Evaluation of the Antioxidant and Antimicrobial Activity of Natural Deep Eutectic Solvents (NADESs) Based on Primary and Specialized Plant Metabolites
Abstract
1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity of Testing NADESs
2.2. Antimicrobial Activity of Testing NADESs
2.3. Classification of NADESs Based on Antioxidant and Antimicrobial Profiles
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Antioxidant Panel
3.3. Antimicrobial Susceptibility Testing by Disk Diffusion Method (According to Kirby–Bauer)
3.3.1. Microorganisms
3.3.2. Procedure
- 1.
- Preparation of inoculum: Bacterial and yeast suspensions were prepared in sterile 0.85% NaCl and adjusted to a 0.5 McFarland standard (approximately 1–2 × 108 CFU/mL for bacteria, 1–5 × 106 CFU/mL for yeasts).
- 2.
- Plate inoculation: Microbiological media were poured aseptically into Petri dishes to a uniform height (approximately 4 mm) and left to dry at room temperature before inoculation. Mueller–Hinton agar (MHA; Sigma-Aldrich) for bacteria and Mueller–Hinton agar with 2% (w/v) glucose (MHA + 2% Glu) for yeast were inoculated evenly in three directions with the prepared microbial suspension, using a sterile swab to obtain uniform growth.
- 3.
- Preparation and application of test disks: 20 µL of each NADES was applied to sterile, blank 6 mm diameter paper disks (Oxoid™ Antimicrobial Susceptibility Test Discs, Thermo Fisher Scientific, Basingstoke, Hampshire, UK) and left to absorb under sterile conditions.
- 4.
- Incubation: Plates were incubated at 35 ± 2 °C for 18 h for bacteria and 24 h for yeasts.
- 5.
- Measurement of inhibition zones: After incubation, the diameters of the microbial growth inhibition zones (including the diameter of the disk) were measured and the result was given in millimeters.
Aseptic Conditions
3.4. Statistical and Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chevé-Kools, E.; Choi, Y.H.; Roullier, C.; Ruprich-Robert, G.; Grougnet, R.; Chapeland-Leclerc, F.; Hollmann, F. Natural deep eutectic solvents (NaDES): Green solvents for pharmaceutical applications and beyond. Green Chem. 2025, 27, 8360–8385. [Google Scholar] [CrossRef]
- Kulinowska, M.; Dresler, S.; Skalska-Kamińska, A.; Hanaka, A.; Strzemski, M. Methodological aspects of green extraction of usnic acid using natural deep eutectic solvents. Molecules 2023, 28, 5321. [Google Scholar] [CrossRef]
- Dresler, S.; Baczewska, I.; Mykhailenko, O.; Zidorn, C.; Sowa, I.; Wójciak, M.; Feldo, M.; Wójciak, H.; Hanaka, A.; Strzemski, M. Extraction of lichen bioactive compounds using volatile natural deep eutectic solvents and comparative analytical approaches. Sci. Rep. 2025, 15, 22742. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural deep eutectic solvents (NADES): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.d.l.Á.; Boiteux, J.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar] [CrossRef]
- Strzemski, M.; Dresler, S.; Podkościelna, B.; Skic, K.; Sowa, I.; Załuski, D.; Verpoorte, R.; Zielińska, S.; Krawczyk, P.; Wójciak, M. Effectiveness of volatile natural deep eutectic solvents (VNADESs) for the green extraction of Chelidonium majus isoquinoline alkaloids. Molecules 2022, 27, 2815. [Google Scholar] [CrossRef]
- Jiménez-Ortega, L.A.; Kumar-Patra, J.; Kerry, R.G.; Das, G.; Mota-Morales, J.D.; Heredia, J.B. Synergistic antioxidant activity in deep eutectic solvents: Extracting and enhancing natural products. ACS Food Sci. Technol. 2024, 4, 2776–2798. [Google Scholar] [CrossRef]
- Al-Akayleh, F.; Khalid, R.M.; Hawash, D.; Al-Kaissi, E.; Al-Adham, I.S.I.; Al-Muhtaseb, N.; Jaber, N.; Al-Remawi, M.; Collier, P.J. Antimicrobial potential of natural deep eutectic solvents. Lett. Appl. Microbiol. 2022, 75, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Bedair, H.M.; Samir, T.M.; Mansour, F.R. Antibacterial and antifungal activities of natural deep eutectic solvents. Appl. Microbiol. Biotechnol. 2024, 108, 198. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.; Silva, E.; Reis, R.L.; Duarte, A.R.C. A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustain. Chem. Pharm. 2019, 14, 100192. [Google Scholar] [CrossRef]
- Marchel, M.; Cieśliński, H.; Boczkaj, G. Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods. J. Hazard. Mater. 2022, 425, 127963. [Google Scholar] [CrossRef]
- Silva, N.H.C.S.; Morais, E.S.; Freire, C.S.R.; Freire, M.G.; Silvestre, A.J.D. Extraction of high value triterpenic acids from Eucalyptus globulus biomass using hydrophobic deep eutectic solvents. Molecules 2020, 25, 210. [Google Scholar] [CrossRef]
- Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y.H. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. J. Chromatogr. A 2016, 1434, 50–56. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta 2017, 168, 329–335. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef]
- Castro, V.I.B.; Craveiro, R.; Silva, J.M.; Reis, R.L.; Paiva, A.; Ana, A.R. Natural deep eutectic systems as alternative nontoxic cryoprotective agents. Cryobiology 2018, 83, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Feng, F.; Chen, Z.G.; Wu, T.; Wang, Z.H. Green and efficient removal of cadmium from rice flour using natural deep eutectic solvents. Food Chem. 2018, 244, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zang, Y.Y.; Yang, S.; Chen, Z.G. Green and efficient removal of heavy metals from Porphyra haitanensis using natural deep eutectic solvents. J. Sci. Food Agric. 2021, 101, 2930–2939. [Google Scholar] [CrossRef]
- Kranz, M.; Hofmann, T. Food-grade synthesis of maillard-type taste enhancers using natural deep eutectic solvents (NADES). Molecules 2018, 23, 261. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidou, A.; Makris, D.P.; Lazaridou, A.; Biliaderis, C.G.; Mourtzinos, I. Physical properties of chitosan films containing pomegranate peel extracts obtained by deep eutectic solvents. Foods 2021, 10, 1262. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Olszowy, M.; Dawidowicz, A.L. Essential oils as antioxidants: Their evaluation by DPPH, ABTS, FRAP, CUPRAC, and β-carotene bleaching methods. Monatshefte Fur. Chem. 2016, 147, 2083–2091. [Google Scholar] [CrossRef]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Załuski, D.; Szwerc, W.; Sawicki, J.; Kocjan, R.; Feldo, M.; Dresler, S. Carlina vulgaris L. as a source of phytochemicals with antioxidant activity. Oxid. Med. Cell. Longev. 2017, 2017, 1891849. [Google Scholar] [CrossRef]
- Stef, D.S.; Gergen, I.; Trașcă, T.I.; Riviş, A.; Ducu-Sandu, Ş.; Iosif, G.; Teodor-Ioan, T.; Adrian, R.; Lavinia, Ş.; Romeo, C.; et al. Assessing the influence of various factors on antioxidant activity of medicinal herbs. Rom. Biotech. Lett. 2017, 22, 12842. [Google Scholar]
- Gębalski, J.; Małkowska, M.; Kiełkowska, E.; Graczyk, F.; Wnorowska, S.; Hołyńska-Iwan, I.; Strzemski, M.; Wójciak, M.; Załuski, D. Chemical composition and in vitro biological activity of the polar and non-polar fractions obtained from the roots of Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. Int. J. Mol. Sci. 2025, 26, 5619. [Google Scholar] [CrossRef]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Aeschbach, R.; Löliger, J.; Scott, B.C.; Murcia, A.; Butler, J.; Halliwell, B.; Aruoma, O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 1994, 32, 31–36. [Google Scholar] [CrossRef]
- Chroho, M.; Rouphael, Y.; Petropoulos, S.A.; Bouissane, L. Carvacrol and thymol content affects the antioxidant and antibacterial activity of Origanum compactum and Thymus zygis essential oils. Antibiotics 2024, 13, 139. [Google Scholar] [CrossRef]
- Yildiz, S.; Turan, S.; Kiralan, M.; Ramadan, M.F. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact. 2021, 15, 621–632. [Google Scholar] [CrossRef]
- Modareskia, M.; Fattahi, M.; Mirjalili, M.H. Thymol screening, phenolic contents, antioxidant and antibacterial activities of Iranian populations of Trachyspermum ammi (L.) Sprague (Apiaceae). Sci. Rep. 2022, 12, 15645. [Google Scholar] [CrossRef]
- Abdollahi, A.; Fereydouni, N.; Moradi, H.; Karimivaselabadi, A.; Zarenezhad, E.; Osanloo, M. Nanoformulated herbal compounds: Enhanced antibacterial efficacy of camphor and thymol-loaded nanogels. BMC Complement. Med. Ther. 2024, 24, 138. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Dai, Y.; Ouyang, P.; Rehman, T.; Hussain, S.; Zhang, T.; Yin, Z.; Fu, H.; Lin, J.; He, C.; et al. Thymol inhibits biofilm formation, eliminates pre- existing biofilms, and enhances clearance of methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritoneal implant infection model. Microorganisms 2020, 8, 99. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef]
- Kundukad, B.; Schussman, M.; Yang, K.; Seviour, T.; Yang, L.; Rice, S.A.; Kjelleberg, S.; Doyle, P.S. Mechanistic action of weak acid drugs on biofilms. Sci. Rep. 2017, 7, 4783. [Google Scholar] [CrossRef]
- Ispiryan, A.; Atkociuniene, V.; Makstutiene, N.; Sarkinas, A.; Salaseviciene, A.; Urbonaviciene, D.; Viskelis, J.; Pakeltiene, R.; Raudone, L. Correlation between antimicrobial activity values and total phenolic content/antioxidant activity in Rubus idaeus L. Plants 2024, 13, 504. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Sheehan, D.J. Interpretive breakpoints for fluconazole and Candida revisited: A blueprint for the future of antifungal susceptibility testing. Clin. Microbiol. Rev. 2006, 19, 435–447. [Google Scholar] [CrossRef]
- CLSI M100-ED29; 2021 Performance Standards for Antimicrobial Susceptibility Testing, 30th ed. CLSI: Pittsburgh, PA, USA, 2020; Volume 40, ISBN 9781684400324.
- Otto, M. Staphylococcus epidermidis—The ‘accidental’ pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Berkow, E.L.; Chow, N.; Welsh, R.M. Candida auris for the clinical microbiology laboratory: Not your grandfather’s Candida species. Clin. Microbiol. Newsl. 2017, 39, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, R.A.; Bäumler, A.J. Host adaptation and the emergence of infectious disease: The Salmonella paradigm. Mol. Microbiol. 2000, 36, 1006–1014. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]







| No. | Component 1 | Component 2 | Component 3 | Molar Ratio |
|---|---|---|---|---|
| Hydrophilic NADESs—PRIM-based | ||||
| 1 | ChCl | DL-lactic acid | water | 2:1:2 |
| 2 | ChCl | levulinic acid | water | 2:1:2 |
| 3 | ChCl | DL-malic acid | water | 2:1:2 |
| 4 | ChCl | citric acid | water | 2:1:2 |
| 5 | ChCl | 1,3-propanediol | water | 1:1:1 |
| 6 | ChCl | glycerol | water | 1:1:1 |
| 7 | ChCl | D-(+)-glucose | water | 2:1:6 |
| 8 | ChCl | D-arabinose | water | 2:1:6 |
| 9 | ChCl | D-tagatose | water | 2:1:6 |
| 10 | ChCl | D-fructose | water | 2:1:6 |
| 11 | ChCl | urea | water | 1:1:1 |
| Hydrophilic NADESs—HEVO-based | ||||
| 12 | ChCl | naringin | water | 2:0.1:3 |
| 13 | ChCl | quercetin | water | 2:0.1:3 |
| 14 | ChCl | rutin hydrate | water | 2:0.1:3 |
| 15 | ChCl | α-resorcylic acid | water | 4:1:4 |
| 16 | ChCl | β-resorcylic acid | water | 4:1:4 |
| 17 | ChCl | protocatechuic acid | water | 4:1:4 |
| 18 | ChCl | gentisic acid | water | 4:1:4 |
| 19 | ChCl | p-hydroxybenzoic acid | water | 4:1:4 |
| Lipophilic NADESs—HEVO-based | ||||
| 20 | 1,8-cineole | thymol | - | 1:9 |
| 21 | 1,8-cineole | thymol | - | 5:5 |
| 22 | 1,8-cineole | thymol | - | 9:1 |
| 23 | 1,8-cineole | DL-menthol | - | 9:1 |
| 24 | 1,8-cineole | DL-menthol | - | 5:5 |
| 25 | 1,8-cineole | DL-menthol | - | 1:9 |
| 26 | (±)-camphor | thymol | - | 3:7 |
| 27 | (±)-camphor | thymol | - | 5:5 |
| 28 | (±)-camphor | thymol | - | 6:4 |
| 29 | (±)-camphor | DL-menthol | - | 4:6 |
| 30 | (±)-camphor | DL-menthol | - | 3:7 |
| 31 | (±)-camphor | DL-menthol | - | 1:9 |
| 32 | benzyl alcohol | thymol | - | 9:1 |
| 33 | benzyl alcohol | thymol | - | 6:4 |
| 34 | benzyl alcohol | thymol | - | 4:6 |
| 35 | benzyl alcohol | DL-menthol | - | 9:1 |
| 36 | benzyl alcohol | DL-menthol | - | 6:4 |
| 37 | benzyl alcohol | DL-menthol | - | 4:6 |
| 38 | (−)-borneol | thymol | - | 2:3 |
| 39 | (−)-borneol | thymol | - | 1:2 |
| 40 | (−)-borneol | thymol | - | 3:7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulinowska, M.; Grzegorczyk, A.; Dresler, S.; Skalska-Kamińska, A.; Dubaj, K.; Strzemski, M. Evaluation of the Antioxidant and Antimicrobial Activity of Natural Deep Eutectic Solvents (NADESs) Based on Primary and Specialized Plant Metabolites. Molecules 2025, 30, 4219. https://doi.org/10.3390/molecules30214219
Kulinowska M, Grzegorczyk A, Dresler S, Skalska-Kamińska A, Dubaj K, Strzemski M. Evaluation of the Antioxidant and Antimicrobial Activity of Natural Deep Eutectic Solvents (NADESs) Based on Primary and Specialized Plant Metabolites. Molecules. 2025; 30(21):4219. https://doi.org/10.3390/molecules30214219
Chicago/Turabian StyleKulinowska, Magdalena, Agnieszka Grzegorczyk, Sławomir Dresler, Agnieszka Skalska-Kamińska, Katarzyna Dubaj, and Maciej Strzemski. 2025. "Evaluation of the Antioxidant and Antimicrobial Activity of Natural Deep Eutectic Solvents (NADESs) Based on Primary and Specialized Plant Metabolites" Molecules 30, no. 21: 4219. https://doi.org/10.3390/molecules30214219
APA StyleKulinowska, M., Grzegorczyk, A., Dresler, S., Skalska-Kamińska, A., Dubaj, K., & Strzemski, M. (2025). Evaluation of the Antioxidant and Antimicrobial Activity of Natural Deep Eutectic Solvents (NADESs) Based on Primary and Specialized Plant Metabolites. Molecules, 30(21), 4219. https://doi.org/10.3390/molecules30214219

