimate Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/72046.html (accessed on 17 October 2025).
- D6954-18; Standard Guide for Exposing and Testing Plastics that Degrade in the Environment by a Combination of Oxidation and Biodegradation. ASTM: West Conshohocken, PA, USA, 2018. Available online: https://store.astm.org/d6954-18.html (accessed on 17 October 2025).
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. 2019, 58, 50–62. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Asri, N.A.; Sezali, N.A.A.; Ong, H.L.; Pisal, M.H.M.; Lim, Y.H.; Fang, J. Review on Biodegradable Aliphatic Polyesters: Development and Challenges. Macromol. Rapid Commun. 2024, 45, e2400475. [Google Scholar] [CrossRef]
- Yu, Y.; Flury, M. Unlocking the Potentials of Biodegradable Plastics with Proper Management and Evaluation at Environmentally Relevant Concentrations. npj Mater. Sustain. 2024, 2, 9. [Google Scholar] [CrossRef]
- Afshar, S.V.; Boldrin, A.; Christensen, T.H.; Corami, F.; Daugaard, A.E.; Rosso, B.; Hartmann, N.B. Disintegration of commercial biodegradable plastic products under simulated industrial composting conditions. Sci. Rep. 2025, 15, 8569. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.V.; Bomtempo, J.V.; Oroski, F.d.A.; Coutinho, P.L.d.A. The Diffusion of Bioplastics: What Can We Learn from Poly(Lactic Acid)? Sustainability 2023, 15, 4699. [Google Scholar] [CrossRef]
- NEUROtiker. Own Work, Public Domain. Available online: https://commons.wikimedia.org/w/index.php?curid=5117590 (accessed on 17 October 2025).
- Aliotta, L.; Seggiani, M.; Lazzeri, A.; Giganate, V.; Cinelli, P. A brief review of Poly(Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers 2022, 14, 844. [Google Scholar] [CrossRef]
- PubChem. Poly(butylene-co-adipate Terephthalate), Method of Manufacture, and Uses Thereof—Patent US-2015065610-A1—PubChem. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-2015065610-A1 (accessed on 9 September 2025).
- PubChem. Polycaprolactone. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Polycaprolactone (accessed on 9 September 2025).
- PubChem. Polyethylene. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Polyethylene (accessed on 9 September 2025).
- Lu, J.; Tappel, R.C.; Nomura, C.T. Mini-Review: Biosynthesis of Poly(hydroxyalkanoates). Polym. Rev. 2009, 49, 226–248. [Google Scholar] [CrossRef]
- PubChem. Starch. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Starch (accessed on 9 September 2025).
- PubChem. Cellulose Acetate. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cellulose-Acetate (accessed on 9 September 2025).
- Mhaddolkar, N.; Astrup, T.F.; Tischberger-Aldrian, A.; Pomberger, R.; Vollprecht, D. Challenges and opportunities in managing biodegradable plastic waste: A review. Waste Manag. Res. J. Sustain. Circ. Econ. 2024, 43, 911–934. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Chitosan. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Chitosan (accessed on 9 September 2025).
- Muñoz-Tebar, N.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibacterial and Antioxidant Properties and Their Application to Food Products: A Review. Polymers 2023, 15, 396. [Google Scholar] [CrossRef]
- Sarfraz, M.H.; Hayat, S.; Siddique, M.H.; Aslam, B.; Ashraf, A.; Saqalein, M.; Khurshid, M.; Sarfraz, M.F.; Afzal, M.; Muzammil, S. Chitosan based coatings and films: A perspective on antimicrobial, antioxidant, and intelligent food packaging. Prog. Org. Coatings 2024, 188, 108235. [Google Scholar] [CrossRef]
- Mitantsoa, J.T.; Ravelonandro, P.H.; Andrianony, F.A.; Andrianaivoravelona, R.R. Elaboration and characterization of bioplastic films based on bitter cassava starch (Manihot esculenta) reinforced by chitosan extracted from crab (Shylla seratta) shells. arXiv 2023, arXiv:2310.15172. Available online: https://arxiv.org/abs/2310.15172 (accessed on 20 October 2025). [CrossRef]
- Arif, M.; Chia, L.; Pauls, K.P. Protein-Based Bioproducts; eBook; Springer: Berlin/Heidelberg, Germany, 2018; pp. 143–175. [Google Scholar] [CrossRef]
- Wagh, Y.R.; Pushpadass, H.A.; Emerald, F.M.E.; Nath, B.S. Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. J. Food Sci. Technol. 2013, 51, 3767–3775. [Google Scholar] [CrossRef]
- Shi, X.; Cui, L.; Xu, C.; Wu, S. Next-Generation Bioplastics for Food Packaging: Sustainable Materials and Applications. Materials 2025, 18, 2919. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, D.; Karaś, M.; Kazimierczak, W.; Skrzypek, T.; Wiater, A.; Bartkowiak, A.; Basiura-Cembala, M. A Comparative Study on the Structural, Physicochemical, Release, and Antioxidant Properties of Sodium Casein and Gelatin Films Containing Sea Buckthorn Oil. Polymers 2025, 17, 320. [Google Scholar] [CrossRef]
- PubChem. Amino Acids. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Amino-Acids (accessed on 9 September 2025).
- PubChem. Agar. PubChem. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Agar (accessed on 9 September 2025).
- PubChem. Kappa-Carrageenan. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/kappa-Carrageenan (accessed on 9 September 2025).
- PubChem. Alginate. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Alginate (accessed on 9 September 2025).
- Plastics Europe. Plastics—The Fast Facts. 2024. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ (accessed on 8 October 2025).
- Mak, S.L.; Wu, M.Y.T.; Chak, W.Y.; Kwong, W.K.; Tang, W.F.; Li, C.H.; Lee, C.C.; Li, C.Y. A Review of the Feasibility of Producing Polylactic Acid (PLA) Polymers Using Spent Coffee Ground. Sustainability 2023, 15, 13498. [Google Scholar] [CrossRef]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef] [PubMed]
- Ishimwe, S. Bioplastics Market Development Update 2024. European Bioplastics e.V. Available online: https://www.european-bioplastics.org/bioplastics-market-development-update-2024/# (accessed on 10 December 2024).
- Gundlapalli, M.; Ganesan, S. Polyhydroxyalkanoates (PHAs): Key Challenges in production and sustainable strategies for cost reduction within a circular economy framework. Results Eng. 2025, 26, 105345. [Google Scholar] [CrossRef]
- Mukherjee, A.; Koller, M. Microbial PolyHydroxyAlkanoate (PHA) Biopolymers—Intrinsically Natural. Bioengineering 2023, 10, 855. [Google Scholar] [CrossRef]
- Ratshoshi, B.K.; Farzad, S.; Görgens, J.F. A techno-economic study of Polybutylene adipate terephthalate (PBAT) production from molasses in an integrated sugarcane biorefinery. Food Bioprod. Process. 2024, 145, 11–20. [Google Scholar] [CrossRef]
- Martínez, A.; Perez-Sanchez, E.; Caballero, A.; Ramírez, R.; Quevedo, E.; Salvador-García, D. PBAT is biodegradable but what about the toxicity of its biodegradation products? J. Mol. Model. 2024, 30, 273. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Guo, J.; Xu, G.; Hou, H.; Yang, R.; Guo, X.; Wang, Q. Trash into treasure: Chemical upcycling of poly(ɛ-caprolactone) waste plastic to plasticizer with excellent plasticizing performance and migration resistance. Sustain. Mater. Technol. 2024, 39, e00823. [Google Scholar] [CrossRef]
- Atanasova, N.; Paunova-Krasteva, T.; Stoitsova, S.; Radchenkova, N.; Boyadzhieva, I.; Petrov, K.; Kambourova, M. Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring. Biomolecules 2021, 11, 1488. [Google Scholar] [CrossRef] [PubMed]
- Ntrivala, M.A.; Pitsavas, A.C.; Lazaridou, K.; Baziakou, Z.; Karavasili, D.; Papadimitriou, M.; Ntagkopoulou, C.; Balla, E.; Bikiaris, D.N. Polycaprolactone (PCL): The biodegradable polyester shaping the future of materials—A review on synthesis, properties, biodegradation, applications and future perspectives. Eur. Polym. J. 2025, 234, 114033. [Google Scholar] [CrossRef]
- Allen, N.S.; Edge, M.; Mohammadian, M.; Jones, K. Hydrolytic degradation of poly(ethylene terephthalate): Importance of chain scission versus crystallinity. Eur. Polym. J. 1991, 27, 1373–1378. [Google Scholar] [CrossRef]
- Morgen, T.O.; Baur, M.; Göttker-Schnetmann, I.; Mecking, S. Photodegradable branched polyethylenes from carbon monoxide copolymerization under benign conditions. Nat. Commun. 2020, 11, 3693. [Google Scholar] [CrossRef]
- Zeng, T.; You, W.; Chen, G.; Nie, X.; Zhang, Z.; Xia, L.; Hong, C.; Chen, C.; You, Y. Degradable PE-Based Copolymer with Controlled Ester Structure Incorporation by Cobalt-Mediated Radical Copolymerization under Mild Condition. iScience 2020, 23, 100904. [Google Scholar] [CrossRef] [PubMed]
- Ley-Flores, M.; Chabbi, A.; Alessandri, R.; Marsden, S.; Vettese, I.; Rowan, S.J.; de Pablo, J.J. Numerical study of cleavable Bond-Modified Polyethylene for circular polymer design. arXiv 2024, arXiv:2404.09341. Available online: https://arxiv.org/abs/2404.09341 (accessed on 17 October 2025). [CrossRef]
- Aras, N.R.M.; Arcana, I.M. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation. AIP Conf. Proc. 2015, 1677, 70024. [Google Scholar] [CrossRef]
- Ojeda, T.; Freitas, A.; Dalmolin, E.; Pizzol, M.D.; Vignol, L.; Melnik, J.; Jacques, R.; Bento, F.; Camargo, F. Abiotic and biotic degradation of oxo-biodegradable foamed polystyrene. Polym. Degrad. Stab. 2009, 94, 2128–2133. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Koutny, M.; Lemaire, J.; Delort, A.-M. Biodegradation of polyethylene films with prooxidant additives. Chemosphere 2006, 64, 1243–1252. [Google Scholar] [CrossRef]
- Sciscione, F.; Hailes, H.C.; Miodownik, M. The performance and environmental impact of pro-oxidant additive containing plastics in the open unmanaged environment—A review of the evidence. R. Soc. Open Sci. 2023, 10, 230089. [Google Scholar] [CrossRef]
- Ahsan, W.A.; Hussain, A.; Lin, C.; Nguyen, M.K. Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling. Catalysts 2023, 13, 294. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; D’Antone, S. Oxo-biodegradable full carbon backbone polymers—Biodegradation behaviour of thermally oxidized polyethylene in an aqueous medium. Polym. Degrad. Stab. 2007, 92, 1378–1383. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Laforsch, C.; Greiner, A.; Agarwal, S. Fate of So-Called Biodegradable Polymers in Seawater and Freshwater. Glob. Challenges 2017, 1, 1700048. [Google Scholar] [CrossRef] [PubMed]
- Zumstein, M.T.; Schintlmeister, A.; Nelson, T.F.; Baumgartner, R.; Woebken, D.; Wagner, M.; Kohler, H.-P.E.; McNeill, K.; Sander, M. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Sci. Adv. 2018, 4, eaas9024. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E. Effect of (bio)plastics on soil environment: A review. Sci. Total. Environ. 2021, 795, 148889. [Google Scholar] [CrossRef]
- Hernández-García, E.; Vargas, M.; Chiralt, A.; González-Martínez, C. Biodegradation of PLA-PHBV Blend Films as Affected by the Incorporation of Different Phenolic Acids. Foods 2022, 11, 243. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, S.M.; Shafiq, M.; Abbas, N. A review on PLA-based biodegradable materials for biomedical applications. Giant 2024, 18, 100261. [Google Scholar] [CrossRef]
- Boughrara, H.; Djellali, S.; Haddaoui, N.; Staelens, J.-N.; Supiot, P.; Maschke, U. Synergistic Effects of Plasma Treatment and Prooxidants on PE/PCL Blend Biodegradation. Int. J. Polym. Sci. 2025, 2025, 6773209. [Google Scholar] [CrossRef]
- Easton, Z.H.W.; Essink, M.A.J.; Comas, L.R.; Wurm, F.R.; Gojzewski, H. Acceleration of Biodegradation Using Polymer Blends and Composites. Macromol. Chem. Phys. 2023, 224, 2200421. [Google Scholar] [CrossRef]
- Ji, S.H.; Seok, D.C.; Yoo, S. Improved biodegradability of low-density polyethylene using plasma pretreatment and plastic-degrading bacteria. Environ. Technol. Innov. 2023, 32, 103449. [Google Scholar] [CrossRef]
- Chen, C.; Taghavi, N.; Baroutian, S. Effect of cold plasma pretreatment on biodegradation of high-density polyethylene (HDPE) and polystyrene (PS). J. Mater. Cycles Waste Manag. 2024, 26, 1596–1608. [Google Scholar] [CrossRef]
- Dufour, T.; Minnebo, J.; Rich, S.A.; Neyts, E.C.; Bogaerts, A.; Reniers, F. Understanding polyethylene surface functionalization by an atmospheric He/O2plasma through combined experiments and simulations. J. Phys. D Appl. Phys. 2014, 47, 224007. [Google Scholar] [CrossRef]
- Maraveas, C.; Kotzabasaki, M.I.; Bartzanas, T. Intelligent Technologies, Enzyme-Embedded and Microbial Degradation of Agricultural Plastics. Agriengineering 2023, 5, 85–111. [Google Scholar] [CrossRef]
- Guicherd, M.; Ben Khaled, M.; Guéroult, M.; Nomme, J.; Dalibey, M.; Grimaud, F.; Alvarez, P.; Kamionka, E.; Gavalda, S.; Noël, M.; et al. An engineered enzyme embedded into PLA to make self-biodegradable plastic. Nature 2024, 631, 884–890. [Google Scholar] [CrossRef]
- Kong, D.; Wang, L.; Yuan, Y.; Xia, W.; Liu, Z.; Shi, M.; Wu, J. Review of key issues and potential strategies in bio-degradation of polyolefins. Bioresour. Technol. 2024, 414, 131557. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; He, S.; Shi, Y.; Hou, C.; Jiang, X.; Song, Y.; Zhang, T.; Zhang, Y.; Shen, Z. Enzyme modified biodegradable plastic preparation and performance in anaerobic co-digestion with food waste. Bioresour. Technol. 2024, 401, 130739. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Z.; Ouyang, Z.; Shang, M.; Liu, P.; Li, H.; Guo, X. Photocatalytic degradation of (micro)plastics using TiO2-based and other catalysts: Properties, influencing factor, and mechanism. Environ. Res. 2022, 209, 112729. [Google Scholar] [CrossRef] [PubMed]
- Okolie, O.; Kumar, A.; Edwards, C.; Lawton, L.A.; Oke, A.; McDonald, S.; Thakur, V.K.; Njuguna, J. Bio-Based Sustainable Polymers and Materials: From Processing to Biodegradation. J. Compos. Sci. 2023, 7, 213. [Google Scholar] [CrossRef]
- Thomas, R.T.; Nair, V.; Sandhyarani, N. TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: A mechanistic investigation. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 422, 1–9. [Google Scholar] [CrossRef]
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Quecholac-Piña, X.; Hernández-Berriel, M.d.C.; Mañón-Salas, M.d.C.; Espinosa-Valdemar, R.M.; Vázquez-Morillas, A. Degradation of Plastics under Anaerobic Conditions: A Short Review. Polymers 2020, 12, 109. [Google Scholar] [CrossRef]
- Hajilou, N.; Mostafayi, S.S.; Yarin, A.L.; Shokuhfar, T. A Comparative Review on Biodegradation of Poly(Lactic Acid) in Soil, Compost, Water, and Wastewater Environments: Incorporating Mathematical Modeling Perspectives. Appliedchem 2025, 5, 1. [Google Scholar] [CrossRef]
- Paloyan, A.; Tadevosyan, M.; Ghevondyan, D.; Khoyetsyan, L.; Karapetyan, M.; Margaryan, A.; Antranikian, G.; Panosyan, H. Biodegradation of polyhydroxyalkanoates: Current state and future prospects. Front. Microbiol. 2025, 16, 1542468. [Google Scholar] [CrossRef]
- Kim, Y.; Choe, S.; Cho, Y.; Moon, H.; Shin, H.; Seo, J.; Myung, J. Biodegradation of poly(butylene adipate terephthalate) and poly(vinyl alcohol) within aquatic pathway. Sci. Total. Environ. 2024, 953, 176129. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Tachibana, Y.; Kasuya, K.-I. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym. J. 2020, 53, 47–66. [Google Scholar] [CrossRef]
- Itabana, B.E.; Mohanty, A.K.; Dick, P.; Sain, M.; Bali, A.; Tiessen, M.; Lim, L.; Misra, M. Poly (Butylene Adipate-Co-Terephthalate) (PBAT)—Based Biocomposites: A Comprehensive Review. Macromol. Mater. Eng. 2024, 309, 2400179. [Google Scholar] [CrossRef]
- Van de Perre, D.; Serbruyns, L.; Coltelli, M.-B.; Gigante, V.; Aliotta, L.; Lazzeri, A.; Geerinck, R.; Verstichel, S. Tuning Biodegradation of Poly (lactic acid) (PLA) at Mild Temperature by Blending with Poly (butylene succinate-co-adipate) (PBSA) or Polycaprolactone (PCL). Materials 2024, 17, 5436. [Google Scholar] [CrossRef]
- Tachibana, Y.; Sawanaka, Y.; Tsutsuba, T.; Suzuki, M.; Hiraishi, M.; Kudo, M.; Torii, J.; Kasuya, K.-I. Can poly(butylene succinate) degrade in seawater? Chemosphere 2025, 374, 144203. [Google Scholar] [CrossRef]
- Nelson, T.F.; Baumgartner, R.; Jaggi, M.; Bernasconi, S.M.; Battagliarin, G.; Sinkel, C.; Künkel, A.; Kohler, H.-P.E.; McNeill, K.; Sander, M. Biodegradation of poly(butylene succinate) in soil laboratory incubations assessed by stable carbon isotope labelling. Nat. Commun. 2022, 13, 5691. [Google Scholar] [CrossRef]
- Shin, N.; Kim, S.H.; Oh, J.; Kim, S.; Lee, Y.; Shin, Y.; Choi, S.; Bhatia, S.K.; Kim, Y.-G.; Yang, Y.-H. Reproducible Polybutylene Succinate (PBS)-Degrading Artificial Consortia by Introducing the Least Type of PBS-Degrading Strains. Polymers 2024, 16, 651. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Hakkarainen, M. Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation. Chemosphere 2021, 265, 128731. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Cellulose. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cellulose (accessed on 9 September 2025).
- Canada, E.a.C.C. Consultation Paper: Towards Canada-Wide Rules to Strengthen Recycling and Composting of Plastics Through Accurate Labelling. 25 July 2022. Canada.ca. Available online: https://www.canada.ca/en/environment-climate-change/services/canadian-environmental-protection-act-registry/consultation-rules-recycling-composting-plastics-labelling.html (accessed on 17 October 2025).
- Huang, S.; Dong, Q.; Che, S.; Li, R.; Tang, K.H.D. Bioplastics and biodegradable plastics: A review of recent advances, feasibility and cleaner production. Sci. Total. Environ. 2025, 969, 178911. [Google Scholar] [CrossRef]
- Afshar, S.V.; Boldrin, A.; Astrup, T.F.; Daugaard, A.E.; Hartmann, N.B. Degradation of biodegradable plastics in waste management systems and the open environment: A critical review. J. Clean. Prod. 2023, 434, 140000. [Google Scholar] [CrossRef]
- Withana, P.A.; Yuan, X.; Im, D.; Choi, Y.; Bank, M.S.; Lin, C.S.K.; Hwang, S.Y.; Ok, Y.S. Biodegradable plastics in soils: Sources, degradation, and effects. Environ. Sci. Process. Impacts 2025. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Redhwi, H.H.; Al-Arfaj, A.A.; Achilias, D.S. Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review. Sustainability 2021, 13, 10528. [Google Scholar] [CrossRef]
- Eunomia; Cirino, E.; Plastic Pollution Coalition. Bioplastics Are Trash: The Unforeseen Environmental Conse-Quences of PLA from Production to Disposal. In Exploring the Sustainability of PLA; Eunomia: Bristol, UK, 2022; p. 17. [Google Scholar]
- Kerdlap, P. Is There a Case for Bioplastics? Experience from Thailand. Asian Development Bank. 3 November 2023. Available online: https://www.adb.org/publications/case-bioplastics-experience-thailand (accessed on 17 October 2025).
- Bergeson, A.R.; Silvera, A.J.; Alper, H.S. Bottlenecks in biobased approaches to plastic degradation. Nat. Commun. 2024, 15, 4715. [Google Scholar] [CrossRef]
- Harun, N.H.; Mydin, R.B.S.M.N.; Sreekantan, S.; Ngaini, N.S.; Saharuddin, K.A.; Basiron, N. Biodegradable potential of LLDPE/TiO2-ZnO film in soil and hydrolytic systems targeted for healthcare-related product. J. Taibah Univ. Sci. 2024, 18, 117506. [Google Scholar] [CrossRef]

















| Polymer | Primary Feedstock | Biodegradability | Typical Degradation Environment/Time | Notable Properties and Uses | Production Scale (Approx.) |
|---|---|---|---|---|---|
| Polyethylene (PE) | Petroleum (fossil) | No (non-biodegradable) | Persists in all environments; fragments under UV over years | Tough, flexible, moisture barrier; ubiquitous in packaging (bags, films, bottles) | >100 million tons/yr (for PE) |
| Polypropylene (PP) | Petroleum (fossil) | No (non-biodegradable) | Persists long-term; some oxidation under UV (faster than PE) but negligible biodegradation | Rigid, versatile (containers, caps, fibers); high chemical resistance | ~70 million tons/yr |
| Polylactic Acid (PLA) | Corn or sugar (dextrose) | Yes (industrial compost) | ~90% biodegrades in 2–4 months at 58 °C compost; slow in soil (years) and negligible in marine | Clear or opaque; high strength but low T_g (60 °C); used in food packaging, utensils, 3D printing | ~0.2–0.3 million tons/yr (2020s) |
| Polyhydroxyalkanoate (PHA) (e.g., PHB/PHBV) | Sugars/oils via fermentation | Yes (broadly biodegradable) | Biodegrades in many environments (compost ~months, soil months–year, marine months–year) | Brittle (PHB homopolymer), improved with copolymers; used in packaging, agricultural films, medical implants | <0.05 million tons/yr (nascent but growing) |
| Polybutylene Succinate (PBS)/PBAT | Glucose (bio succinic) or fossil (terephthalate) | Yes (compost, soil) | Compost in <6 months; in soil ~year; limited data in marine (PBAT partial) | Flexible, tear-resistant (especially PBAT); often blended with PLA or starch (e.g., compostable bags) | ~0.1–0.2 million tons/yr (PBAT) |
| Starch-based Plastic (TPS or starch blends) | Corn, potato, etc., starch | Yes (rapidly) | Readily biodegrades in soil/compost (weeks to months, depending on formulation) | Low-cost, can be edible; poor water resistance, moderate strength; used in packing peanuts, bags (with blends) | – (blended in many products, starch is cheap filler) |
| Cellulose (Cellophane) | Wood pulp or cotton | Yes (rapidly) | Soil/compost in weeks–months (uncoated cellulose film) | Very low gas permeability, non-static; but hydrophilic and tears when dry; used in specialty packaging, tubing | Limited (<0.01 Mt/yr, niche) |
| Cellulose Acetate | Wood pulp (modified) | Yes (if low DS) | Low substitution (DS < 2) degrades in months; high DS (e.g., cigarette filters) takes years | Tough, glossy, used in fibers, filters, tool handles; can be formulated to biodegrade by adjusting acetylation | Moderate (especially in fiber form for textiles) |
| Chitosan | Crab/shrimp shells (chitin) | Yes (slow in soil) | Biodegradable (enzymatically by some microbes); thin films in soil months–year | Antimicrobial, edible, but soluble in acid and mechanically weak; used in edible coatings, medical films | Very limited (lab-scale applications) |
| Protein-based (e.g., casein, soy) | Milk protein, soybeans | Yes (enzymatically) | Readily broken down by microbes (weeks) if wet; durable if kept dry (not environmental) | Edible/biocompatible; poor water resistance; historical use (casein plastic artifacts), now in edible packaging research | Very limited (not industrially produced in bulk) |
| Polymer | Production Capacity (Mt·yr−1) | Cost (USD·t−1) | Key Properties (Concise) | Typical Uses |
|---|---|---|---|---|
| Polypropylene (PP) | ~70–100 Mt/yr (global, recent years) [70] | ~600–1400 USD/ton (market/industrial price ranges reported in datasets and market syntheses; varies with feedstock and region) [70] | Lightweight polyolefin, good chemical resistance, semi-crystalline, good stiffness (can be tough), weldable, recyclable (thermoplastic) [70] | Packaging (rigid and flexible), automotive (interiors, bumpers), fibers, consumer goods, medical disposables [70] |
| Polyethylene (PE) | ~110–140 Mt/yr (global, combined PE grades) [70] | ~700–1400 USD/ton (varies by grade, region and feedstock) [70] | Versatile polyolefin family; ranges from flexible (LDPE, LLDPE) to rigid (HDPE); excellent chemical resistance, low permeability (grade dependent), good processability [70] | Film and packaging, bottles (HDPE), pipes, geomembranes, containers, cable insulation [70] |
| Polylactic acid (PLA) | ~0.3–0.8 Mt/yr in the literature, and bioplastics capacity reports give values in the few 100 kt range (growing) [46] | ~1000–3500 USD/ton (TEAs and market pricing show wide range depending on feedstock, scale, and region [71] | Semi-crystalline (depending on stereochemistry), bio-based (from fermentable sugars), good stiffness and clarity, brittle vs. some petro polymers (can be modified), industrially compostable under proper conditions [72] | Packaging (rigid cups, trays, films), fibers (textiles), 3D printing (filaments), disposable cutlery/containers, biomedical resorbable implants [72] |
| Polyhydroxyalkanoates (PHA) | ~100 kt/yr current global bioplastic PHA capacity—order-of-magnitude; expanding but still small vs. commodity plastics [73] | ~4000–6000 USD/ton [74] | Microbially produced polyesters (e.g., PHB, PHBV): biodegradable, good barrier to oxygen (varies), brittle in some homopolymers (copolymers improve toughness), processable thermoplastically after extraction/purification [75] | Compostable packaging, mulch films, agricultural films, specialty medical applications, additives/blends to improve biodegradability [75] |
| Poly(butylene adipate-co-terephthalate) (PBAT) | ~(80–150 kt/yr) [73] | ~3500–4500 USD/ton [76] | Aliphatic–aromatic co-polyester; flexible, good elongation and toughness, biodegradable under industrial composting (when blended/under enzyme/microbial action), relatively low Tg [77] | Flexible films (compostable bags), mulch films, blend component to impart flexibility to compostable formulations (e.g., PLA/PBAT blends) [77] |
| Poly(ε-caprolactone) (PCL) | ~55 kt/yr [78] | ~6000–8000 USD/ton [79] | Aliphatic, low Tg (rubbery at room temp. depending on Mw), biodegradable (enzymatic hydrolysis), excellent blend/compatibilizer/solvent-casting behavior; used widely in biomedical applications due to biocompatibility [80] | Specialty biodegradable formulations, biomedical devices (drug delivery, scaffolds), blending/compatibilizer in biodegradable formulations, hot-melt adhesives [80] |
| Modification Strategy | How It Works | Example Outcome (Ref.) | Remarks/Challenges |
|---|---|---|---|
| Copolymers with cleavable bonds | Insert hydrolysable or weak bonds (ester, ketone) in polymer backbone | PE copolymerized with 5% cyclic ketene acetal -> degrades into oligomers in base. | Maintains PE-like properties if low comonomer; need sufficient cleavable units to aid biodegradation. |
| Pro-degradant metal additives | Catalyze oxidation (radical formation) | PP + 1% Mn/Ca stearate additive: complete embrittlement in 8 weeks of sunlight; ~60% biodegradation in 2 years in soil | Ensures fragmentation, full mineralization still slow. Regulatory acceptance issues (microplastics concerns). |
| Blending with biodegradable polymer | Creates composite where one phase degrades quickly, leaving polyolefin exposed | PE + 15% starch blend: starch consumed in weeks, PE breaks into micro-fragments more readily. | Residual PE still persists; mechanical properties may drop if blend is high in bio-filler. |
| Surface oxidation (plasma, etc.) | Introduces polar groups, increases wettability and roughness | Plasma-treated PE film: 5× higher surface oxygen content, allowed biofilm formation of Pseudomonas in 2 days vs. 7 days for untreated. | Only surface is modified; effect is mainly on initial colonization. Bulk remains unchanged. |
| Enzyme embedding/coating | Enzymes directly attack polymer (if possible) or catalyze breakdown steps | Engineered cutinase in PLA film -> full disintegration in 5–6 months at 30 °C. Waxworm oxidase on PE surface -> initiated oxidation at room T. | Enzyme stability is a concern; need enzymes active on polyolefins (still under exploration). Cost of enzymes can be high. |
| Photocatalyst/sensitizer addition | Particles generate reactive oxygen under light, accelerating polymer oxidation | LDPE with TiO2 nanoparticles exposed to UV had 2× carbonyl index increases vs. neat LDPE, indicating faster oxidation. | Requires UV exposure (not helpful in dark landfill); nanoparticles must be well dispersed; ensure they do not introduce toxicity. |
| Bio-augmentation (microbes) | Use of microbes engineered or selected to consume polymer fragments | Waxworm gut bacteria added to soil with PE film showed ~10% weight loss of film in 1 month vs. ~2% in sterile control. | Hard to control in open environments; works best in managed waste treatment (bioreactors). |
| Polymer | Marine (Seawater) | Soil (Temperate) | Industrial Compost (Thermophilic, ~>50–60 °C) | Anaerobic/Landfill |
|---|---|---|---|---|
| PP/PE (polyolefins) | Very slow/negligible under natural marine conditions, persistence for years to centuries; little biodegradation [110] | Very slow, years to decades; essentially persistent in typical soils [110] | Do not reliably biodegrade in standard composting; physical fragmentation possible but mineralization negligible [110] | Very slow; in anaerobic landfills, bulk polyolefins persist for decades (little biotransformation) [111] |
| PLA | Very slow in cold marine environments; limited mineralization in seawater, months → years (lab/field vary) [112] | Slow in ambient soils (months → years), often limited without elevated temperatures/adapted microbes [112] | Relatively fast under industrial composting (thermophilic): weeks → few months to high (>70–90%) mineralization under standard industrial conditions. But home-compost or cool compost much slower [112] | Limited anaerobic degradation in typical landfills/AD—PLA often does not fully biodegrade in anaerobic digesters/landfills on timeframes used; conversion depends on temp. and pretreatment [112] |
| PHA (e.g., PHB, PHBV) | Generally fast relative to many other plastics, many PHAs show substantial biodegradation in seawater (weeks → months) in lab/mesocosm studies; marine PHA-degrading microbes are widespread [113] | Fast to moderate, weeks → months depending on polymer composition and soil microbiota; mineralization often high in soils [113] | Fast in industrial composting, weeks → months with substantial mineralization [113] | Variable: some PHAs can be degraded anaerobically (methanogenic conditions) but rates depend on polymer type/MW; studies report measurable degradation under anaerobic conditions but outcomes are variable [112] |
| PBAT | Slow to moderate in marine environments (many studies show limited marine biodegradation; fragmentation possible) [114] | Slow → moderate in soils (months to >1 year depending on conditions) [114] | Moderate in industrial composting (months), PBAT is designed to be compostable in many formulations when blended appropriately [115] | Slow/limited in anaerobic landfills, biodegradation under anaerobic conditions is generally poor relative to aerobic composting [115] |
| PCL | Variable, some marine microbes degrade PCL, lab studies show marine isolates can attack PCL; timescales often months under favorable conditions [116,117] | Slow → moderate in soil (months to >1 year depending on temp and microbes) [112] | Moderate in compost (weeks → months) under warm conditions; blends and low-MW PCL degrade faster [112] | Variable/generally slow under typical landfill anaerobic conditions; some anaerobic degradation reported under specific conditions [117] |
| PBS | Some evidence of marine biodegradation (low-MW PBS or specific formulations degrade faster); marine enzymes reported to degrade PBS. Timescales: months (lab) to >1 year (field) [118] | Moderate in soil (months). Recent isotope-tracing work shows measurable mineralization and improved kinetic understanding [119] | Moderate → fast in industrial composting (weeks → months) depending on MW [120] | Variable/generally slow in anaerobic landfills; some hydrolysis can occur but full mineralization is slower than in aerobic compost [117] |
| Cellulose and cellulose acetate | Cellulose: fast (weeks → months) where accessible and colonized by microbes; cellulose acetate: slower than native cellulose (acetylation reduces biodegradability), but some biodegradation occurs over months → years depending on DA and environment [121] | Cellulose: fast in soil (weeks → months); CA: slower but deacetylation in soil enables biodegradation over months → years [121] | Cellulose: fast in compost (days → weeks); CA: moderate (weeks → months) depending on degree of substitution and microbial access [121] | Cellulose: can be degraded anaerobically (e.g., in landfills); CA: slower but can undergo hydrolysis/biodegradation under some anaerobic conditions, timescales variable [121] |
| Chitosan (films) | Moderate in marine (biologically active; chitosan is biodegradable), weeks → months depending on form [122] | Moderate → fast in soil (weeks → months), chitosan is a readily biodegradable polysaccharide in many environments [122] | Fast in compost (weeks) under aerobic conditions [122] | Variable/can be degraded anaerobically (landfills/AD), but rates depend on conditions; expect slower rates than aerobic compost [122] |
| TPS (thermoplastic starch blends) | Often faster than synthetic polyesters; in lab marine tests, some TPS formulations show measurable degradation in months (but depends on blend with PBAT/PBS, etc.) [7] | Fast in soil (weeks → months), native starch is easily biodegraded; blends slowly depending on synthetic fraction [7] | Fast in industrial composting (days → weeks to months), especially for high-starch formulations [7] | Variable: starch fractions can be anaerobically digested (biogas) in AD systems, but blends with non-biodegradable copolymers reduce overall biodegradation in landfills [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakhrizada, H.; Dahman, Y. Degradable Alternatives to Single-Use Plastics: Mechanisms, Materials, and Strategies for Sustainable Polyolefin Replacement. Molecules 2025, 30, 4301. https://doi.org/10.3390/molecules30214301
Fakhrizada H, Dahman Y. Degradable Alternatives to Single-Use Plastics: Mechanisms, Materials, and Strategies for Sustainable Polyolefin Replacement. Molecules. 2025; 30(21):4301. https://doi.org/10.3390/molecules30214301
Chicago/Turabian StyleFakhrizada, Hamza, and Yaser Dahman. 2025. "Degradable Alternatives to Single-Use Plastics: Mechanisms, Materials, and Strategies for Sustainable Polyolefin Replacement" Molecules 30, no. 21: 4301. https://doi.org/10.3390/molecules30214301
APA StyleFakhrizada, H., & Dahman, Y. (2025). Degradable Alternatives to Single-Use Plastics: Mechanisms, Materials, and Strategies for Sustainable Polyolefin Replacement. Molecules, 30(21), 4301. https://doi.org/10.3390/molecules30214301

