Evaluation of Biocompatible and Biodegradable PES/PCL Membranes for Potential Use in Biomedical Devices: From Fouling Resistance to Environmental Safety
Abstract
1. Introduction
2. Results and Discussion
2.1. Structure of PES/PCL Membranes
2.2. Analysis of Membrane Structure Before and After Degradation Using MeMoExplorerTM Software
2.3. Instability Coefficient of Membranes Before and After Degradation
2.4. Transport and Separation Parameters of Membranes Before and After Degradation
2.4.1. Hydraulic Permeability of Membranes (UFC)
2.4.2. Separation Properties of Membranes
- PEGs with an average molecular weight of 4000 g mol−1 [4 kD], 15,000 g mol−1 [15 kD], 35,000 g mol−1 [35 kD].
- Chicken egg albumin (CEA) with an average molecular weight of 45,000 g mol−1 [45 kD].
- Bovine albumin (BSA) with an average molecular weight of 67,000 g mol−1 [67 kD].
2.5. Changes in PCL Content in Membranes After Degradation
3. Materials and Methods
3.1. Materials
3.2. Preparation of Capillary Membranes
3.3. Capillary Membrane Fabrication
3.4. SEM Analysis
3.5. Permeability Measurements
3.6. Retention Measurements
3.7. Membrane Degradation
3.8. Evaluation of SEM Photomicrographs
3.9. Assessment of the Membrane Instability Coefficient Before and After Degradation
- SD—Standard deviation of the porosity coefficient.
- Ave—Average of the porosity coefficient.
3.10. Statistical Analysis
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laîné, J.M.; Campos, C.; Baudin, I.; Janex, M.L. Understanding membrane fouling: A review of over a decade of research. Water Sci. Technol. Water Supply 2003, 3, 155–164. [Google Scholar] [CrossRef]
- Yuan, W.; Chen, X.; Yu, Z.; Wan, Y.; Lin, J.; Ye, W. Critical review of membrane fouling in reverse osmosis treatment: Characterizations, models, mechanisms, and controls. Sep. Purif. Technol. 2025, 363, 132119. [Google Scholar] [CrossRef]
- Carroll, T.; King, S.; Gray, S.R.; Bolto, B.A.; Booker, N.A. The fouling of microfiltration membranes by NOM after coagulation treatment. Water Res. 2000, 34, 2861–2868. [Google Scholar] [CrossRef]
- Amy, G. Fundamental understanding of organic matter fouling of membranes. Desalination 2008, 231, 44–51. [Google Scholar] [CrossRef]
- Susanto, H.; Pratamasari, R.; Santika, P.R.; Istirokhatun, T. Investigation of organic fouling during ultrafiltration dedicated to reverse osmosis pretreatment. Desalination Water Treat. 2018, 115, 1–7. [Google Scholar] [CrossRef]
- Bernardes, A.F.; Meng, Z.; Campos, L.C.; Coppens, M.O. Bio-inspired anti-fouling strategies for membrane-based separations. Chem. Commun. 2025, 61, 5064–5071. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, C.; Wasyłeczko, M.; Lewińska, D.; Chwojnowski, A. A Comprehensive Review of Hollow-Fiber Membrane Fabrication Methods Across Biomedical, Biotechnological, and Environmental Domains. Molecules 2024, 29, 2637. [Google Scholar] [CrossRef]
- Tayeh, Y.A.; Alazaiza, M.Y.D.; Alzghoul, T.M.; Bashir, M.J. A comprehensive review of RO membrane fouling: Mechanisms, categories, cleaning methods and pretreatment technologies. J. Hazard. Mater. Adv. 2025, 18, 100684. [Google Scholar] [CrossRef]
- Ding, W.; Ma, K.; Childress, A.E. Compaction of Pressure-Driven Water Treatment Membranes: Real-Time Quantification and Analysis. Environ. Sci. Technol. 2024, 58, 18404–18413. [Google Scholar] [CrossRef]
- Shalem, A.; Yehezkeli, O.; Fishman, A. Enzymatic degradation of polylactic acid (PLA). Appl. Microbiol. Biotechnol. 2024, 108, 413. [Google Scholar] [CrossRef]
- Pal, D.; Prabhakar, R.; Barua, V.B.; Zekker, I.; Burlakovs, J.; Krauklis, A.; Hogland, W.; Vincevica-Gaile, Z. Microplastics in Aquatic Systems: A Comprehensive Review of Its Distribution, Environmental Interactions, and Health Risks; Springer: Berlin/Heidelberg, Germany, 2024; Volume 32, ISBN 1135602435741. [Google Scholar]
- Rezić Meštrović, I.; Somogyi Škoc, M.; Dragun, D.D.; Glagolić, P.; Meštrović, E. Sustainable Solutions for Producing Advanced Biopolymer Membranes—From Net-Zero Technology to Zero Waste. Polymers 2025, 17, 1432. [Google Scholar] [CrossRef]
- Felton, G.P. Biodegradable Polymers: Processing, Degradation, and Applications; Nova Science Publishers, Incorporated: New York, NY, USA, 2011; ISBN 1624173233/9781624173233. [Google Scholar]
- Sen Gupta, R.; Samantaray, P.K.; Bose, S. Going beyond Cellulose and Chitosan: Synthetic Biodegradable Membranes for Drinking Water, Wastewater, and Oil-Water Remediation. ACS Omega 2023, 8, 24695–24717. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Saeed, B.; AlMohamadi, H.; Lee, M.; Gilani, M.A.; Nawaz, R.; Khan, A.L.; Yasin, M. Sustainable and green membranes for chemical separations: A review. Sep. Purif. Technol. 2024, 336, 126271. [Google Scholar] [CrossRef]
- Morisi, N.; Alfano, G.; Ferrarini, M.; Ferri, C.; Fontana, F.; Ballestri, M.; Donati, G. Hemoadsorption and plasma adsorption: Two current options for the 3rd dimension of dialysis purification. J. Nephrol. 2025, 38, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [Google Scholar] [CrossRef] [PubMed]
- Moriya, A.; Maruyama, T.; Ohmukai, Y.; Sotani, T.; Matsuyama, H. Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods. J. Membr. Sci. 2009, 342, 307–312. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef]
- Peerlinck, S.; Miserez, M.; Reynaerts, D.; Gorissen, B. Effect of Degradation in Small Intestinal Fluids on Mechanical Properties of Polycaprolactone and Poly-l-lactide-co-caprolactone. Polymers 2023, 15, 2964. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Fu, Y.; Jin, Y.; Weng, Y.; Bian, X.; Chen, X. Degradation Behaviors of Polylactic Acid, Polyglycolic Acid, and Their Copolymer Films in Simulated Marine Environments. Polymers 2024, 16, 1765. [Google Scholar] [CrossRef]
- Mi, C.H.; Qi, X.Y.; Zhou, Y.W.; Ding, Y.W.; Wei, D.X.; Wang, Y. Advances in medical polyesters for vascular tissue engineering. Discov. Nano 2024, 19, 125. [Google Scholar] [CrossRef]
- Yang, Z.; Yin, G.; Sun, S.; Xu, P. Medical applications and prospects of polylactic acid materials. iScience 2024, 27, 111512. [Google Scholar] [CrossRef]
- Zhao, C.; Xue, J.; Ran, F.; Sun, S. Modification of polyethersulfone membranes—A review of methods. Prog. Mater. Sci. 2013, 58, 76–150. [Google Scholar] [CrossRef]
- Alenazi, N.A.; Hussein, M.A.; Alamry, K.A.; Asiri, A.M. Modified polyether-sulfone membrane: A mini review. Des. Monomers Polym. 2017, 20, 532–546. [Google Scholar] [CrossRef]
- Wasyłeczko, M.; Wojciechowski, C.; Chwojnowski, A. Polyethersulfone Polymer for Biomedical Applications and Biotechnology. Int. J. Mol. Sci. 2024, 25, 4233. [Google Scholar] [CrossRef]
- Machodi, M.J.; Daramola, M.O. Synthesis and performance evaluation of PES/chitosan membranes coated with polyamide for acid mine drainage treatment. Sci. Rep. 2019, 9, 17657. [Google Scholar] [CrossRef] [PubMed]
- Athira, V.B.; Mohanty, S.; Nayak, S.K. Preparation and characterization of porous polyethersulfone (PES) membranes with improved biocompatibility by blending sulfonated polyethersulfone (SPES) and cellulose acetate (CA)—A comparative study. Mater. Today Commun. 2020, 25, 101544. [Google Scholar] [CrossRef]
- ter Beek, O.; Pavlenko, D.; Suck, M.; Helfrich, S.; Bolhuis-Versteeg, L.; Snisarenko, D.; Causserand, C.; Bacchin, P.; Aimar, P.; van Oerle, R.; et al. New membranes based on polyethersulfone—SlipSkin™ polymer blends with low fouling and high blood compatibility. Sep. Purif. Technol. 2019, 225, 60–73. [Google Scholar] [CrossRef]
- Wasyłeczko, M.; Remiszewska, E.; Sikorska, W.; Dulnik, J.; Chwojnowski, A. Scaffolds for Cartilage Tissue Engineering from a Blend of Polyethersulfone and Polyurethane Polymers. Molecules 2023, 28, 3195. [Google Scholar] [CrossRef]
- Wojciechowski, C.; Mazurek-Budzyńska, M.; Palinska, A.; Chwojnowski, A.; Granicka, L.; Sikorska, W.; Rokicki, G. Preparation and characterization of partially degradable hollow fiber membranes based on polysulfone/poly(L-lactide-co-glycolide-co-ε-caprolactone) blends. Desalination Water Treat. 2020, 202, 38–47. [Google Scholar] [CrossRef]
- Sikorska, W.; Wasyłeczko, M.; Przytulska, M.; Wojciechowski, C.; Rokicki, G.; Chwojnowski, A. Chemical degradation of PSF-PUR blend hollow fiber membranes-assessment of changes in properties and morphology after hydrolysis. Membranes 2021, 11, 51. [Google Scholar] [CrossRef]
- Wojciechowski, C.; Chwojnowski, A.; Granicka, L.; Łukowska, E.; Grzeczkowicz, M. Polysulfone/polyurethane blend degradable hollow fiber membranes preparation and transport–separation properties evaluation. Desalination Water Treat. 2016, 57, 22191–22199. [Google Scholar] [CrossRef]
- Sikorska, W.; Wojciechowski, C.; Przytulska, M.; Rokicki, G.; Wasyłeczko, M. Polysulfone–polyurethane (PSf-PUR) blend partly degradable hollow fiber membranes: Preparation, characterization, and computer image analysis. Desalination Water Treat. 2018, 128, 383–391. [Google Scholar] [CrossRef]
- ISO 23317:2014; Implants for Surgery—In Vitro Evaluation for Apatite-Forming Ability of Implant Materials. International Organization for Standardization: Geneva, Switzerland, 2014; Volume 2014.
- Baino, F.; Yamaguchi, S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: Review and challenges. Biomimetics 2020, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Chrzanowski, W.; Ali, E.; Neel, A.; Andrew, D.; Campbell, J. Effect of surface treatment on the bioactivity of nickel–titanium. Acta Biomater. 2008, 4, 1969–1984. [Google Scholar] [CrossRef] [PubMed]
Module | Mass of Module with Membranes Before Degradation [g] | Mass of Membranes in the Module Before Degradation [g] | PCL Mass in MEMBRANES Before Degradation [g] | Mass of Module with Membranes After DEGRADATION [g] | Mass of PCL Removed After Degradation [g] | PCL Mass Removed After Degradation [%] |
---|---|---|---|---|---|---|
PES/PCL 5-1 | NaOH | NaOH | NaOH | |||
1 | 3.7963 | 0.0925 | 0.0154 | 3.7901 | 0.0062 | 40 |
2 | 3.8061 | 0.0942 | 0.0157 | 3.8003 | 0.0058 | 37 |
3 | 3.7493 | 0.0959 | 0.0160 | 3.7432 | 0.0061 | 38 |
SBF | SBF | SBF | ||||
1 | 3.7544 | 0.0994 | 0.0166 | 3.7458 | 0.0086 | 52 |
2 | 3.7019 | 0.0977 | 0.0163 | 3.6942 | 0.0077 | 47 |
3 | 3.6807 | 0.0994 | 0.0166 | 3.6726 | 0.0081 | 49 |
PES/PCL 5-3 | NaOH | NaOH | NaOH | |||
1 | 3.6758 | 0.0939 | 0.0352 | 3.6519 | 0.0239 | 68 |
2 | 3.8175 | 0.0922 | 0.0346 | 3.7929 | 0.0246 | 71 |
3 | 3.7123 | 0.0939 | 0.0352 | 3.6891 | 0.0232 | 66 |
SBF | SBF | SBF | ||||
1 | 3.7525 | 0.0906 | 0.0340 | 3.7362 | 0.0163 | 48 |
2 | 3.4628 | 0.0988 | 0.0371 | 3.4442 | 0.0186 | 50 |
3 | 3.6710 | 0.0939 | 0.0352 | 3.6527 | 0.0183 | 52 |
Pore Size Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Size [µm2] | 0–3 | 3–8 | 8–20 | 20–80 | 80–100 | 100–150 | 150–300 | >300 | Total |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciechowski, C.; Wasyłeczko, M.; Lewińska, D.; Chwojnowski, A. Evaluation of Biocompatible and Biodegradable PES/PCL Membranes for Potential Use in Biomedical Devices: From Fouling Resistance to Environmental Safety. Molecules 2025, 30, 3887. https://doi.org/10.3390/molecules30193887
Wojciechowski C, Wasyłeczko M, Lewińska D, Chwojnowski A. Evaluation of Biocompatible and Biodegradable PES/PCL Membranes for Potential Use in Biomedical Devices: From Fouling Resistance to Environmental Safety. Molecules. 2025; 30(19):3887. https://doi.org/10.3390/molecules30193887
Chicago/Turabian StyleWojciechowski, Cezary, Monika Wasyłeczko, Dorota Lewińska, and Andrzej Chwojnowski. 2025. "Evaluation of Biocompatible and Biodegradable PES/PCL Membranes for Potential Use in Biomedical Devices: From Fouling Resistance to Environmental Safety" Molecules 30, no. 19: 3887. https://doi.org/10.3390/molecules30193887
APA StyleWojciechowski, C., Wasyłeczko, M., Lewińska, D., & Chwojnowski, A. (2025). Evaluation of Biocompatible and Biodegradable PES/PCL Membranes for Potential Use in Biomedical Devices: From Fouling Resistance to Environmental Safety. Molecules, 30(19), 3887. https://doi.org/10.3390/molecules30193887