Dissipation and Dietary Risk Assessment of the Fungicide Pyraclostrobin in Apples Using Ultra-High Performance Liquid Chromatography–Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.2. Dissipation
2.3. Final Residue
2.4. Dietary Risk Assessment
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Chromatography Conditions
3.3. Extraction and Purification Procedures
3.4. Method Validation
3.5. Field Trials
3.6. Dissipation of Pyraclostrobin
- Ct and C0 represent the residual concentration (mg kg−1) at time t (d) and the original deposition amount of pyraclostrobin;
- k is the dissipation rate constant (d−1); and
- DT50 indicates the degradation half-life of pyraclostrobin (d).
3.7. Chronic Dietary Risk Assessment
- NEDI (mg kg−1) is the national estimated daily intake;
- STMR (mg kg−1) is the supervised trials median residue of pyraclostrobin in apples;
- Fi (kg) is the reference dietary intake;
- ADI (mg kg−1 bw) is the acceptable daily intake; and
- bw (63 kg) is the average body weight.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koutsos, A.; Tuohy, K.M.; Lovegrove, J.A. Apples and cardiovascular health—Is the gut microbiota a core consideration? Nutrients 2015, 7, 3959–3998. [Google Scholar] [CrossRef] [PubMed]
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Balba, H. Review of strobilurin fungicide chemicals. J. Environ. Sci. Health Part B 2007, 42, 441–451. [Google Scholar] [CrossRef]
- Huang, X.; Yang, S.; Li, B.; Wang, A.; Li, H.; Li, X.; Luo, J.; Liu, F.; Mu, W. Comparative toxicity of multiple exposure routes of pyraclostrobin in adult zebrafish (Danio rerio). Sci. Total Environ. 2021, 777, 145957. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, J.; Zhang, S.; Zhu, L.; Du, Z.; Wang, J. Acute and subchronic toxicity of pyraclostrobin in zebrafish (Danio rerio). Chemosphere 2017, 188, 510–516. [Google Scholar] [CrossRef]
- Hou, K.; Shi, B.; Liu, Y.; Lu, C.; Li, D.; Du, Z.; Li, B.; Zhu, L. Toxicity evaluation of pyraclostrobin exposure in farmland soils and co-exposure with nZnO to Eisenia fetida. J. Hazard. Mater. 2022, 433, 128794. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, C.; Du, Z.; Li, B.; Wang, J.; Wang, J.; Wang, Z.; Zhu, L. Toxicological effects of pyraclostrobin on the antioxidant defense system and DNA damage in earthworms (Eisenia fetida). Ecol. Indic. 2019, 101, 111–116. [Google Scholar] [CrossRef]
- Cui, F.; Chai, T.; Liu, X.; Wang, C. Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin, and trifloxystrobin) on Daphnia magna. Environ. Toxicol. Chem. 2017, 36, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Bian, J.; Han, S.; Zhang, C.; Xu, W.; Tao, L.; Li, Z.; Zhang, Y. Characterization of hepatotoxic effects induced by pyraclostrobin in human HepG2 cells and zebrafish larvae. Chemosphere 2023, 340, 139732. [Google Scholar] [CrossRef]
- Chen, X.; He, S.; Gao, Y.; Ma, Y.; Hu, J.; Liu, X. Dissipation behavior, residue distribution and dietary risk assessment of field-incurred boscalid and pyraclostrobin in grape and grape field soil via MWCNTs-based QuEChERS using an RRLC-QqQ-MS/MS technique. Food Chem. 2019, 274, 291–297. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, R.; Yuan, L. Dissipation, Residue and Human Dietary Risk Assessment of Pyraclostrobin and Cyazofamid in Grapes Using an HPLC-UV Detector. Foods 2024, 13, 314. [Google Scholar] [CrossRef] [PubMed]
- Dost, K.; Oksuz, M.; Cittan, M.; Mutlu, B.; Tural, B. Determination of boscalid, pyraclostrobin and trifloxystrobin in dried grape and apricot by HPLC/UV method. J. Food Compos. Anal. 2023, 115, 104926. [Google Scholar] [CrossRef]
- Dominguez, A.N.; Jimenez, L.E.; Alvarez, R.M.S. Rapid detection of pyraclostrobin fungicide residues in lemon with surface-enhanced Raman spectroscopy. J. Food Meas. Charact. 2023, 17, 6350–6362. [Google Scholar] [CrossRef]
- Lv, L.; Su, Y.; Dong, B.; Lu, W.; Hu, J.; Liu, X. Dissipation Residue Behaviors and Dietary Risk Assessment of Boscalid and Pyraclostrobin in Watermelon by HPLC-MS/MS. Molecules 2022, 27, 4410. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Yang, L.; Zheng, Q.; Wang, Y.; Cheng, D.; Zhang, Z. Dissipation and distribution of pyraclostrobin in bananas at different temperature and a risk assessment of dietary intake. Int. J. Environ. Anal. Chem. 2022, 102, 5798–5810. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, J.; Zhang, J.; Rashid, M.; Zhong, G.; Liu, J. The control effect of fungicide pyraclostrobin against freckle disease of banana and its residue dynamics under field conditions. J. Environ. Sci. Health Part B 2018, 53, 615–621. [Google Scholar] [CrossRef]
- Malhat, F.; Saber, E.-S.; Shokr, S.A.E.; Ahmed, M.T.; Amin, A.E.-S. Consumer safety evaluation of pyraclostrobin residues in strawberry using liquid chromatography tandem mass spectrometry (LC-MS/MS): An Egyptian profile. Regul. Toxicol. Pharmacol. 2019, 108, 104450. [Google Scholar] [CrossRef]
- Valera-Tarifa, N.; Santiago-Valverde, R.; Hernández-Torres, E.; Martínez-Vidal, J.; Garrido-Frenich, A. Development and full validation of a multiresidue method for the analysis of a wide range of pesticides in processed fruit by UHPLC-MS/MS. Food Chem. 2020, 315, 126304. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Chen, Y.; Zhang, Q.; Lu, P.; Hu, D. Dissipation, residues and risk assessment of oxine-copper and pyraclostrobin in citrus. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1538–1550. [Google Scholar] [CrossRef]
- Zarębska, M.; Hordyjewicz-Baran, Z.; Wasilewski, T.; Zajszły-Turko, E.; Stanek, N. A new LC-MS method for evaluating the efficacy of pesticide residue removal from fruit surfaces by washing agents. Processes 2022, 10, 793. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, S.; Chen, X.; Hu, J. Simultaneous Determination of Pyraclostrobin, Prochloraz, and its Metabolite in Apple and Soil Via RRLC-MS/MS. Food Anal. Methods 2018, 11, 1312–1320. [Google Scholar] [CrossRef]
- Li, P.; Sun, P.; Dong, X.; Li, B. Residue analysis and kinetics modeling of thiophanate-methyl, carbendazim, tebuconazole and pyraclostrobin in apple tree bark using QuEChERS/HPLC–VWD. Biomed. Chromatogr. 2020, 34, e4851. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Guideline for the Testing of Pesticide Residues in Crops; China Agriculture Press: Beijing, China, 2018. [Google Scholar]
- European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues and Analysis in Food and Feed; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Matuszewski, B.K.; Constanzer, M.; Chavez-Eng, C. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Wang, H.; Ping, H.; Liu, Q.; Han, P.; Guo, X. Determination of Pesticide Residues in Strawberries by Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2022, 15, 85–95. [Google Scholar] [CrossRef]
- Naik, R.H.; Pallavi, M.S.; Nandini; Shwetha, A.; Bheemanna, M.; Nidoni, R.U. Simultaneous determination of pesticide residues in pomegranate whole fruit and arils using LC-MS/MS. Food Chem. 2022, 387, 132865. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, S.; Hu, J. Dissipation behavior and dietary risk assessment of lambda-cyhalothrin, thiamethoxam and its metabolite clothianidin in apple after open field application. Regul. Toxicol. Pharmacol. 2019, 101, 135–141. [Google Scholar] [CrossRef]
- Tian, F.; Lu, J.; Qiao, C.; Wang, C.; Pang, T.; Guo, L.; Li, J.; Pang, R.; Xie, H. Dissipation behavior and risk assessment of imidacloprid and its metabolites in apple from field to products. Chemosphere 2024, 359, 142309. [Google Scholar] [CrossRef]
- Jianzhong, Y.; Liezhong, C.; Jiayin, H.; Ruixian, Y.; Xiuqing, H.; Xueping, Z. Residue and dissipation dynamics of pyraclostrobin in waxberry (Myrica rubra) and soil. Chin. J. Pestic. Sci. 2020, 22, 857–863. [Google Scholar]
- Podbielska, M.; Szpyrka, E.; Piechowicz, B.; Sadło, S.; Sudoł, M. Assessment of boscalid and pyraclostrobin disappearance and behavior following application of effective microorganisms on apples. J. Environ. Sci. Health Part B 2018, 53, 652–660. [Google Scholar] [CrossRef]
- Yan, Q.; Pengfei, D.; Yue, Z.; Shanshan, W.; Maojun, J.; Jing, W. Determination and dissipation dynamics of cuppric nonyl phenolsulfonate and pyraclostrobin in apples and soil. Chin. J. Pestic. Sci. 2017, 19, 76–83. [Google Scholar]
- GB 2763-2021; National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2021.
- Dong, M.; Ma, L.; Zhan, X.; Chen, J.; Huang, L.; Wang, W.; Zhao, L. Dissipation rates and residue levels of diflubenzuron and difenoconazole on peaches and dietary risk assessment. Regul. Toxicol. Pharmacol. 2019, 108, 104447. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Men, X.; Li, R.; Liu, T.; Liang, H.; Fang, F.; Sun-Waterhouse, D.; Wang, Y. Residue behaviors and dietary risk of cyazofamid in turnip, onion and romaine lettuce assessed by a QuEChERS-LC-MS/MS method. Food Sci. Hum. Wellness 2023, 12, 1538–1544. [Google Scholar] [CrossRef]
- Dong, X.; Tong, Z.; Chu, Y.; Sun, M.; Wang, M.; Gao, T.; Duan, J. Dissipation of prothioconazole and its metabolite prothioconazole-desthio in rice fields and risk assessment of its dietary intake. J. Agric. Food Chem. 2019, 67, 6458–6465. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Son, K.A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A 2010, 1217, 2548–2560. [Google Scholar] [CrossRef]
- Machado, I.; Gérez, N.; Pistón, M.; Heinzen, H.; Cesio, M.V. Determination of pesticide residues in globe artichoke leaves and fruits by GC–MS and LC–MS/MS using the same QuEChERS procedure. Food Chem. 2017, 227, 227–236. [Google Scholar] [CrossRef]
Spiked Level (mg kg−1) | Recoveries (%) | RSD (%) | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Average | ||
0.01 | 100.1 | 99.7 | 101.3 | 103.8 | 97.0 | 100.4 | 2.3 |
0.1 | 96.9 | 99.2 | 100.5 | 99.8 | 100.2 | 99.3 | 1.4 |
0.5 | 97.8 | 98.4 | 96.6 | 97.6 | 96.0 | 97.3 | 0.8 |
Spiked Level mg kg−1 | QC Sample Analysis Date | Recoveries (%) | ||
---|---|---|---|---|
1 | 2 | Average | ||
0.10 | 31 August 2022 | 95.1 | 96.4 | 95.7 |
21 September 2022 | 95.8 | 97.0 | 96.4 | |
13 October 2022 | 103.6 | 106.1 | 104.8 | |
24 October 2022 | 90.8 | 95.1 | 92.9 | |
3 November 2022 | 96.0 | 98.9 | 97.4 |
Location | Terminal Residue (mg kg−1) | Supervised Trials Median Residue (STMR, mg kg−1) | |||
---|---|---|---|---|---|
PHI = 28 days | PHI = 35 days | ||||
1 | 2 | 1 | 2 | ||
Shenyang, Liaoning province | 0.013 | <0.010 | <0.010 | <0.010 | 0.012 |
Jinzhong, Shanxi Province | <0.010 | <0.010 | 0.02 | 0.01 | |
Yuncheng, Shanxi Province | 0.048 | 0.028 | 0.016 | 0.012 | |
Dingxi, Gansu province | 0.013 | 0.012 | <0.010 | <0.010 | |
Yinchuan, Ningxia Province | 0.031 | 0.042 | 0.022 | 0.016 | |
Changping, Beijing | 0.011 | <0.010 | <0.010 | 0.013 | |
Tai’an, Shandong Province | 0.01 | <0.010 | 0.017 | 0.016 | |
Qingdao, Shandong Province | 0.06 | 0.07 | 0.048 | 0.047 | |
Xinxiang, Henan Province | <0.010 | <0.010 | <0.010 | <0.010 | |
Zhumadian, Henan province | <0.010 | <0.010 | <0.010 | <0.010 | |
Suzhou, Anhui Province | 0.019 | 0.014 | 0.013 | <0.010 | |
Kunming, Yunnan Province | 0.041 | 0.035 | 0.033 | 0.026 |
Food Classification | Daily Consumption of a Particular Food (Fi, kg) | Reference Residue Limits (mg kg−1) | National Estimated Daily Intake (NEDI, mg) | Acceptable Daily Intake×Average Body Weight (mg) | Chronic Risk Quotient (RQc, %) |
---|---|---|---|---|---|
Rice and its products | 0.2399 | 1 (China) | 0.2399 | ADI × 63 | |
Flour and its products | 0.1385 | 0.2 (China) | 0.0277 | ||
Other cereals | 0.0233 | 0.05 (China) | 0.001165 | ||
Tubers | 0.0495 | 0.05 (China) | 0.002475 | ||
Dried beans (products) | 0.016 | 0.2 (China) | 0.0032 | ||
Dark vegetables | 0.0915 | 2 (China) | 0.183 | ||
light vegetables | 0.1837 | 5 (China) | 0.9185 | ||
Pickles | 0.0103 | ||||
Fruits | 0.0457 | 0.012 (STMR, China) | 0.0005484 | ||
Nuts | 0.0039 | ||||
Livestock and poultry | 0.0795 | ||||
Milk and dairy products | 0.0263 | ||||
Egg and its products | 0.0236 | ||||
Egg and its products | 0.0301 | ||||
Vegetable oil | 0.0327 | 0.1 (China) | 0.00327 | ||
Animal oil | 0.0087 | ||||
Sugar, starch | 0.0044 | ||||
Salt | 0.012 | 10 (China) | 0.12 | ||
Salt | 0.009 | 3 (China) | 0.027 | ||
Total | 1.0286 | 1.5268 | 1.8900 | 80.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Shi, L.; Ren, P.; Qin, S.; Li, J.; Cao, J. Dissipation and Dietary Risk Assessment of the Fungicide Pyraclostrobin in Apples Using Ultra-High Performance Liquid Chromatography–Mass Spectrometry. Molecules 2024, 29, 4434. https://doi.org/10.3390/molecules29184434
Wang B, Shi L, Ren P, Qin S, Li J, Cao J. Dissipation and Dietary Risk Assessment of the Fungicide Pyraclostrobin in Apples Using Ultra-High Performance Liquid Chromatography–Mass Spectrometry. Molecules. 2024; 29(18):4434. https://doi.org/10.3390/molecules29184434
Chicago/Turabian StyleWang, Bin, Lei Shi, Pengcheng Ren, Shu Qin, Jindong Li, and Junli Cao. 2024. "Dissipation and Dietary Risk Assessment of the Fungicide Pyraclostrobin in Apples Using Ultra-High Performance Liquid Chromatography–Mass Spectrometry" Molecules 29, no. 18: 4434. https://doi.org/10.3390/molecules29184434
APA StyleWang, B., Shi, L., Ren, P., Qin, S., Li, J., & Cao, J. (2024). Dissipation and Dietary Risk Assessment of the Fungicide Pyraclostrobin in Apples Using Ultra-High Performance Liquid Chromatography–Mass Spectrometry. Molecules, 29(18), 4434. https://doi.org/10.3390/molecules29184434