The Neglected Role of Asphaltene in the Synthesis of Mesophase Pitch
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Optimal Reaction Conditions
2.1.1. Determination of Reaction Temperature
2.1.2. Determination of Reaction Time
2.1.3. Determination of Reaction Pressure
2.2. Analysis of Mesophase’s Crystal Structure
2.3. Molecular Structure Analysis of Mesophase Pitch
2.4. 1H-NMR Analysis and 13C-NMR Analysis
2.5. Morphology and Structure of Final Co-Carbonization Products at High Temperature (SEM)
2.6. Experimental Mechanism
3. Experiment
3.1. Determination of Element Content
3.2. Determination of Ash Content
3.3. Determination of Four Components
3.4. Infrared Spectroscopy Analysis (FT-IR)
3.5. Nuclear Magnetic Resonance Hydrogen Spectroscopy (1H-NMR) and Carbon Spectroscopy (13C-NMR) Analysis
3.6. Determination of Softening Point
3.7. Determination of Quinoline Insoluble Content and Toluene Insoluble Substance
3.8. Polarization Microscope Characterization
3.9. X-ray Diffraction Analysis (XRD)
3.10. Time-of-Flight Mass Spectrometry (TOF-MS)
3.11. Thermogravimetric Analysis (TG) and Differential Thermal Analysis (DTG)
3.12. Scanning Electron Microscope (SEM) Characterization
3.13. Raman Spectroscopy Analysis
4. Materials and Methods
4.1. Materials
4.2. Obtaining Co-Carbonizing Agents
4.3. Preparation of Modified Pitch
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Talebi, A.; Shafiei, M.; Kazemzadeh, Y.; Escrochi, M.; Riazi, M. Asphaltene prevention and treatment by using nanomaterial: A comprehensive review. J. Mol. Liq. 2023, 382, 121891. [Google Scholar] [CrossRef]
- Moud, A.A. Asphaltene induced changes in rheological properties: A review. Fuel J. Fuel Sci. 2022, 316, 123372. [Google Scholar] [CrossRef]
- Mohammed, I.; Mahmoud, M.; Al Shehri, D.; El-Husseiny, A.; Alade, O. Asphaltene precipitation and deposition: A critical review. J. Pet. Sci. Eng. 2020, 197, 107956. [Google Scholar] [CrossRef]
- Yonebayashi, H. Asphaltene Flow Assurance Risks: How Are Pitfalls Brought into the Open? J. Jpn. Pet. Inst. 2021, 64, 51–66. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Nguyen, D.L.T.; Xia, C.; Nguyen, T.B.; Shokouhimehr, M.; Sana, S.S.; Grace, A.N.; Aghbashlo, M.; Tabatabaei, M.; Sonne, C.; et al. Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives. Fuel Process. Technol. 2021, 213, 106681. [Google Scholar] [CrossRef]
- Zheng, F.; Shi, Q.; Vallverdu, G.S.; Giusti, P.; Bouyssiere, B. Fractionation and Characterization of Petroleum Asphaltene: Focus on Metalopetroleomics. Processes 2020, 8, 1504. [Google Scholar] [CrossRef]
- Tazikeh, S.; Shafiei, A.; Yerkenov, T.; Abenov, A.; Seitmaganbetov, N.; Atabaev, T.S. A systematic and critical review of asphaltene adsorption from macroscopic to microscopic scale: Theoretical, experimental, statistical, intelligent, and molecular dynamics simulation approaches. Fuel 2022, 329, 125379. [Google Scholar] [CrossRef]
- Masoumeh, H.; Majid, A. Essential role of structure, architecture, and intermolecular interactions of asphaltene molecules on properties (self-association and surface activity). Heliyon 2022, 8, e12170. [Google Scholar]
- Hassanzadeh, M.; Abdouss, M. A Comprehensive Review on the Significant Tools of Asphaltene Investigation. Analysis and Characterization Techniques and Computational Methods. J. Pet. Sci. Eng. 2022, 208, 109611. [Google Scholar] [CrossRef]
- Ali, S.I.; Awan, Z.; Lalji, S.M. Laboratory evaluation experimental techniques of asphaltene precipitation and deposition controlling chemical additives. Fuel 2022, 310, 122194. [Google Scholar] [CrossRef]
- Rashid, Z.; Wilfred, C.D.; Gnanasundaram, N.; Arunagiri, A.; Murugesan, T. A comprehensive review on the recent advances on the petroleum asphaltene aggregation. J. Pet. Sci. Eng. 2019, 176, 249–268. [Google Scholar] [CrossRef]
- Enayat, S.; Tavakkoli, M.; Yen, A.; Misra, S.; Vargas, F.M. Review of the Current Laboratory Methods To Select Asphaltene Inhibitors. Energy Fuels 2020, 34, 15488–15501. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Abdul-Majeed, G.H.; Alhuraishawy, A.K. An Integrated Review on Asphaltene: Definition, Chemical Composition, Properties, and Methods for Determining Onset Precipitation. SPE Prod. Oper. 2023, 38, 215–242. [Google Scholar] [CrossRef]
- Meng, J.; Sontti, S.G.; Zhang, X. Review of microscale dynamics of dilution-induced asphaltene precipitation under controlled mixing conditions. arXiv 2022, arXiv:2211.02698. [Google Scholar] [CrossRef]
- Al-Hosani, A.; Ravichandran, S.; Daraboina, N. Review of Asphaltene Deposition Modeling in Oil and Gas Production. Energy Fuels 2021, 35, 965–986. [Google Scholar] [CrossRef]
- Gray, M.R.; Yarranton, H.W.; Chacón-Patiño, M.L.; Rodgers, R.P.; Bouyssiere, B.; Giusti, P. Distributed Properties of Asphaltene Nanoaggregates in Crude Oils: A Review. Energy Fuels 2021, 35, 18078–18103. [Google Scholar] [CrossRef]
- Seitmaganbetov, N.; Rezaei, N.; Shafiei, A. Characterization of crude oils and asphaltenes using the PC-SAFT EoS: A systematic review. Fuel 2021, 291, 120180. [Google Scholar] [CrossRef]
- Ahmadi, M.; Hou, Q.; Wang, Y.; Chen, Z. Interfacial and molecular interactions between fractions of heavy oil and surfactants in porous media: Comprehensive review. Adv. Colloid Interface Sci. 2020, 283, 102242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, C.; Shi, L.; Xia, X.; Yang, F.; Sun, G. The formation and aggregation of hydrate in W/O emulsion containing different compositions: A review. Chem. Eng. J. 2022, 445, 136800. [Google Scholar] [CrossRef]
- Liang, W. Petroleum Chemistry, 2nd ed.; China University of Petroleum Press: Beijing, China, 2009; pp. 68–70. [Google Scholar]
- Pagán, N.M.P.; Zhang, Z.; Nguyen, T.V.; Marciel, A.B.; Biswal, S.L. Physicochemical Characterization of Asphaltenes Using Microfluidic Analysis. Chem. Rev. 2022, 122, 7205–7235. [Google Scholar] [CrossRef]
- Mazloom, M.S.; Hemmati-Sarapardeh, A.; Husein, M.M.; Behbahani, H.S.; Zendehboudi, S. Application of nanoparticles for asphaltenes adsorption and oxidation: A critical review of challenges and recent progress. Fuel 2020, 279, 117763. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, P.; Pan, S.; Liu, F.; Pauchard, V.; Pomerantz, A.E.; Banerjee, S.; Yao, N.; Mullins, O.C. Structure-Dynamic Function Relations of Asphaltenes. Energy Fuels 2021, 35, 13610–13632. [Google Scholar] [CrossRef]
- Wang, M.; Yang, B.; Yu, T.; Yu, X.; Rizwan, M.; Yuan, X.; Nie, X.; Zhou, X. Research progress in the preparation of mesophase pitch from fluid catalytic cracking slurry. RSC Adv. 2023, 13, 18676–18689. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K.; Rani, S.; Kumar, P.; Prakash, S.; Dhakate, S.R.; Kumari, S. Study of mesophase pitch based carbon fibers: Structural changes as a function of anisotropic content. J. Anal. Appl. Pyrolysis 2023, 171, 105961. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Zhao, Z.; Xu, G.; Ge, Y.; Wang, S.; Bai, J. Preliminary exploration of the mechanism governing the cell structure variation of mesophase coal pitch/carbon black composite carbon foam. Diam. Relat. Mater. 2023, 136, 110077. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, M.; Fang, W.; Wang, C.; Yang, W.; Zhou, P.; Liao, M.; Su, Z.; Huang, D.; Huang, Q.; et al. Effects of high thermal conductivity chopped fibers on ablation behavior of pressureless sintered SiC–ZrC ceramics. Ceram. Int. 2023, 49 Pt B, 28844–28853. [Google Scholar] [CrossRef]
- Yang, J.Y.; Kim, B.S.; Park, S.J.; Rhee, K.Y.; Seo, M.K. Preparation and characterization of mesophase formation of pyrolysis fuel oil-derived binder pitches for carbon composites. Composites. 2019, 165, 467–472. [Google Scholar] [CrossRef]
- Liu, D.; Li, M.; Qu, F.; Yu, R.; Lou, B.; Wu, C.; Niu, J.; Chang, G. Investigation on Preparation of Mesophase Pitch by the Cocarbonization of Naphthenic Pitch and Polystyrene. Energy Fuels 2016, 30, 2066–2075. [Google Scholar] [CrossRef]
- Ko, S.; Kang, D.; Jo, M.S.; Ha, S.J.; Jeon, Y.P. Anisotropic phase transition via high temperature thin-layer evaporation of a petroleum-based isotropic pitch. J. Ind. Eng. Chem. 2021, 95, 92–100. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, J.; Zhao, H.; Zang, X. Pressure-Strengthened Carbon Fibers from Mesophase Pitch Carbonization Processes. J. Phys. Chem. Lett. 2022, 13, 3283–3289. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Q.; Zhang, P.; Ye, C.; Han, F.; Liu, H.; Feng, Z.; Zhu, S.; Fan, Z.; Liu, J.; et al. Thermal response of the two-directional high-thermal-conductive carbon fiber reinforced aluminum composites with low interface damage by a vacuum hot pressure diffusion method. J. Alloys Compd. 2022, 905, 164195. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, Y.; Fan, B.; Ma, Z.; Song, H. Preparation of mesophase pitch from refined coal tar pitch using naphthalene-based mesophase pitch as nucleating agent. Fuel 2019, 243, 390–397. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Z.; Meng, Y.; Xiao, M.; Fan, B.; Song, H.; Yin, Y. Effects of the addition of conductive graphene on the preparation of mesophase from refined coal tar pitch. J. Anal. Appl. Pyrolysis 2019, 140, 274–280. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Q.; Fang, C.; Ouyang, Y.; Chen, J.; Yu, X.; Liu, D. Co-carbonization behaviors of petroleum pitch/waste SBS: Influence on morphology and structure of resultant cokes. J. Anal. Appl. Pyrolysis 2018, 129, 154–161. [Google Scholar] [CrossRef]
- Guo, J.; Li, Z.; Li, B.; Chen, P.; Zhu, H.; Zhang, C.; Sun, B.; Dong, Z.; Li, X. Hydrogenation of coal tar pitch for improved mesophase pitch molecular orientation and carbon fiber processing. J. Anal. Appl. Pyrolysis 2023, 174, 106146. [Google Scholar] [CrossRef]
- Hu, J.; Fang, C.; Zhou, S.; Cheng, Y.; Han, H. Microstructure characterization and thermal properties of the waste-styrene-butadiene-rubber (WSBR)-modified petroleum-based mesophase asphalt. J. Mater. Sci. Technol. 2019, 35, 852–857. [Google Scholar] [CrossRef]
- Lim, C.; Kwak, C.H.; Ko, Y.; Lee, Y.S. Mesophase pitch production from fluorine-pretreated FCC decant oil. Fuel 2022, 328, 125244. [Google Scholar] [CrossRef]
- Lim, C.; Ko, Y.; Kwak, C.H.; Kim, S.; Lee, Y.-S. Mesophase pitch production aided by the thermal decomposition of polyvinylidene fluoride. Carbon Lett. 2022, 32, 1329–1335. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, M.; Yu, R.; Liu, X. Effect of Preparation Temperature on the Aging Properties of Waste Polyethylene Modified Asphalt. J. Mater. Sci. Technol. 2015, 31, 320–324. [Google Scholar] [CrossRef]
- Ramos-Fernández, J.; Martínez-Escandell, M.; Reinoso, F.R. Preparation of mesophase pitch doped with TiO2 or TiC particles. J. Anal. Appl. Pyrolysis 2007, 80, 477–484. [Google Scholar] [CrossRef]
- Cao, Q.; Guo, L.; Dong, Y.; Xie, X.; Jin, L. Autocatalytic modification of coal tar pitch using benzoyl chloride and its effect on the structure of char. Fuel Process. Technol. 2015, 129, 61–66. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, M. Catalyzing mesophase formation by transition metals. J. Anal. Appl. Pyrolysis 2015, 112, 192–200. [Google Scholar] [CrossRef]
- Jin, Z.; Zuo, X.; Long, X.; Cui, Z.; Yuan, G.; Dong, Z.; Zhang, J.; Cong, Y.; Li, X. Accelerating the oxidative stabilization of pitch fibers and improving the physical performance of carbon fibers by modifying naphthalene-based mesophase pitch with C9 resin. J. Anal. Appl. Pyrolysis 2021, 154, 105009. [Google Scholar] [CrossRef]
- Guo, J.; Lu, S.; Xie, J.; Chen, P.; Li, B.; Deng, Z.; Dong, Z.; Zhu, H.; Li, X. Preparation of mesophase pitch with domain textures by molecular regulation of ethylene tar pitch for boosting the performance of its carbon materials. J. Anal. Appl. Pyrolysis 2023, 170, 105932. [Google Scholar] [CrossRef]
- Chai, L.; Lou, B.; Yu, R.; Wen, F.; Yuan, H.; Li, Z.; Zhang, Z.; Jun, L.; Liu, D. Study on structures and properties of isotropic pitches and carbon fibers from co-carbonization of aromatic-rich distillate oil and polyethylene glycol. J. Anal. Appl. Pyrolysis 2021, 158, 105260. [Google Scholar] [CrossRef]
- Lee, S.; Eom, Y.; Kim, B.J.; Mochida, I.; Yoon, S.H.; Kim, B.C. The thermotropic liquid crystalline behavior of mesophase pitches with different chemical structures. Carbon 2015, 81, 694–701. [Google Scholar] [CrossRef]
- Lin, X.; Sheng, Z.; He, J.; He, X.; Wang, C.; Gu, X.; Wang, Y. Preparation of isotropic spinnable pitch with high-spinnability by co-carbonization of coal tar pitch and bio-asphalt. Fuel 2021, 295, 120627. [Google Scholar] [CrossRef]
- Gong, X.; Lou, B.; Yu, R.; Zhang, Z.; Guo, S.; Li, G.; Wu, B.; Liu, D. Carbonization of mesocarbon microbeads prepared from mesophase pitch with different anisotropic contents and their application in lithium-ion batteries. Fuel Process. Technol. 2021, 217, 106832. [Google Scholar] [CrossRef]
- Cao, S.; Yang, J.; Li, J.; Shi, K.; Li, X. Preparation of oxygen-rich hierarchical porous carbon for supercapacitors through the co-carbonization of pitch and biomass. Diam. Relat. Mater. 2019, 96, 118–125. [Google Scholar] [CrossRef]
- Loktev, A.S.; Arkhipova, V.A.; Bykov, M.A.; Sadovnikov, A.A.; Dedov, A.G. Cobalt–Samarium Oxide Composite as a Novel High-Performance Catalyst for Partial Oxidation and Dry Reforming of Methane into Synthesis Gas. Pet. Chem. 2023, 63, 317–326. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Yu, Y.; Zhang, L.; Xu, Z.; Sun, X.; Zhao, S. Mesocarbon Microbead Production from Fluid Catalytic Cracking Slurry Oil: Improving Performance through Supercritical Fluid Extraction. Energy Fuels 2018, 32, 12477–12485. [Google Scholar] [CrossRef]
- Peng, Y.; Schobert, H.H.; Song, C.; Hatcher, P.G. Thermal decomposition studies of jet fuel components. n-Butylbenzene and t-butylbenzene. Am. Chem. Soc. Pet. Chem. 1992, 37, 505–513. [Google Scholar]
- Liao, G.; Shi, K.; Ye, C.; Fan, Z.; Xiang, Z.; Li, C.; Huang, D.; Han, F.; Liu, H.; Liu, J. Influence of resin on the formation and development of mesophase in fluid catalytic cracking (FCC) slurry oil. J. Anal. Appl. Pyrolysis 2023, 172, 105997. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, Y.J.; Lee, S.E.; Im, J.S.; Lee, K.B.; Bai, B.C. Acceleration of petroleum based mesophase pitch formation by PET (polyethylene terephthalate) additive. J. Ind. Eng. Chem. 2021, 93, 476–481. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, L.; Fang, C.; Guo, X. Co-carbonization behavior of petroleum pitch/graphene oxide: Influence on structure and mechanical property of resultant cokes. J. Anal. Appl. Pyrolysis 2016, 122, 387–394. [Google Scholar] [CrossRef]
- Liu, S.; Xue, J.; Liu, X.; Chen, H.; Li, X. Pitch derived graphene oxides: Characterization and effect on pyrolysis and carbonization of coal tar pitch. J. Anal. Appl. Pyrolysis. 2020, 145, 104746. [Google Scholar] [CrossRef]
Sample | Elemental Analysis (wt%) | H/C Ratio | Solubility (wt%) | Yield (%) | Softing Point | Ash (%) | ||
---|---|---|---|---|---|---|---|---|
C | H | TI | QI | |||||
MMP-0 | 89.77 | 6.86 | 0.92 | 23.8 | 1.3 | 76.3 | 243 | 0.20 |
MMP-1 | 90.86 | 6.27 | 0.83 | 30.7 | 3.2 | 79.5 | 267 | 0.23 |
MMP-2 | 91.63 | 5.59 | 0.73 | 29.9 | 3.7 | 82.7 | 289 | 0.22 |
MMP-3 | 92.47 | 5.23 | 0.68 | 35.2 | 8.6 | 84.3 | 307 | 0.26 |
MMP-5 | 94.45 | 4.68 | 0.59 | 40.3 | 17.8 | 89.2 | 344 | 0.25 |
Sample | XRD | Raman | |||
---|---|---|---|---|---|
2θ/Degree | d002/nm | Lc/nm | N | ID/IG | |
MMP-0 | 26.003 | 0.3424 | 1.910 | 6.578 | 1.03 |
MMP-1 | 26.216 | 0.3396 | 2.008 | 6.913 | 0.98 |
MMP-2 | 26.380 | 0.3376 | 2.228 | 7.599 | 0.92 |
MMP-3 | 26.277 | 0.3389 | 1.973 | 6.822 | 1.02 |
MMP-5 | 25.919 | 0.3434 | 1.881 | 6.478 | 1.06 |
Sample | 1H-NMR (%) | 13C-NMR (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Har(mono) | Har(di) | Ha(poly) | Har | Hα | Hβ | Hγ | Hal | Har/Hal | Csat | Car | Car/Csat | |
MMP-0 | 6.45 | 40.65 | 5.17 | 52.27 | 27.53 | 17.34 | 2.86 | 47.73 | 1.095 | 14.29 | 85.71 | 5.998 |
MMP-1 | 6.09 | 41.28 | 7.75 | 55.12 | 30.68 | 12.45 | 1.75 | 44.88 | 1.228 | 13.17 | 86.83 | 6.593 |
MMP-2 | 6.99 | 42.98 | 9.48 | 59.45 | 30.61 | 8.71 | 1.23 | 40.55 | 1.466 | 11.89 | 88.11 | 7.410 |
MMP-3 | 4.94 | 44.18 | 13.21 | 62.33 | 31.88 | 5.23 | 0.56 | 37.67 | 1.655 | 9.27 | 90.73 | 9.787 |
MMP-5 | 4.92 | 45.52 | 17.71 | 68.15 | 28.92 | 2.79 | 0.14 | 31.85 | 2.140 | 7.14 | 92.86 | 13.006 |
Material | Elemental Analysis (wt%) | H/C Ratio | Solubility (wt%) | Softing Point | Ash (wt%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | S | TI | QI | ||||
FCC-BL | 90.55 | 7.66 | 1.02 | 0.32 | 0.45 | 1.02 | <0.1 | <0.1 | 20 | 0.02 |
WFA | 86.20 | 8.46 | 1.21 | 1.80 | 2.33 | 1.18 | 22.5 | 1.6 | 145 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Li, Y.; Wang, H.; Tao, J.; Li, M.; Shi, Y.; Zhou, X. The Neglected Role of Asphaltene in the Synthesis of Mesophase Pitch. Molecules 2024, 29, 1500. https://doi.org/10.3390/molecules29071500
Wang M, Li Y, Wang H, Tao J, Li M, Shi Y, Zhou X. The Neglected Role of Asphaltene in the Synthesis of Mesophase Pitch. Molecules. 2024; 29(7):1500. https://doi.org/10.3390/molecules29071500
Chicago/Turabian StyleWang, Mingzhi, Yulin Li, Haoyu Wang, Junjie Tao, Mingzhe Li, Yuzhu Shi, and Xiaolong Zhou. 2024. "The Neglected Role of Asphaltene in the Synthesis of Mesophase Pitch" Molecules 29, no. 7: 1500. https://doi.org/10.3390/molecules29071500
APA StyleWang, M., Li, Y., Wang, H., Tao, J., Li, M., Shi, Y., & Zhou, X. (2024). The Neglected Role of Asphaltene in the Synthesis of Mesophase Pitch. Molecules, 29(7), 1500. https://doi.org/10.3390/molecules29071500