Heterobimetallic Uranium(V)-Alkali Metal Alkoxides: Expanding the Chemistry of f-Block Elements
Abstract
:1. Introduction
2. Results and Discussion
2.1. U(V)M(I) tert-Butoxide Compounds [UM(OtBu)6] (UM-OtBu)
2.2. U(V)M(I) iso-Propoxide Compounds
2.3. Dimeric [UM(OiPr)6]2 Derivatives
2.4. Polymeric [UM(OiPr)6]∞ Derivatives
3. Experimental Section
3.1. General Reaction Procedure for [UM(OtBu)6] (UM-OtBu)
- (a)
- Co-Alcoholysis Reaction Starting From the UV tert-Butoxide [U(OtBu)5(Py)]. In a 5 mL snap-cap vial, a mixture of 1.0 eq. [U(OtBu)5(py)] and 1.0 eq. [M(N(SiMe3)2)] was dissolved in 1 mL benzene, followed by the addition of 1.0 eq. tert-butanol dissolved in 1 mL benzene. The mixture was stirred for 1 d at room temperature in a closed vial. Afterward, the vial was removed from the stir plate and stored with the cap closed. Slow evaporation of all volatiles at room temperature yielded crystals of [AnM(OtBu)6] (AnM-OtBu).
- (b)
- Redox Reaction Starting from the UIV tert-Butoxides [UM2(OtBu)6]. In a 5 mL snap-cap vial, 1.0 eq. [UM2(OtBu)6] was reacted with 0.5 eq. I2 in benzene. The mixture was stirred for 1 d at room temperature in a closed vial, resulting in the precipitation of MI. After filtration through celite/glass wool and subsequent slow evaporation of all volatiles at room temperature in a closed snap-cap vial, crystals of [AnM(OtBu)6] (AnM-OtBu) were obtained.
3.2. General Reaction Procedure for [UM(OiPr)6]n (UM-OiPr)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cotton, S. Lanthanide and Actinide Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Kindra, D.R.; Evans, W.J. Magnetic susceptibility of uranium complexes. Chem. Rev. 2014, 114, 8865–8882. [Google Scholar] [CrossRef] [PubMed]
- Liddle, S.T. The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 2015, 54, 8604–8641. [Google Scholar] [CrossRef]
- Arnold, P.L.; Love, J.B.; Patel, D. Pentavalent uranyl complexes. Coord. Chem. Rev. 2009, 253, 1973–1978. [Google Scholar] [CrossRef]
- Gouder, T.; Eloirdi, R.; Caciuffo, R. Direct observation of pure pentavalent uranium in U2O5 thin films by high resolution photoemission spectroscopy. Sci. Rep. 2018, 8, 8306. [Google Scholar] [CrossRef]
- Hinatsu, Y.; Fujino, T.; Edelstein, N. Magnetic susceptibility of LiUO3. J. Solid State Chem. 1992, 99, 182–188. [Google Scholar] [CrossRef]
- Liu, J.-H.; Van den Berghe, S.; Konstantinović, M. XPS spectra of the U5+ compounds KUO3, NaUO3 and Ba2U2O7. J. Solid State Chem. 2009, 182, 1105–1108. [Google Scholar] [CrossRef]
- Graves, C.R.; Vaughn, A.E.; Schelter, E.J.; Scott, B.L.; Thompson, J.D.; Morris, D.E.; Kiplinger, J.L. Probing the chemistry, electronic structure and redox energetics in organometallic pentavalent uranium complexes. Inorg. Chem. 2008, 47, 11879–11891. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.R.; Bart, S.C.; Meyer, K.; Cummins, C.C. Towards uranium catalysts. Nature 2008, 455, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Graves, C.R.; Kiplinger, J.L. Pentavalent uranium chemistry—Synthetic pursuit of a rare oxidation state. Chem. Commun. 2009, 26, 3831–3853. [Google Scholar] [CrossRef]
- Jones, R.; Bindschadler, E.; Karmas, G.; Yoeman, F.; Gilman, H. Organic compounds of uranium. III. Uranium (V) ethoxide. J. Am. Chem. Soc. 1956, 78, 4287–4288. [Google Scholar] [CrossRef]
- Jones, R.; Bindschadler, E.; Karmas, G.; Martin, G., Jr.; Thirtle, J.; Yoeman, F.; Gilman, H. Organic compounds of uranium. IV. Uranium (V) alkoxides. J. Am. Chem. Soc. 1956, 78, 4289–4290. [Google Scholar] [CrossRef]
- Jones, R.; Bindschadler, E.; Blume, D.; Karmas, G.; Martin Jr, G.; Thirtle, J.; Gilman, H. Organic Compounds of Uranium. V. Derivatives of Uranium (V) Alkoxides. J. Am. Chem. Soc. 1956, 78, 6027–6030. [Google Scholar] [CrossRef]
- Lichtenberg, A.; Lichtenberg, A.; Pieper, M.; Mathur, S. Mononuclear Uranium and Heterobimetallic Actinide (An = Th, U) Alkoxides with Divalent Group 14 Elements (MII = Ge, Sn, Pb). Eur. J. Inorg. Chem. 2024, 27, e202300474. [Google Scholar] [CrossRef]
- Cotton, F.A.; Marler, D.O.; Schwotzer, W. Dinuclear uranium alkoxides. Preparation and structures of KU2 (OCMe3) 9, U2 (OCMe3) 9, and U2 (OCHMe2) 10, containing [uranium (IV), uranium (IV)], [uranium (IV), uranium (V)], and [uranium (V), uranium (V)], respectively. Inorg. Chem. 1984, 23, 4211–4215. [Google Scholar] [CrossRef]
- Fortier, S.; Wu, G.; Hayton, T.W. Synthesis and Characterization of Three Homoleptic Alkoxides of Uranium: [Li (THF)] 2 [UIV (O t Bu) 6],[Li (Et2O)][UV (O t Bu) 6], and UVI (O t Bu) 6. Inorg. Chem. 2008, 47, 4752–4761. [Google Scholar] [CrossRef]
- Mehrotra, R.; Singh, A.; Sogani, S. Homo-and hetero-metallic alkoxides of group 1, 2, and 12 metals. Chem. Soc. Rev. 1994, 23, 215–225. [Google Scholar] [CrossRef]
- Shah, A.; Gupta, R.; Singh, A.; Mehrotra, R. Synthesis and Characterization of Heterobimetallic Alkoxides of Iron (III) with Alkali Metals and Aluminium. Synth. React. Inorg. Met. Org. Chem. 1991, 21, 609–621. [Google Scholar] [CrossRef]
- Mäntymäki, M.; Ritala, M.; Leskelä, M. Double metal alkoxides of lithium: Synthesis, structure and applications in materials chemistry. Coord. Chem. Rev. 2012, 256, 854–877. [Google Scholar] [CrossRef]
- Veith, M.; Mathur, S.; Huch, V. Novel ionogenic heterometal alkoxide derivatives. Chem. Commun. 1997, 22, 2197–2198. [Google Scholar] [CrossRef]
- Schläfer, J.; Stucky, S.; Tyrra, W.; Mathur, S. Heterobi-and trimetallic cerium (IV) tert-butoxides with mono-, di-, and trivalent metals (M= K (I), Ge (II), Sn (II), Pb (II), Al (III), Fe (III)). Inorg. Chem. 2013, 52, 4002–4010. [Google Scholar] [CrossRef]
- Grödler, D.; Sperling, J.M.; Rotermund, B.M.; Scheibe, B.; Beck, N.B.; Mathur, S.; Albrecht-Schönzart, T.E. Neptunium Alkoxide Chemistry: Expanding Alkoxides to the Transuranium Elements. Inorg. Chem. 2023, 62, 2513–2517. [Google Scholar] [CrossRef] [PubMed]
- Veith, M.; Mathur, S.; Huch, V. Synthesis and Characterization of New Alkoxotitanates of Yttrium, Barium, and Copper: Single Crystal X-ray Diffraction Structures of Cl2Y {Ti2 (OPri) 9},{Ti (OPri) 5} Ba {Ti2 (OPri) 9}, and ClCu {Ti2 (OPri) 9}. Inorg. Chem. 1997, 36, 2391–2399. [Google Scholar] [CrossRef]
- Veith, M.; Mathur, S.; Mathur, C. New perspectives in the tailoring of hetero (bi-and tri-) metallic alkoxide derivatives. Polyhedron 1998, 17, 1005–1034. [Google Scholar] [CrossRef]
- Mathur, S.; Veith, M.; Ruegamer, T.; Hemmer, E.; Shen, H. Chemical vapor deposition of MgAl2O4 thin films using different Mg−Al Alkoxides: Role of precursor chemistry. Chem. Mater. 2004, 16, 1304–1312. [Google Scholar] [CrossRef]
- Meyer, F.; Hempelmann, R.; Mathur, S.; Veith, M. Microemulsion mediated sol-gel synthesis of nano-scaled MAl2O4 (M= Co, Ni, Cu) spinels from single-source heterobimetallic alkoxide precursors. J. Mater. Chem. 1999, 9, 1755–1763. [Google Scholar] [CrossRef]
- Lee, H.; Aytuna, Z.T.; Bhardwaj, A.; Wilhelm, M.; Lê, K.; May, B.; Mueller, D.N.; Mathur, S. Controlling Degree of Inversion in MgFe2O4 Spinel Films Grown in External Magnetic Fields. Adv. Eng. Mater. 2023, 25, 2300021. [Google Scholar] [CrossRef]
- Veith, M.; Mathur, S.; Kareiva, A.; Jilavi, M.; Zimmer, M.; Huch, V. Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods. J. Mater. Chem. 1999, 9, 3069–3079. [Google Scholar] [CrossRef]
- Mathur, S.; Shen, H.; Rapalaviciute, R.; Kareiva, A.; Donia, N. Kinetically controlled synthesis of metastable YAlO3 through molecular level design. J. Mater. Chem. 2004, 14, 3259–3265. [Google Scholar] [CrossRef]
- Raauf, A.; Schlaefer, J.; Gessner, I.; Lichtenberg, A.; Zegke, M.; Fischer, T.; Mathur, S. Homo-and heteroleptic lanthanide-iron alkoxides as precursors in materials synthesis. J. Indian Chem. Soc. 2022, 99, 100347. [Google Scholar] [CrossRef]
- Raauf, A.; Graf, D.; Gönüllü, Y.; Sekhar, P.K.; Frank, M.; Mathur, S. Synergistic acceptor-donor interplay of Nd2Sn2O7 pyrochlore based sensor in selective detection of hydrogen. J. Electrochem. Soc. 2021, 168, 047501. [Google Scholar] [CrossRef]
- Bohr, C.; Yu, P.; Scigaj, M.; Hegemann, C.; Fischer, T.; Coll, M.; Mathur, S. Atomic scale growth of GdFeO3 perovskite thin films. Thin Solid Films 2020, 698, 137848. [Google Scholar] [CrossRef]
- Raauf, A.; Leduc, J.; Frank, M.; Stadler, D.; Graf, D.; Wilhelm, M.; Grosch, M.; Mathur, S. Magnetic field-assisted chemical vapor deposition of UO2 thin films. Inorg. Chem. 2021, 60, 1915–1921. [Google Scholar] [CrossRef]
- Lichtenberg, A.; Altuntas, K.; Fischer, T.; Karimpour, T.; Diel, S.; Aytuna, Z.; Amadi, C.K.; Mathur, S. Molecular Transformations for Direct Synthesis of Thorium Dioxide Films. Z. Anorg. Allg. Chem. 2024, 650, e202400126. [Google Scholar] [CrossRef]
- Aytuna, Z.; Bhardwaj, A.; Wilhelm, M.; Patrun, D.; Fischer, T.; Sharma, R.; Papakollu, K.; Kumar, R.; Mathur, S. Molecular synthesis strategies for binary MO2 (M = V, Sn, Ti, Zr, Hf) high-entropy oxides as superior catalysts for enhanced oxygen evolution. J. Eur. Ceram. Soc. 2024, 44, 7760–7768. [Google Scholar] [CrossRef]
- Patrun, D.; Zhao, S.; Aytuna, Z.; Fischer, T.; Miess, M.; Hong, Z.; Mathur, S. Plasma-enhanced SnO2-x thin films on copper current collector for safer lithium metal batteries. Nano Energy 2024, 128, 109836. [Google Scholar] [CrossRef]
- Hirano, S.I.; Hayashi, T.; Nosaki, K.; Kato, K. Preparation of stoichiometric crystalline lithium niobate fibers by sol-gel processing with metal alkoxides. J. Am. Ceram. Soc. 1989, 72, 707–709. [Google Scholar] [CrossRef]
- Verma, A.; Panayanthatta, N.; Ichangi, A.; Fischer, T.; Montes, L.; Bano, E.; Mathur, S. Interdependence of piezoelectric coefficient and film thickness in LiTaO3 cantilevers. J. Am. Ceram. Soc. 2021, 104, 1966–1977. [Google Scholar] [CrossRef]
- Phulé, P.P.; Deis, T.A.; Dindiger, D.G. Low temperature synthesis of ultrafine LiTaO3 powders. J. Mater. Res. 1991, 6, 1567–1573. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2000982. [Google Scholar] [CrossRef]
- Billaud, J.; Clément, R.J.; Armstrong, A.R.; Canales-Vázquez, J.; Rozier, P.; Grey, C.P.; Bruce, P.G. β-NaMnO2: A high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 2014, 136, 17243–17248. [Google Scholar] [CrossRef]
- Bradley, D.C. Metal alkoxides as precursors for electronic and ceramic materials. Chem. Rev. 1989, 89, 1317–1322. [Google Scholar] [CrossRef]
- Mehrotra, R. Synthesis and reactions of metal alkoxides. J. Non-Cryst. Solids 1988, 100, 1–15. [Google Scholar] [CrossRef]
- Graf, D.; Schläfer, J.; Garbe, S.; Klein, A.; Mathur, S. Interdependence of structure, morphology, and phase transitions in CVD grown VO2 and V2O3 Nanostructures. Chem. Mater. 2017, 29, 5877–5885. [Google Scholar] [CrossRef]
- Nunes, G.G.; Friedermann, G.R.; dos Santos, J.L.B.; Herbst, M.H.; Vugman, N.V.; Hitchcock, P.B.; Leigh, G.J.; Sá, E.L.; da Cunha, C.J.; Soares, J.F. The first thermochromic vanadium (IV) alkoxide system. Inorg. Chem. Commun. 2005, 8, 83–88. [Google Scholar] [CrossRef]
- Lichtenberg, A.; Zegke, M.; Nichol, G.S.; Raauf, A.; Mathur, S. Influence of alkali metal cations on the formation of the heterobimetallic actinide tert-butoxides [AnM 3 (O t Bu) 7] and [AnM2 (O t Bu) 6](An IV = Th, U. MI = Li, Na, K, Rb, Cs). Dalton Trans. 2023, 52, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Krieck, S.; Schüler, P.; Görls, H.; Westerhausen, M. Straightforward synthesis of rubidium bis (trimethylsilyl) amide and complexes of the alkali metal bis (trimethylsilyl) amides with weakly coordinating 2, 2, 5, 5-tetramethyltetrahydrofuran. Dalton Trans. 2018, 47, 12562–12569. [Google Scholar] [CrossRef]
- Ojeda-Amador, A.I.; Martínez-Martínez, A.J.; Kennedy, A.R.; O’Hara, C.T. Structural studies of cesium, lithium/cesium, and sodium/cesium bis (trimethylsilyl) amide (HMDS) complexes. Inorg. Chem. 2016, 55, 5719–5728. [Google Scholar] [CrossRef]
- Hampden-Smith, M.J.; Williams, D.; Rheingold, A. Synthesis and characterization of alkali-metal titanium alkoxide compounds MTi (O-iso-Pr) 5 (M = Li, Na, K): Single crystal X-ray diffraction structure of [LiTi (O-iso-Pr) 5] 2. Inorg. Chem. 1990, 29, 4076–4081. [Google Scholar] [CrossRef]
- Veith, M.; Mathur, S.; Mathur, C.; Huch, V. Synthesis, reactivity and structures of hafnium-containing homo-and hetero-(bi-and tri-) metallic alkoxides based on edge-and face-sharing bioctahedral alkoxometalate ligands. J. Chem. Soc. Dalton Trans. 1997, 12, 2101–2108. [Google Scholar] [CrossRef]
- Veith, M.; Rosier, R. Alkoxistannate, II [1] Tri (tert-butoxi) alkalistannate (II): Darstellung und Strukturen/Alkoxistannate, II [1] Tri (tert-butoxi) alkalistannates (II): Synthesis and Structures. Z. Naturforschung B 1986, 41, 1071–1080. [Google Scholar] [CrossRef]
- Amonoo-Neizer, E.H.; Shaw, R.A.; Skovlin, D.O.; Smith, B.C.; Rosenthal, J.W.; Jolly, W.L. Lithium Bis(trimethylsilyl)amide and Tris(trimethylsilyl)amine. In Inorganic Syntheses; Wiley Online Library: Hoboken, NJ, USA, 1966; pp. 19–22. [Google Scholar]
- Leduc, J.; Frank, M.; Jürgensen, L.; Graf, D.; Raauf, A.; Mathur, S. Chemistry of actinide centers in heterogeneous catalytic transformations of small molecules. ACS Catal. 2019, 9, 4719–4741. [Google Scholar] [CrossRef]
- Leduc, J.; Gönüllü, Y.; Ruoko, T.P.; Fischer, T.; Mayrhofer, L.; Tkachenko, N.V.; Dong, C.L.; Held, A.; Moseler, M.; Mathur, S. Electronically coupled uranium and iron oxide heterojunctions as efficient water oxidation catalysts. Adv. Funct. Mater. 2019, 29, 1905005. [Google Scholar] [CrossRef]
- Lichtenberg, A.; Patrun, D.; Fischer, T.; Tao, J.; Halankar, K.; Hong, Z.; Mathur, S. From Nuclear Waste to Sustainable Energy: LiUO3 as a Stable Anode Material in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces, 2025; submitted. [Google Scholar]
Compound | [UNa(OiPr)6]∞ UNa-OiPr-2 | [UK(OiPr)6]∞ UK-OiPr-2 | [URb(OiPr)6]∞ URb-OiPr-3 |
---|---|---|---|
U–M | 3.587(4) | 3.832(1) | 4.009(1) |
M–U1 | 3.574(4) | 3.825(2) | 3.781(1) |
U–Ot1 [Å] | 2.076(8) | 2.069(4) | 2.077(5) |
U–Ot2 [Å] | 2.086(6) | 2.085(4) | / |
U–Oµ21 [Å] | 2.156(7) | 2.160(3) | 2.141(5) |
U–Oµ22 [Å] | 2.186(7) | 2.160(3) | 2.161(6) |
U–Oµ23 [Å] | 2.173(6) | 2.154(3) | 2.140(5) |
U–Oµ24 [Å] | 2.160(6) | 2.150(4) | 2.141(5) |
U–Oµ25 [Å] | / | / | 2.105(6) |
M–Oµ21 [Å] | 2.373(8) | 2.674(3) | 2.894(6) |
M–Oµ22 [Å] | 2.374(7) | 2.665(4) | 2.808(6) |
M–Oµ23 [Å] | 2.369(8) | 2.674(4) | 2.860(5) |
M–Oµ24 [Å] | 2.387(7) | 2.677(4) | 2.848(6) |
M–Oµ25 [Å] | 3.438(8) | ||
Ot1–U–Oµ23 [°] | 169.5(3) | 173.9(2) | 175.4(2) |
Oµ21–U–Oµ22 [°] | 71.7(2) | 84.8(1) | 86.4(2) |
Oµ21–M–Oµ22 [°] | 72.0(3) | 66.1(1) | 62.2(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lichtenberg, A.; Inderdühnen, L.; Lichtenberg, A.; Mathur, S. Heterobimetallic Uranium(V)-Alkali Metal Alkoxides: Expanding the Chemistry of f-Block Elements. Molecules 2025, 30, 2361. https://doi.org/10.3390/molecules30112361
Lichtenberg A, Inderdühnen L, Lichtenberg A, Mathur S. Heterobimetallic Uranium(V)-Alkali Metal Alkoxides: Expanding the Chemistry of f-Block Elements. Molecules. 2025; 30(11):2361. https://doi.org/10.3390/molecules30112361
Chicago/Turabian StyleLichtenberg, Andreas, Lidia Inderdühnen, Aida Lichtenberg, and Sanjay Mathur. 2025. "Heterobimetallic Uranium(V)-Alkali Metal Alkoxides: Expanding the Chemistry of f-Block Elements" Molecules 30, no. 11: 2361. https://doi.org/10.3390/molecules30112361
APA StyleLichtenberg, A., Inderdühnen, L., Lichtenberg, A., & Mathur, S. (2025). Heterobimetallic Uranium(V)-Alkali Metal Alkoxides: Expanding the Chemistry of f-Block Elements. Molecules, 30(11), 2361. https://doi.org/10.3390/molecules30112361