Sustainable Recovery of Critical Minerals from Wastes by Green Biosurfactants: A Review
Abstract
:1. Introduction
1.1. Critical Minerals in the Context of Global Sustainability
1.2. Waste as a Secondary Resource for Critical Minerals
1.3. Green Analytical Chemistry in Metal Recovery
1.4. Biosurfactants as Green Alternatives for Metal Recovery
1.5. Need for Standardized Green Chemistry Metrics
2. Critical Minerals for Renewable Energy Technologies
2.1. Definition and Classification of Critical Minerals
2.2. Global Demand and Supply Challenges
2.3. Critical Minerals in Waste Streams
3. Green Biosurfactants: Properties and Production
3.1. Biosurfactant Classification and Structure
3.2. Production Methods and Microbial Sources
3.3. Environmental Advantages of Biosurfactants
3.4. Physicochemical Properties Relevant to Metal Recovery
4. Mechanisms of Biosurfactant–Metal Interactions
4.1. Complexation and Chelation
4.1.1. Chemical Structure and Metal-Binding Functional Groups
4.1.2. Mechanism of Metal Complexation
4.1.3. Spectroscopic Evidence for Metal–Biosurfactant Complexation
4.2. Micelle-Mediated Solubilization
4.3. Ion Exchange and Electrostatic Interactions
5. Recovery of Critical Minerals by Biosurfactants
5.1. Recovery from Electronic Waste
5.2. Recovery from Mining Wastes
5.3. Recovery from Spent Batteries
6. Green Chemistry Metrics Framework for Biosurfactant-Based Metal Recovery
Conceptual Foundation and Principles
7. Analytical Methods for Characterizing Biosurfactant–Metal Interactions
7.1. Spectroscopic Methods
7.2. Microscopic and Surface Analysis Techniques
8. Application of the Green Chemistry Metrics Framework to Biosurfactant-Based Recovery Processes
8.1. Application of Green Chemistry Framework to Recovery from Mining Waste
8.2. Application of Green Chemistry Framework to Spent Battery Recovery
9. Future Directions and Challenges
Research Gaps and Opportunities
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency (IEA). The Role of Critical Minerals in Clean Energy Transitions; IEA: Paris, France, 2021; pp. 15–36. [Google Scholar]
- Watari, T.; Nansai, K.; Nakajima, K. Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 2020, 155, 104669. [Google Scholar] [CrossRef]
- Hund, K.; La Porta, D.; Fabregas, T.P.; Laing, T.; Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition; World Bank: Washington, DC, USA, 2020; pp. 45–87. [Google Scholar]
- European Commission. Critical Raw Materials Resilience: Charting a Path Towards Greater Security and Sustainability; European Commission: Brussels, Belgium, 2020; pp. 12–45. [Google Scholar]
- European Commission. Study on the EU’s List of Critical Raw Materials; European Commission: Brussels, Belgium, 2020; pp. 20–35. [Google Scholar]
- U.S. Department of Energy. Critical Materials Strategy; U.S. Department of Energy: Washington, DC, USA, 2011; pp. 15–40.
- Zeng, X.; Mathews, J.A.; Li, J. Urban mining of e-waste is becoming more cost-effective than virgin mining. Environ. Sci. Technol. 2018, 52, 4835–4841. [Google Scholar] [CrossRef]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2024; United Nations University: Bonn, Germany, 2024. [Google Scholar]
- Tawonezvi, T.; Nomnqa, M.; Petrik, L.F.; Bladergroen, B.J. Recovery and Recycling of Valuable Metals from Spent Lithium-Ion Batteries: A Comprehensive Review and Analysis. Energies 2023, 16, 1365. [Google Scholar] [CrossRef]
- Dar, A.A.; Chen, Z.; Zhang, G.; Hu, J.; Zaghib, K.; Deng, S.; Wang, X.; Haghighat, F.; Mulligan, C.N.; An, C.; et al. Sustainable Extraction of Critical Minerals from Waste Batteries: A Green Solvent Approach in Resource Recovery. Batteries 2025, 11, 51. [Google Scholar] [CrossRef]
- Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; Reuter, M.; Serna-Guerrero, R. A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 2019, 5, 68. [Google Scholar] [CrossRef]
- Simões, C.R.; da Silva, M.W.P.; de Souza, R.F.M.; Hacha, R.R.; Merma, A.G.; Torem, M.L.; Silvas, F.P.C. Biosurfactants: An Overview of Their Properties, Production, and Application in Mineral Flotation. Resources 2024, 13, 81. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green chemistry metrics with special reference to green analytical chemistry. Molecules 2015, 20, 10928–10946. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998; pp. 29–56. [Google Scholar]
- Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Sherwood, J. Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int. J. Mol. Sci. 2015, 16, 17101–17159. [Google Scholar] [CrossRef] [PubMed]
- Keith, L.H.; Gron, L.U.; Young, J.L. Green analytical methodologies. Chem. Rev. 2007, 107, 2695–2708. [Google Scholar] [CrossRef] [PubMed]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N. Recent advances in the environmental applications of biosurfactants. Curr. Opin. Colloid Interface Sci. 2009, 14, 372–378. [Google Scholar] [CrossRef]
- Banat, I.M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M.G.; Fracchia, L.; Smyth, T.J.; Marchant, R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Soberón-Chávez, G.; Maier, R.M. Biosurfactants: A General Overview. In Biosurfactants; Soberón-Chávez, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–11. [Google Scholar]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Surfactant-enhanced remediation of contaminated soil: A review. Eng. Geol. 2001, 60, 371–380. [Google Scholar] [CrossRef]
- Franzetti, A.; Gandolfi, I.; Fracchia, L.; Van Hamme, J.; Gkorezis, P.; Marchant, R.; Banat, I.M. Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. In Biosurfactants: Production and Utilization—Processes, Technologies, and Economics; Kosaric, N., Sukan, F.V., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 361–366. [Google Scholar]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Rodrigues, A.I.; de Freitas, V.; Azevedo, Z.; Teixeira, J.A.; Rodrigues, L.R. Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour. Technol. 2016, 212, 144–150. [Google Scholar] [CrossRef]
- Rufino, R.D.; Luna, J.M.; de Campos Takaki, G.M.; Sarubbo, L.A. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron. J. Biotechnol. 2014, 17, 34–38. [Google Scholar] [CrossRef]
- Hellweg, S.; Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef]
- Hossain, K.Z.; Patel, H.; Biswas, B.; Haque, M.A.; Chakraborty, M.; Dey, S.R.; Palit, D. Life cycle assessment of biosurfactant production from waste cooking oil using Pseudomonas aeruginosa. J. Clean. Prod. 2020, 279, 123876. [Google Scholar]
- Graedel, T.E.; Harper, E.M.; Nassar, N.T.; Nuss, P.; Reck, B.K. Criticality of metals and metalloids. Proc. Natl. Acad. Sci. USA 2015, 112, 4257–4262. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- U.S. Geological Survey. Draft List of Critical Minerals; Federal Register: Washington, DC, USA, 2018; Volume 83, pp. 7065–7067.
- Wanger, T.C. The Lithium future—Resources, recycling, and the environment. Conserv. Lett. 2011, 4, 202–206. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook 2020; IEA: Paris, France, 2020; pp. 45–89. [Google Scholar]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Sonter, L.J.; Dade, M.C.; Watson, J.E.M.; Valenta, R.K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 2020, 11, 4174. [Google Scholar] [CrossRef]
- Azevedo, M.; Campagnol, N.; Hagenbruch, T.; Hoffman, K.; Lala, A.; Ramsbottom, O. Lithium and Cobalt: A Tale of Two Commodities; McKinsey & Company: New York, NY, USA, 2018; pp. 10–35. [Google Scholar]
- Rabe, W.; Kostka, G.; Smith Stegen, K. China’s supply of critical raw materials: Risks for Europe’s solar and wind industries? Energy Policy 2017, 101, 692–699. [Google Scholar] [CrossRef]
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor 2017: Quantities, Flows, and Resources; United Nations University, International Telecommunication Union, and International Solid Waste Association: Bonn, Germany, 2017; pp. 45–76. [Google Scholar]
- Cucchiella, F.; D’Adamo, I.; Koh, S.C.L.; Rosa, P. Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renew. Sustain. Energy Rev. 2015, 51, 263–272. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Z.; Lin, X.; Zhang, Y.; He, Y.; Cao, H.; Sun, Z. A Mini-Review on Metal Recycling from Spent Lithium-Ion Batteries. Engineering 2018, 4, 361–370. [Google Scholar] [CrossRef]
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Ndlovu, S.; Simate, G.S.; Matinde, E. Waste Production and Utilization in the Metal Extraction Industry; CRC Press: Boca Raton, FL, USA, 2017; pp. 56–89. [Google Scholar]
- Sun, Z.; Cao, H.; Xiao, Y.; Sietsma, J.; Jin, W.; Agterhuis, H.; Yang, Y. Toward sustainability for recovery of critical metals from electronic waste: The hydrochemistry processes. ACS Sustain. Chem. Eng. 2017, 5, 21–40. [Google Scholar] [CrossRef]
- Satpute, S.K.; Banpurkar, A.G.; Dhakephalkar, P.K.; Banat, I.M.; Chopade, B.A. Methods for investigating biosurfactants and bioemulsifiers: A review. Crit. Rev. Biotechnol. 2010, 30, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Desai, J.D.; Banat, I.M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. [Google Scholar] [PubMed]
- Abdel-Mawgoud, A.M.; Lépine, F.; Déziel, E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010, 86, 1323–1336. [Google Scholar] [CrossRef]
- Mnif, I.; Ghribi, D. Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 2015, 104, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Banat, I.M.; Makkar, R.S.; Cameotra, S.S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495–508. [Google Scholar] [CrossRef]
- Van Hamme, J.D.; Singh, A.; Ward, O.P. Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 2006, 24, 604–620. [Google Scholar] [CrossRef]
- Wang, J.; Ji, G.; Tian, J.; Zhang, H.; Dong, H.; Yu, L. Functional characterization of a biosurfactant-producing thermo-tolerant bacteria isolated from an oil reservoir. Pet. Sci. 2011, 8, 353–356. [Google Scholar] [CrossRef]
- Peng, F.; Wang, Y.; Sun, F.; Liu, Z.; Lai, Q.; Shao, Z. A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53. J. Appl. Microbiol. 2008, 105, 698–705. [Google Scholar] [CrossRef]
- Konishi, M.; Fukuoka, T.; Morita, T.; Imura, T.; Kitamoto, D. Production of new types of sophorolipids by Candida batistae. J. Oleo Sci. 2008, 57, 359–369. [Google Scholar] [CrossRef]
- Müller, M.M.; Kügler, J.H.; Henkel, M.; Gerlitzki, M.; Hörmann, B.; Pöhnlein, M.; Syldatk, C.; Hausmann, R. Rhamnolipids—Next generation surfactants? J. Biotechnol. 2012, 162, 366–380. [Google Scholar] [CrossRef]
- Winterburn, J.B.; Martin, P.J. Foam mitigation and exploitation in biosurfactant production. Biotechnol. Lett. 2012, 34, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.M.S.; Procópio, L.C.; Brandão, F.D.; Carvalho, A.M.X.; Tótola, M.R.; Borges, A.C. Biodegradability of bacterial surfactants. Biodegradation 2011, 22, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Bhattacharya, P.; Panda, D.; Roy, S.; Das, L.; Nandi, R. Life cycle assessment of microbial biosurfactant production from renewable carbon sources. J. Environ. Manag. 2021, 293, 112882. [Google Scholar]
- Pacwa-Płociniczak, M.; Płaza, G.A.; Piotrowska-Seget, Z.; Cameotra, S.S. Environmental applications of biosurfactants: Recent advances. Int. J. Mol. Sci. 2011, 12, 633–654. [Google Scholar] [CrossRef]
- Urum, K.; Pekdemir, T. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 2004, 57, 1139–1150. [Google Scholar] [CrossRef]
- Ławniczak, Ł.; Marecik, R.; Chrzanowski, Ł. Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol. 2013, 97, 2327–2339. [Google Scholar] [CrossRef]
- Nitschke, M.; Costa, S.G. Biosurfactants in food industry. Trends Food Sci. Technol. 2007, 18, 252–259. [Google Scholar] [CrossRef]
- Ochoa-Loza, F.J.; Artiola, J.F.; Maier, R.M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J. Environ. Qual. 2001, 30, 479–485. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Teixeira, J.A.; Rodrigues, L.R. Biosurfactants produced by marine microorganisms with therapeutic applications. Mar. Drugs 2016, 14, 38. [Google Scholar] [CrossRef]
- Dahrazma, B.; Mulligan, C.N. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 2007, 69, 705–711. [Google Scholar] [CrossRef]
- Hari, O.; Upadhyay, S.K. Rhamnolipid–Metal Ions (CrVI and PbII) Complexes: Spectrophotometric, Conductometric, and Surface Tension Measurement Studies. J. Surfactants Deterg. 2021, 24, 281–288. [Google Scholar] [CrossRef]
- McCawley, I.A.; Maier, R.M.; Hogan, D.E. Comparison of synthetic rhamnolipids as chemical precipitants for Pb, La, and Mg. J. Hazard. Mater. 2023, 447, 130801. [Google Scholar] [CrossRef] [PubMed]
- Albasri, H.M.; Almohammadi, A.A.; Alhhazmi, A.; Bukhari, D.A.; Waznah, M.S.; Mawad, A.M.M. Production and characterization of rhamnolipid biosurfactant from thermophilic Geobacillus stearothermophilus bacterium isolated from Uhud mountain. Front. Microbiol. 2024, 15, 1358175. [Google Scholar] [CrossRef] [PubMed]
- Faccioli, Y.E.d.S.; de Oliveira, K.W.; Campos-Guerra, J.M.; Converti, A.; Soares da Silva, R.d.C.F.; Sarubbo, L.A. Biosurfactants: Chemical Properties, Ecofriendly Environmental Applications, and Uses in the Industrial Energy Sector. Energies 2024, 17, 5042. [Google Scholar] [CrossRef]
- Poirier, A.; Ozkaya, K.; Gredziak, J.; Talbot, D.; Baccile, N. Heavy metal removal from water using the metallogelation properties of a new glycolipid biosurfactant. J. Surfactants Deterg. 2023, 26, 175–184. [Google Scholar] [CrossRef]
- Hogan, D.E.; Curry, J.E.; Pemberton, J.E.; Maier, R.M. Rhamnolipid biosurfactant complexation of rare earth elements. J. Hazard. Mater. 2017, 340, 171–178. [Google Scholar] [CrossRef]
- Nelson, J. XANES reflects coordination change and underlying surface disorder of zinc adsorbed to silica. J. Synchrotron Radiat. 2021, 28, 1119–1126. [Google Scholar] [CrossRef]
- Mulligan, C.N. Sustainable remediation of contaminated soil using biosurfactants. Front. Bioeng. Biotechnol. 2021, 9, 635196. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Brasileiro, P.P.F.; Silveira, G.N.M.; Luna, J.M.; Rufino, R.D.; dos Santos, V.A. Application of a Low Cost Biosurfactant in the Removal of Heavy Metals in Soil. Chem. Eng. Trans. 2018, 64, 433–438. [Google Scholar] [CrossRef]
- Ravindran, A.; Sajayan, A.; Priyadharshini, G.B.; Selvin, J.; Kiran, G.S. Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front. Microbiol. 2020, 11, 222. [Google Scholar] [CrossRef]
- Juwarkar, A.A.; Nair, A.; Dubey, K.V.; Singh, S.K.; Devotta, S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 2007, 68, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Slizovskiy, I.B.; Kelsey, J.W.; Hatzinger, P.B. Surfactant-facilitated remediation of metal-contaminated soils: Efficacy and toxicological consequences to earthworms. Environ. Toxicol. Chem. 2011, 30, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil. Environ. Prog. 1999, 18, 50–54. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Kamali, M.; Gibbs, B.F. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J. Hazard. Mater. 2004, 110, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Handa, S.; Rana, S.; Suttee, A.; Puri, S.; Chatterjee, M. Biosurfactant from Candida: Sources, classification, and emerging applications. Arch. Microbiol. 2023, 205, 149. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Chemosphere 2001, 44, 1127–1131. [Google Scholar] [CrossRef]
- Karwowska, E.; Andrzejewska-Morzuch, D.; Łebkowska, M.; Tabernacka, A.; Wojtkowska, M.; Telepko, A.; Konarzewska, A. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J. Hazard. Mater. 2014, 264, 203–210. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; He, C.; Yang, Y.; Li, J.; Fujita, T.; Wang, G.; Shen, F. Improved leaching of Cu, Sn, Pb, Zn, and Al from waste printed circuit boards by electro-generated Cl2 in HCl solution. Waste Manag. 2022, 153, 37–45. [Google Scholar] [CrossRef]
- Urbańska, W. Recovery of Co, Li, and Ni from spent Li-ion batteries by the inorganic and/or organic reducer assisted leaching method. Minerals 2020, 10, 555. [Google Scholar] [CrossRef]
- Alsaqer, S.; Marafi, M.; Banat, I.M.; Ismail, W. Biosurfactant-facilitated leaching of metals from spent hydrodesulphurization catalyst. J. Appl. Microbiol. 2018, 125, 1358–1369. [Google Scholar] [CrossRef]
- Dahrazma, B.; Mulligan, C.N. Extraction of Copper from a Low-Grade Ore by Rhamnolipids. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2004, 8, 166–174. [Google Scholar] [CrossRef]
- Paul, A.; Lizhen, G.; Recheal, T.; Ali, S. Sustainable Lithium and Cobalt Recovery from Spent Lithium-ion Batteries: Best Practices for the Future. A review. J. Anal. Tech. Res. 2024, 6, 43–77. [Google Scholar] [CrossRef]
- Huisman, J.; Leroy, P.; Tertre, F.; Söderman, M.L.; Chancerel, P.; Cassard, D.; Løvik, A.N.; Wäger, P.; Kushnir, D.; Rotter, S.; et al. Prospecting Secondary Raw Materials in the Urban Mine and Mining Wastes: Final Report; ProSUM Consortium: El Segundo, CA, USA, 2017. [Google Scholar]
- Mishra, S.; Lin, Z.; Pang, S.; Zhang, Y.; Bhatt, P.; Chen, S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J. Hazard. Mater. 2021, 418, 126253. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Shi, W.; Yang, W.; Liang, L.; Yao, W.; Chai, L.; Gao, S.; Liao, Q. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soil. Chemosphere 2018, 206, 83–91. [Google Scholar] [CrossRef]
- Martínez, J.; Cortés, J.F.; Miranda, R. Green Chemistry Metrics: A Review. Processes 2022, 10, 1274. [Google Scholar] [CrossRef]
- Karim, S.; Sawa, H.M.; Ting, Y.P. Evaluation of green chemistry metrics for sustainable recycling of platinum group metals from spent automotive catalysts via bioleaching. Green Chem. 2024, 26, 4112–4126. [Google Scholar] [CrossRef]
- Springer, J.; Müller, J. Environmental Impacts of Biosurfactants from a Life Cycle Perspective. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Biosurfactants for a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2021; pp. 123–145. [Google Scholar]
- Gudiña, E.J.; Rocha, V.; Teixeira, J.A.; Rodrigues, L.R. Structural and functional characterization of a novel biosurfactant produced by a Bacillus subtilis strain isolated from crude oil-contaminated soil. J. Hazard. Mater. 2021, 416, 125865. [Google Scholar]
- Ferreira-Filipe, D.A.; Duarte, A.C.; Hursthouse, A.S.; Rocha-Santos, T.; Silva, A.L.P. Biobased Strategies for E-Waste Metal Recovery: A Critical Overview of Recent Advances. Environments 2025, 12, 26. [Google Scholar] [CrossRef]
- Iannicelli-Zubiani, E.M.; Giani, M.I.; Recanati, F.; Dotelli, G.; Puricelli, S.; Cristiani, C. Environmental impacts of a hydrometallurgical process for electronic waste treatment: A life cycle assessment case study. J. Clean. Prod. 2017, 140, 409–416. [Google Scholar] [CrossRef]
- Chernyshova, I.V.; Slabov, V.; Kota, H.R. application of biosurfactants in metal extraction. Environ. Technol. Innov. 2023, 29, 102982. [Google Scholar]
- Sun, W.; Zhu, B.; Yang, F.; Dai, M.; Sehar, S.; Peng, C.; Ali, I.; Naz, I. Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. Chemosphere 2021, 265, 129090. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.; Shi, X.; Wang, Q.; Lin, H.; Shang, H.; Shen, Z. Efficient Exploitation of Lepidolite Resources: A Review on Beneficiation Techniques, Extraction Methods, and Synergistic Optimization. Separations 2025, 12, 130. [Google Scholar] [CrossRef]
- Lee, A.; Kim, K. Removal of Heavy Metals Using Rhamnolipid Biosurfactant on Manganese Nodules. Water Air Soil Pollut. 2019, 230, 258. [Google Scholar] [CrossRef]
- Falagán, C.; Grail, B.M.; Johnson, D.B. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 2017, 106, 71–78. [Google Scholar] [CrossRef]
- Tembo, P.M.; Dyer, C.; Subramanian, V. Lithium-ion battery recycling—A review of the material supply and policy infrastructure. NPG Asia Mater. 2024, 16, 43. [Google Scholar] [CrossRef]
- Geys, R.; Soetaert, W.; Van Bogaert, I. Biotechnological opportunities in biosurfactant production. Curr. Opin. Biotechnol. 2014, 30, 66–72. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Rajendran, S.; Laird, C.; Parsa, J.B.; Senthamarai, C.; Kamaraj, S.K.; Sundararajan, M. Green chemistry oriented life cycle assessment for treatment of industrial waste: A sustainable approach for environmental management. Chem. Eng. J. 2021, 408, 127346. [Google Scholar]
- Zhi, Y.; Wu, Q.; Xu, Y. Production of surfactin from waste cooking oil by Bacillus subtilis. Renew. Energy 2017, 104, 38–45. [Google Scholar]
- Mosa, K.A.; Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O.P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 2016, 7, 303. [Google Scholar] [CrossRef]
- Duarte, C.; Gudina, E.J.; Lima, C.F.; Rodrigues, L.R. Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 2014, 4, 40. [Google Scholar] [CrossRef]
- Muthusamy, K.; Gopalakrishnan, S.; Ravi, T.K.; Sivachidambaram, P. Biosurfactants: Properties, commercial production and application. Curr. Sci. 2008, 94, 736–747. [Google Scholar]
Property | Rhamnolipids | Surfactin | Sophorolipids | Significance for Metal Recovery |
---|---|---|---|---|
Structural Properties | ||||
Molecular Weight (Da) | 500–900 | 1000–1100 | 600–800 | Affects diffusion and interaction with metals |
Critical Micelle Concentration (mg/L) | 5–200 | 10–150 | 40–150 | Lower CMC indicates greater efficiency at lower concentrations |
Surface Tension Reduction (mN/m) | 25–30 | 27–32 | 30–35 | Lower values indicate better interfacial activity |
Environmental Properties | ||||
Optimal pH Range | 4.0–8.0 | 5.0–10.0 | 4.0–7.5 | Affects metal binding capacity and stability |
Temperature Stability (°C) | −20 to 120 | 0 to 100 | −10 to 130 | Determines applicability under various process conditions |
Biodegradability (%) | >90 (28 days) | >80 (28 days) | >95 (28 days) | Higher values indicate lower environmental persistence |
Aquatic Toxicity (EC50, mg/L) | 50–150 | 40–120 | 100–300 | Higher values indicate lower toxicity |
Production Properties | ||||
Primary Microbial Sources | Pseudomonas aeruginosa | Bacillus subtilis | Starmerella bombicola | Affects production methods and sustainability |
Production Yield (g/L) | 10–100 | 0.1–5 | 100–400 | Higher yields reduce production costs |
Production Time (days) | 4–7 | 2–5 | 5–10 | Shorter times improve production efficiency |
Potential for Waste Substrate Use | High | Medium | Very High | Affects overall sustainability of production |
Metal | Waste Type | Method Type | Leaching Method | Conditions | L/S Ratio (v/wt) | Initial Metal Concentration | Recovery (%) | Reference |
---|---|---|---|---|---|---|---|---|
Copper (Cu) | Contaminated sediment | Biosurfactant | Rhamnolipid washing (0.5%) | pH~7; Ambient temp; 1 h | NR | NR | 65% | [81,86] |
Copper (Cu) | Printed Circuit Boards (PCBs) | Biosurfactant | Biosurfactant-enhanced bioleaching | Neutral pH; 30 °C; 14 days | NR | ~20–30 wt% Cu | <53% | [82,86] |
Copper (Cu) | Printed Circuit Boards (PCBs) | Conventional | Cl2 gas in 4M HCl solution | pH < 1; 45 °C; 100 min | NR | ~20–30 wt% Cu | 87.2% | [83] |
Zinc (Zn) | Contaminated sediment | Biosurfactant | Sophorolipid washing (4%) | pH~7; Ambient temp; 1 h | NR | NR | 60% | [81] |
Zinc (Zn) | Printed Circuit Boards (PCBs) | Biosurfactant | Biosurfactant-enhanced bioleaching | Neutral pH; 30 °C; 14 days | NR | NR | ~48% | [82] |
Zinc (Zn) | Printed Circuit Boards (PCBs) | Conventional | Cl2 gas in 4M HCl solution | pH < 1; 45 °C; 100 min | NR | NR | >90% | [83] |
Nickel (Ni) | Spent refinery catalyst | Biosurfactant | Rhamnolipid leaching (0.4 mg/L) | pH~7; 30 °C; 7 days | NR | 2–10 wt% Ni | 30% | [85] |
Nickel (Ni) | Printed Circuit Boards (PCBs) | Biosurfactant | Biosurfactant-enhanced bioleaching | Neutral pH; 30 °C; 14 days | NR | 5–10 wt% Ni | <48.5% | [82] |
Nickel (Ni) | Lithium-ion battery waste (“black mass”) | Conventional | H2SO4 + H2O2 leaching | 2M H2SO4 + 5% H2O2; 80 °C; 60 min | 10:1 | ~5–30 wt% Ni | ~100% | [84] |
Lead (Pb) | Printed Circuit Boards (PCBs) | Biosurfactant | Biosurfactant-enhanced bioleaching | Neutral pH; 30 °C; 14 days | NR | 1–5 wt% Pb | ~0.5% | [82] |
Lead (Pb) | Printed Circuit Boards (PCBs) | Conventional | Cl2 gas in 4M HCl solution | pH < 1; 45 °C; 100 min | NR | 1–5 wt% Pb | >90% | [83] |
Lithium (Li) | Lithium-ion battery waste (“black mass”) | Biosurfactant | Rhamnolipid leaching | pH 6.0–7.0; Room temp; ~48 h | NR | 5–7 wt% Li | ~75% | [87] |
Lithium (Li) | Lithium-ion battery waste (“black mass”) | Conventional | H2SO4 + H2O2 leaching | 2M H2SO4 + 5% H2O2; 80 °C; 60 min | 10:1 | 5–7 wt% Li | ~100% | [84] |
Cobalt (Co) | Lithium-ion battery waste (“black mass”) | Biosurfactant | Rhamnolipid leaching | pH 4.0–5.0; Room temp; ~48 h | NR | ~5–20 wt% Co | ~90% | [87] |
Cobalt (Co) | Lithium-ion battery waste (“black mass”) | Conventional | H2SO4 + H2O2 leaching | 2M H2SO4 + 5% H2O2; 80 °C; 60 min | 10:1 | ~5–20 wt% Co | ~100% | [84] |
Gold (Au) | Printed Circuit Boards (PCBs) | Biosurfactant | Sophorolipid-enhanced leaching | pH 3.0–4.0; Room temp; Time NR | NR | ~0.01–0.03 wt% Au | 65–80% | [83] |
GAC Principle | Hydrometallurgical | Pyrometallurgical | Biosurfactant-Based Recovery | Alignment with Green Analytical Chemistry (GAC) | |
---|---|---|---|---|---|
Solvent Use (g/sample or L/kg) | 2–5 L strong acids per kg waste [45] | None (uses solid flux/reductants) [45] | 0.5–5 g/L biosurfactant in aqueous media [94] | Biosurfactant-Based (lowest toxicity, low dosage) | |
Energy Consumption (kWh/kg) | 8–9 kWh/kg [45] | ~4.7–10 kWh/kg [45] | 0.1–1.0 kWh/kg (mostly mixing) [94] | Biosurfactant-Based (lowest energy) | |
Reagent Toxicity | High (corrosive acids, volatile solvents) [45] | High (metal vapors, dioxins, and toxic gases) [45] | Low (biodegradable, non-volatile) [95] | Biosurfactant-Based | |
Waste Generation (E-Factor) | 80–300 kg of waste per kg of recovered metal (includes acid leachates and sludge) [96] | 3–5 kg of slag and dust per kg of recovered metal [45] | 20–45 kg of waste per kg of recovered metal [95] | Biosurfactant-Based (least waste, biodegradable) | |
Biodegradability of Inputs | Non-biodegradable: mineral acids, solvents [45] | Not applicable: inorganic slag [45] | Highly biodegradable: >80–95% within 28 days [95] | Biosurfactant-Based | |
Sample Preparation Intensity | High: pH control, solid–liquid separation, neutralization, and washing [91] | Moderate: thermal pretreatment, slag separation, and gas handling [92] | Low: aqueous mixing; minimal pH adjustment; and no toxic cleanup steps [97] | Biosurfactant-Based | |
Operator Safety Hazards | High: corrosive acids, toxic fumes [92] | High: >1000 °C, metal vapors, and toxic gases; gas scrubbing needed [92] | Low: ambient conditions, non-toxic reagents [97] | Biosurfactant-Based (safest) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deravian, B.; Mulligan, C.N. Sustainable Recovery of Critical Minerals from Wastes by Green Biosurfactants: A Review. Molecules 2025, 30, 2461. https://doi.org/10.3390/molecules30112461
Deravian B, Mulligan CN. Sustainable Recovery of Critical Minerals from Wastes by Green Biosurfactants: A Review. Molecules. 2025; 30(11):2461. https://doi.org/10.3390/molecules30112461
Chicago/Turabian StyleDeravian, Bita, and Catherine N. Mulligan. 2025. "Sustainable Recovery of Critical Minerals from Wastes by Green Biosurfactants: A Review" Molecules 30, no. 11: 2461. https://doi.org/10.3390/molecules30112461
APA StyleDeravian, B., & Mulligan, C. N. (2025). Sustainable Recovery of Critical Minerals from Wastes by Green Biosurfactants: A Review. Molecules, 30(11), 2461. https://doi.org/10.3390/molecules30112461