An Overview of Bioactive Phenolic Molecules and Antioxidant Properties of Beer: Emerging Trends
Abstract
:1. Introduction
2. Methodology
3. Bioactive Compounds from Common Ingredients
Phenolic Compound | Reference | |
---|---|---|
Hops | Phenolic acids a: | |
Caffeic acid: 0.01–15.8 mg/100 g DW | [28,39,41] | |
Chlorogenic acid: 0.47–163.7 mg/100 g DW | [28,39,41] | |
p-Coumaric acid: 0.01–28.8 mg/100 g DW | [28,39] | |
Ferulic acid: 0.01–0.10 mg/g DW | [39] | |
Gallic acid: 0.08–3.41 mg/g DW | [39,41] | |
Gentisic acid: 1.5–6.7 mg/100 g DW | [28] | |
p-Hydroxybenzoic acid: 1.87 ± 0.01 mg/g DW | [41] | |
Protocatechuic acid: 0.42–2.25 mg/g DW | [39,41] | |
Syringic acid: 0.03–12.9 mg/g DW | [28,39,41] | |
Flavonoids: | ||
Catechin: 1.2–56.1 mg/100 g DW | [28,39,41] | |
Epigallocatechin: 10.3–28.6 mg/100 g DW | [28] | |
Epicatechin: 0.08–8.4 mg/100 g DW | [28,39] | |
Isorhamnetin: 0.5–3.3 mg/100 g DW | [28] | |
Kaempferol: 0.44–49.4 mg/100 g DW | [28,41] | |
Naringenin: 3.9–11.0 mg/100 g DW | [28] | |
Naringin: 1.7–3.9 mg/100 g DW | [28] | |
Procyanidin B1: 18.4–50.6 mg/g DW | [28] | |
Procyanidin B2: 8.4–14.6 mg/g DW | [28] | |
Procyanidin C1: 3.8–16.9 mg/g DW | [28] | |
Quercetin: 1.03–111.8 mg/100 g DW | [28,41] | |
Rutin: 0.61–0.88 mg/g DW | [39] | |
Prenylflavonoids: | [48] | |
Desmethylxanthohumol: 120.0 mg/100 g DW | [28,48] | |
Isoxanthohumol: 8.0–35.2 mg/100 g DW | [28,48] | |
8-Prenylnaringenin: 1.5–23.8 mg/100 g DW | [28,39,40,48] | |
Xanthohumol: 85.6–480.0 mg/100 g DW | ||
Stilbenes: | [25,49] | |
Total trans-Stilbenes: 0.05–1.17 mg/100 g FW | [25] | |
trans-Resveratrol: 0.003–0.228 mg/100 g FW | [25] | |
trans-Piceid: 0.04–1.10 mg/100 g FW | ||
Barley | Phenolic acids: | |
Total: 0.2–67.5 mg/100 g DW; 16.5–24.1 mg/100 g FW | [53,56,59] | |
Caffeic: 0.17 ± 0.01 mg/100 g FW | [53] | |
Chlorogenic: 0–9.84 mg/100 g DW | [58] | |
o-Coumaric: 1.5–6.0 mg/100 g DW | [58] | |
p-Coumaric: 4.0 ± 0.49 mg/100 g FW; 0.17–58.3 mg/100 g DW | [53,56,58] | |
Gallic: 0.1–136.6 mg/100 g DW | [58] | |
p-Hydroxybenzoic: 0.31 ± 0.05 mg/100 g FW; 0.58–2.67 mg/100 g DW | [53,56] | |
2,4-Dihydroxybenzoic: 0.68–6.16 mg/100 g DW | [56] | |
Protocatechuic: 0.16 ± 0.01 mg/100 g FW | [53] | |
Sinapic acid: 1.10 ± 0.17 mg/100 g FW; 0.14–2.44 mg/100 g DW | [53,56] | |
Syringic: 0.50 ± 0.03 mg/100 g FW; 0.1–91.6 mg/100 g DW | [53,56,58] | |
Ferulic: 25.0 ± 3.2 mg/100 g FW; 0.59–4.25 mg/100g DW | [53,56,58] | |
Vanillic acid: 0.71 ± 0.08 mg/100 g FW; 0.10–3.91 mg/100 g DW | [53,56,58] | |
Flavonoids: | ||
Total: 6.2–30.1 mg/100 g DW; 7.8–16.2 mg/100 g FW | [57,59] | |
Catechin: 0.1–10.5 mg/100 g DW; 0.48–2.4 mg/100 g FW | [57,58,59,100] | |
Hesperidin: 0.5–24.9 mg/100 g DW | [58] | |
Kaempferol: 1.27–19.2 mg/100 g DW; 1.2–2.4 mg/100 g FW | [57,58,59] | |
Myricetin: 0–73.3 mg/100 g DW; 3.1–4.3 mg/100 g FW | [57,58,59] | |
Naringin: 0.77–6.97 mg/100 g DW | [58] | |
Naringenin: 4.7–50.2 mg/100 g DW | [58] | |
Quercetin: 2.0–8.7 mg/100 g DW; 1.5–6.7 mg/100 g FW | [57,58,59] | |
Rutin: 1.4–11.8 mg/100 g DW; 0.07–0.46 mg/100 g FW | [58,59] | |
Alkylresorcinols: 3.2–10.3 mg/100 g DW; 2.86–3.54 mg/100 g FW | [53,56,80] | |
Lignans: Total: 1.25 mg/100 g FW | [60] | |
Wheat | Phenolic acids: | |
Caffeic: 0–3.3 mg/100 g DW; 98.6 ± 11.9 mg/100 g FW | [27,78] | |
p-Coumaric: 0.30–1.21 mg/100g DW; 0.38–3.7 mg/100 g FW | [27,53] | |
Ferulic: 10.0–219.3 mg/100 g FW; 0.94–6.23 mg/100 g DW | [27,53,78] | |
Gallic acid: 2.8 ± 0.4 mg/100 g FW | [78] | |
p-Hydroxybenzoic: 0.23–1.11 mg/100 g DW | [27] | |
Sinapic: 2.8–12.8 mg/100 g DW; 0.8–6.3 mg/100 g FW | [27,53,78] | |
Syringic: 0.39–2.22 mg/100 g DW; 0.22–1.3 mg/100 g FW | [27,53] | |
Vanillic: 0.88–2.45 mg/100 g DW; 0.37–17.6 mg/100 g FW | [27,53,78] | |
Flavonoids: | ||
Apigenin: 20.4 ± 1.5 mg/100 g FW | [78] | |
Catechin: 94.2 ± 5.6 mg/100 g FW | [78] | |
Epicatechin: 14.5 ± 0.9 mg/100 g FW | [78] | |
Malvidin: 2.9 ± 0.2 mg/100 g FW | [78] | |
Alkylresorcinols: | ||
Total: 19.1–142.9 mg/100 g DW; 74.8–76.62 mg/100 g FW | [53,79,80] | |
Lignans: | ||
Total: 9.22 mg/100 g FW | [60] | |
Oats | Phenolic acids: | |
Total: 35.1–143.5 mg/100 g DW; 46.9–65.1 mg/100 g FW | [53,86,89] | |
Caffeic: 0.95–7.02 mg/100 g DW; 0.11–1.94 mg/100 g FW | [53,85,89] | |
p-Coumaric: 1.3–2.2 mg/100 g DW; 0.21–1.2 mg/100 g FW | [53,85,86] | |
Ferulic: 4.5–19.0 mg/100 g DW; 2.3–33.0 mg/100 g FW | [53,85,86,89] | |
Gallic acid: 14.4–70.4 mg/100 g DW | [89] | |
p-Hydroxybenzoic: 3.2–6.0 mg/100 g DW; 0.33–2.2 mg/100 g FW | [53,85,86] | |
Protocathecuic acid: 1.1–10.4 mg/100 g DW | [89] | |
Sinapic: 3.4–5.2 mg/100g DW; 0.9–3.6 mg/100 g FW | [53,85,86] | |
Syringic: 2.5–5.0 mg/100 g DW; 0.68–2.8 mg/100 g FW | [53,85,86] | |
Vanillic: 1.8–42.7 mg/100 g DW; 0.4–2.4 mg/100 g FW | [53,85,86,89] | |
Flavonoids: | ||
Vicenin II: 0.70 ± 0.02 mg/100 g DW | [77] | |
Vitexin: 2.47 ± 0.19 mg/100 g DW | [77] | |
Daidzein: 2.92 ± 0.01 mg/100 g DW | [77] | |
Apigenin-6/8-C-pentoside-8/6C-hexoside I: 1.15 ± 0.84 mg/100 g DW | [77] | |
Avenanthramides: | ||
Total: 4.2–14.7 mg/100 g DW; 1.3–5.0 mg/100 g FW | [53,77,85,86,88,89] | |
Avenanthramide A: 0.68–2.38 mg/100 g FW | [85] | |
Avenanthramide B: 1.2–3.7 mg7100 g FW | [85] | |
Avenanthramide C: 0.1–1.24 mg/100 g FW | [85] | |
Lignans: | ||
Total: 3.5 mg/100 g FW | [60] | |
Rye | Phenolic acids: | |
Total: 49.1–300.0 mg/ 100 g DW | [66,96] | |
Caffeic: 0.4–7.7 mg/100 g DW | [66] | |
p-Coumaric: 0.74–6.5 mg/100 g DW | [95,96] | |
Ferulic: 3.5–117.4 mg/100 g DW | [95,96] | |
p-Hydroxybenzoic: 0.7–2.4 mg/100 g DW | [66] | |
Sinapic: 5.2–14.0 mg/100 g DW | [95,96] | |
Syringic: 0.02–0.6 mg/100 g DW | [66,96] | |
Vanillic: 0.46–4.6 mg/100g DW | [66,96] | |
Flavonoids: | ||
Total: 4.2–20.4 mg/100 g DW | [98] | |
Total flavones: 5.6–13.7 mg/100 g DW | [97] | |
Alkylresorcinols: 36–320 mg/100 g DW; 2–130 mg/100 g FW | [53,66,80,96] | |
Lignans: | ||
Total: 0.11–2.27 mg/100 g DW; 11.2 mg/100 g FW | [60,66] |
4. Polyphenol Contents and Antioxidant Properties of Conventional Beers
5. Identification of Bioactive Phenolic Molecules in Beers
6. Polyphenol Contents and Antioxidant Properties of Beers with Added Fruit, Vegetable, Herbs, and Natural Food
7. Identification of Bioactive Compounds in Beers with Added Fruits, Vegetables, Herbs, and Natural Food
8. Influence of Brewing Processes on Antioxidant Properties and Polyphenol Contents of Beer
9. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Halliwell, B.; Gutteridge, J.M.C. Role of free radicals and catalytic metal ions in human diseases: An overview. In Methods in Enzymology; Packer, L., Glazer, A.N., Eds.; Elsevier: Amsterdam, The Netherland, 1990; Volume 186, pp. 1–85. [Google Scholar]
- Aruoma, O. Free radicals, oxidative stress and antioxidants in human health and diseases. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antiox. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, F.I. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Rienks, J.; Barbaresko, J.; Nothlings, U. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: A systematic review and meta-analysis of observational studies. Nutrients 2017, 9, 415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, A.; Jamialahmadi, T.; Sahebkar, A. Polyphenols and atherosclerosis: A critical review on clinical effects on LDL oxidation. Pharmacol. Res. 2022, 184, 106414. [Google Scholar] [CrossRef]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Williamson, G. Dietary intake, and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef] [Green Version]
- Pulido, R.; Hernandez-Garcia, M.; Saura-Calixto, F. Contribution of beverages to the intake of lipophilic and hydrophilic antioxidant in the Spanish diet. Eur. J. Clin. Nutr. 2003, 57, 1275–1282. [Google Scholar] [CrossRef]
- Fukushima, Y.; Tashiro, T.; Kumagai, A.; Ohyanagi, H.; Horiuchi, T.; Takizawa, K.; Sugihara, N.; Kishimoto, Y.; Taguchi, C.; Tani, M.; et al. Coffee and beverages are the major contributors to polyphenol consumption from food and beverages in Japanese middle-aged women. J. Nutr. Sci. 2014, 3, e48. [Google Scholar] [CrossRef] [Green Version]
- Hertog, M.G.L.; Feskens, E.J.M.; Hollman, P.C.H.; Katan, M.B.; Kornhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [Google Scholar] [CrossRef]
- Renaud, S.L.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Guilford, J.M.; Pezzuto, J.M. Wine and health: A review. Am. J. Enol. Vitic. 2011, 62, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Gronbaek, M.; Deis, A.; Sorensen, T.I.; Becker, U.; Schnohr, P.; Jensen, G. Mortality associated with moderate intakes of wine, beer, and spirits. Br. Med. J. 1995, 310, 1165–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, N.M.; Palmer, B.F. Nutritional, and health benefits of beer. Am. J. Med. Sci. 2000, 320, 320–326. [Google Scholar] [CrossRef]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martinez, P.; Medina-Remon, A.; Lamuela-Raventos, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Muniz, F.J.; Macho-Gonzales, A.; Garcimartin, A.; Santos-Lopez, J.A.; Benedi, J.; Bastida, S.; Gonzalez-Munoz, M.J. The nutritional components of beer and its relationship with neurodegeneration and Alzheimer’s disease. Nutrients 2019, 11, 1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio-Paz, I.; Brunauer, R.; Alavez, S. Beer and its non-alcoholic compounds in health and disease. Crit. Rev. Food Sci. Nutr. 2020, 60, 3492–3505. [Google Scholar] [CrossRef] [PubMed]
- Ambra, R.; Pastore, G.; Lucchetti, S. The role of bioactive phenolic compounds on the impact of beer on health. Molecules 2021, 26, 486. [Google Scholar] [CrossRef] [PubMed]
- Gorinstein, S.; Caspi, A.; Libman, E.; Leontowicz, M.; Tahsma, Z.; Katrich, E.; Jastrzebski, Z.; Trakhtenberg, S. Bioactivity of beer and its influence on human metabolism. Int. J. Food Sci. Nutr. 2007, 58, 94–107. [Google Scholar] [CrossRef]
- Ghiselli, A.; Natella, G.; Guidi, A.; Montanari, L.; Fantozzi, P.; Scaccini, C. Beer increases plasma antioxidant capacity in humans. J. Nutr. Biochem. 2000, 11, 76–80. [Google Scholar] [CrossRef]
- Trius-Soler, M.; Marhuenda-Munoz, M.; Laveriano-Santos, E.P.; Martinez-Huelamo, M.; Sasot, G.; Storniolo, C.E.; Estruch, R.; Lamuela-Raventos, R.M.; Tressera-Rimbau, A. Moderate consumption of beer (with and without ethanol) and menopausal symptoms: Results from a parallel clinical trial in postmenopausal women. Nutrients 2021, 13, 2278. [Google Scholar] [CrossRef] [PubMed]
- Callemien, D.; Jerkovic, V.; Rozenberg, R.; Collin, S. Hop as an interesting source of resveratrol for brewers: Optimization of the extraction and quantitative study by liquid chromatography/atmosferic pressure chemical ionization tandem mass spectrometry. J. Agric. Food Chem. 2005, 53, 424–429. [Google Scholar] [CrossRef] [PubMed]
- De Keukeleire, D.; de Cooman, L.; Rong, H.; Heyerick, A.; Kalita, J.; Milligan, S.R. Functional properties of hop polyphenols. Basic Life Sci. 1999, 66, 739–760. [Google Scholar] [CrossRef]
- Jerkovic, V.; Collin, S. Occurrence of resveratrol and piceid in American and European hop cones. J. Agric. Food Chem. 2007, 55, 8754–8758. [Google Scholar] [CrossRef] [PubMed]
- Steenackers, B.; De Cooman, L.; De Vos, D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chem. 2015, 172, 742–756. [Google Scholar] [CrossRef]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9732–9739. [Google Scholar] [CrossRef]
- Inui, T.; Okumura, K.; Matsui, H.; Hosoya, T.; Kumazawa, S. Effect of harvest time on some in vitro functional properties of hop polyphenols. Food Chem. 2017, 225, 69–76. [Google Scholar] [CrossRef]
- Keiler, M.; Zierau, O.; Kretzschmar, G. Hop extracts and hop substances in treatment of menopausal complaints. Planta Medica 2013, 79, 576–579. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.C.; Liu, C.H.; Chen, C.N.; Duan, K.J.; Lin, M.T. Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines. Phytother. Res. 2008, 22, 1465–1468. [Google Scholar] [CrossRef]
- Liu, M.; Hansen, P.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Zhonghua, Q.; Mei, Y.; Miao, J. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 2015, 20, 754–779. [Google Scholar] [CrossRef]
- Stracke, D.; Schulz, T.; Prehm, P. Inhibitors of hyaluronan export from hops prevent prevent osteoarthritic reactions. Mol. Nutr. Food Res. 2011, 55, 485–494. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Yang, X.; Tian, Y. In vitro and in vivo antioxidant and antimutagenic activities of polyphenols extracted from hops (Humulus lupulus L.). J. Sci. Food Agric. 2014, 94, 1693–1700. [Google Scholar] [CrossRef]
- Bolton, J.L.; Dunlap, T.L.; Hajirahimkhan, A.; Mbachu, O.; Chen, S.N.; Chadwick, L.; Nikolic, D.; van Breemen, R.B.; Pauli, G.F.; Dietz, B.M. The multiple biological targets of hops and bioactive compounds. Chem. Res. Toxicol. 2019, 32, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dostalek, P.; Karabin, M.; Jelinek, L. Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. Molecules 2017, 22, 1761. [Google Scholar] [CrossRef] [PubMed]
- Dusek, M.; Jandovska, V.; Cermak, P.; Mikyska, A.; Olsovska, J.A. A novel approach for identification of biologically active phenolic compounds in complex matrices using hybrid quadrupole-orbitrap mass spectrometer: A promising tool for testing antimicrobial activity of hops. Talanta 2016, 156-157, 209–217. [Google Scholar] [CrossRef]
- Krofta, K.; Mikyska, A.; Haskova, D. Antioxidant characteristics of hops and hop products. J. Inst. Brew. 2008, 114, 160–166. [Google Scholar] [CrossRef]
- Castro, R.; Diaz, A.B.; Duran-Guerrero, E.; Lasanta, C. Influence of different fermentation conditions on the analytical and sensory properties of craft beers: Hopping, fermentation temperature and yeast strain. J. Food Compost. Anal. 2022, 106, 104278. [Google Scholar] [CrossRef]
- Santarelli, V.; Neri, L.; Carbone, K.; Macchioni, V.; Pittia, P. Use of conventional and innovative technologies for the production of food grade hop extract: Focus on bioactive compounds and antioxidant activity. Plants 2022, 11, 41. [Google Scholar] [CrossRef]
- Loureiro, P.V.; Jimenez, I.H.; Sendon, R.; Rodriguez-Bernaldo de Quiros, A.; Barbosa-Pereira, L. Determination of xanthohumol in hops, food supplements and beers by HPLC. Foods 2019, 8, 435. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS characterization of phenolic compounds from medicinal plants (hop and juniper berries) and their antioxidant activity. Foods 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Milligan, S.R.; Kalita, J.C.; Pocock, V.; van de Kauter, V.; Stevens, J.F.; Deinzer, M.L.; Rong, H.; De Keuleleire, D. The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J. Clin. Endocrinol. Metab. 2000, 85, 4912–4915. [Google Scholar] [CrossRef] [PubMed]
- Tobe, H.; Muraki, Y.; Kitamura, K.; Komiyama, O.; Sato, Y.; Sugioka, T.; Maruyama, H.B. Bone resorption inhibitors from hop extract. Biosci. Biotechnol. Biochem. 1997, 61, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, M.; Matsushita, Y.; Kiyokawa, A.; Fukuda, C.; Iijima, Y.; Sugano, M.; Akiyama, T. Prenylflavonoids: A new class of non-steroidal phytoestrogens (part 2). Estrogenic effects of 8-isopentenylnaringenin on bone metabolism. Planta Med. 1998, 64, 516–519. [Google Scholar] [CrossRef]
- Henderson, M.C.; Miranda, C.L.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. In-vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 2000, 30, 235–251. [Google Scholar] [CrossRef]
- Miranda, C.L.; Stevens, J.F.; Helmrich, A.; Henderson, M.C.; Rodriguez, R.J.; Yang, Y.H.; Deinzer, M.L.; Barnes, D.W.; Buhler, D.R. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol. 1999, 37, 271–285. [Google Scholar] [CrossRef]
- Gallo, C.; Dallaglio, K.; Bassani, B.; Rossi, T.; Rossello, A.; Noonan, D.M.; D’Uva, G.; Bruno, A.; Albini, A. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget 2016, 7, 59917–59931. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health. Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef]
- Jerkovic, V.; Callemien, D.; Collin, S. Determination of stilbenes in hop pellets from different cultivars. J. Agric. Food Chem. 2005, 53, 4202–4206. [Google Scholar] [CrossRef]
- Fremont, L. Minireview: Biological effects of resveratrol. Life Sci. 2000, 66, 663–673. [Google Scholar] [CrossRef]
- Aggarwal, B.; Bhardwaj, A.; Aggarwal, R.; Seerman, N.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res. 2004, 24, 2783–2848. [Google Scholar] [PubMed]
- Romero-Perez, A.I.; Ibern-Gomez, M.; Lamuela-Raventos, R.M.; de la Torre-Boronat, M.C. Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 1999, 47, 1533–1536. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Pihlava, J.M.; Hellstrom, J. Contents of phenolic acid, alkyl- and alkenilresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef] [PubMed]
- Calinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obadi, M.; Sun, J.; Xu, B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res. Int. 2021, 140, 110065. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Lampi, A.-M.; Nystrom, L.; Piironen, V.; Li, L.; Ward, J.L.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Boros, D.; et al. Phytochemical and dietary fiber components in barley varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9767–9776. [Google Scholar] [CrossRef]
- Zeng, Y.; Pu, X.; Du, J.; Yang, X.; Li, X.; Mandal, S.N.; Yang, T.; Yang, J. Molecular mechanism of functional ingredients in barley to combat human chronic diseases. Oxid. Med. Cell. Longev. 2020, 2020, 3836172. [Google Scholar] [CrossRef]
- Yang, X.-J.; Dang, B.; Fan, M.-T. Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the Qinghai-Tibet plateau. Molecules 2018, 23, 879. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Hyun, J.-N.; Park, J.-C.; Kim, M.-Y.; Kim, J.G.; Lee, S.-J.; Chun, S.-C.; Chung, I.-M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem. 2007, 55, 4802–4809. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Sjoholm, R.E.; Willfor, S.M.; Nishibe, S.; Deyama, T.; Holmbom, B.R. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J. Agric. Food Chem. 2007, 55, 1337–1346. [Google Scholar] [CrossRef]
- Zhu, F. Proanthocyanidins in cereals and pseudocereals. Crit. Rev. Food Sci. Nutr. 2019, 59, 1521–1533. [Google Scholar] [CrossRef]
- Gangopadhyay, N.; Rai, D.K.; Brunton, N.P.; Gallagher, E.; Hossain, M.B. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain. Food Chem. 2016, 210, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, S.; Sun, Y.; Chen, Z.; Zhao, R. Bioavailability and bioactivity of alkylresorcinols from different cereal products. J. Food Quality 2020, 2020, 5781356. [Google Scholar] [CrossRef]
- Ishioka, W.; Oonuki, S.; Iwadate, T.; Nihei, K. Resorcinol alkyl glucosides as potent tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 2019, 29, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Zabolotneva, A.A.; Shatova, O.P.; Sadova, A.A.; Shestopalov, A.V.; Roumiantsev, S.A. An overview of alkylresorcinols biological properties and effects. J. Nutr. Metab. 2022, 2022, 4667607. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Aura, A.-M.; Vuorela, S.; Kolehmainen, M.; Mykkanen, H.; Poutanen, K. Rye phenolics in nutrition and health. J. Cereal Sci. 2009, 49, 323–336. [Google Scholar] [CrossRef]
- Adlercreutz, H. Lignans and human health. Crit. Rev. Clin. Lab. Sci. 2007, 44, 483–525. [Google Scholar] [CrossRef]
- Lof, M.; Weiderpass, E. Epidemiologic evidence suggests that dietary phytoestrogen intake is associated with reduced risk of breast, endometrial and prostate cancer. Nutr. Res. 2006, 26, 609–619. [Google Scholar] [CrossRef]
- Touillaud, M.S.; Thiebaut, A.C.; Fournier, A.; Niravong, M.; Boutron-Ruault, M.C.; Clavel-Chapelon, F. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J. Natl. Cancer Inst. 2007, 99, 475–486. [Google Scholar] [CrossRef]
- Vanharanta, M.; Voutilainen, S.; Lakka, T.A.; van der Lee, M.; Adlercreutz, H.; Salonen, J.T. Risk of acute coronary events according to serum concentrations of enterolactone: A prospective population-based case-control study. Lancet 1999, 354, 2112–2115. [Google Scholar] [CrossRef]
- Goupy, P.; Hugues, M.; Boivin, P.; Amiot, M.J. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food Agric. 1999, 79, 1625–1634. [Google Scholar] [CrossRef]
- Idehen, E.; Tang, Y.; Sang, S. Bioactive phytochemicals in barley. J. Food Drug Anal. 2017, 25, 148–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillard, M.N.; Soum, M.H.; Boivin, P.; Berset, C. Antioxidant activity of barley and malt: Relationship with phenolic content. LWT 1996, 29, 238–244. [Google Scholar] [CrossRef]
- Qingming, Y.; Xianhui, P.; Weibao, K.; Hong, Y.; Yidan, S.; Li, Z.; Yanan, Z.; Yuling, Y.; Lan, D.; Guoan, L. Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chem. 2010, 118, 84–89. [Google Scholar] [CrossRef]
- Madhujith, T.; Shahidi, F. Antioxidative and antiproliferative properties of selected barley (Hordeum vulgare L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. J. Agric. Food Chem. 2007, 55, 5018–5024. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, H.F.; Chen, J.; Fan, W.; Dong, J.J.; Kong, W.B.; Sun, J.; Cao, Y.; Cai, G. Evolution of phenolic compounds and antioxidant activity during malting. J. Agric. Food Chem. 2007, 55, 10994–11001. [Google Scholar] [CrossRef]
- Martin-Diana, A.B.; Garcia-Casas, M.J.; Martinez-Villaluenga, C.; Frias, J.; Penas, E.; Rico, D. Wheat and oat brans as sources of polyphenol compounds for development of antioxidant nutraceutical ingredients. Foods 2021, 10, 115. [Google Scholar] [CrossRef]
- Arranz, S.; Saura Calixto, F. Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: A study in wheat flour and wheat bran and cereals in the diet. J. Cereal Sci. 2010, 51, 313–318. [Google Scholar] [CrossRef]
- Tsirivakou, A.; Melliou, E.; Magiatis, P. A method for the rapid measurement of alkylresorcinols in flour, bread and related products based on 1H qNMR. Foods 2020, 9, 1025. [Google Scholar] [CrossRef]
- Ross, A.B.; Sheperd, M.J.; Schupphaus, M.; Sinclair, V.; Alfaro, B.; Kamal-Eldin, A.; Aman, P. Alkylresorcinols in cereals and cereal products. J. Agric. Food Chem. 2003, 51, 4111–4118. [Google Scholar] [CrossRef]
- Leoncini, E.; Prata, C.; Malaguti, M.; Marotti, I.; Segura-Carretero, A.; Catizone, P.; Dinelli, G.; Hrelia, S. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars. PLoS ONE 2012, 7, e45997. [Google Scholar] [CrossRef] [Green Version]
- Blsakova, L.; Gregor, T.; Mestanek, M.; Hrivna, L.; Kumbar, V. The use of unconventional malts in beer production and their effect on the wort viscosity. Foods 2022, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, R.; Caballero, I.; Nimubona, D.; Blanco, C.A. Brewing with starchy adjuncts: Its influence on the sensory and nutritional properties of beer. Foods 2021, 10, 1726. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Foddai, M.S. Phenolics profile and antioxidant activity of special beers. Molecules 2020, 25, 2466. [Google Scholar] [CrossRef] [PubMed]
- Soycan, G.; Schar, M.; Kristek, A.; Boberska, J.; Alsharif, S.N.S.; Corona, G.; Shewry, P.R.; Spencer, J. Composition and content of phenolic acids and avenanthramides in commercial oat products: Are oats an important polyphenol source for consumers? Food Chem. X 2019, 3, 100047. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Nystrom, L.; Li, L.; Rakszegi, M.; Fras, A.; Boros, D.; Gebruers, K.; Courtin, C.M.; et al. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9777–9784. [Google Scholar] [CrossRef]
- Bratt, K.; Sunnerheim, K.; Bryngelsson, S.; Fagerlund, A.; Engman, L.; Andersson, R.E.; Dimberg, L.H. Avenanthramides in oats (Avena sativa L.) and structure−antioxidant activity relationships. J. Agric. Food Chem. 2003, 51, 594–600. [Google Scholar] [CrossRef]
- Pridal, A.A.; Bottger, W.; Ross, A.B. Analysis of avenanthramides in oat products and estimation of avenanthramide intake in humans. Food Chem. 2018, 253, 93–100. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Wang, R.; Luo, X.; Li, Y.; Li, J.; Li, Y.; Chen, Z. Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chem. 2018, 239, 260–267. [Google Scholar] [CrossRef]
- Meydani, M. Potential health benefits of avenanthramides of oats. Nutr. Rev. 2009, 67, 731–735. [Google Scholar] [CrossRef]
- Liu, L.; Zubik, L.; Collins, F.W.; Marko, M.; Meydani, M. The antiatherogenic potential of oat phenolic compounds. Atherosclerosis 2004, 175, 39–49. [Google Scholar] [CrossRef]
- Nie, L.; Wise, M.; Peterson, D.M.; Meydani, M. Avenanthramide, a polyphenol from oats, inhibits vascular smooth muscle cell proliferation and enhances nitric oxide production. Atherosclerosis 2006, 186, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Wisw, M.; Collins, F.W.; Meydani, M. Inhibition of colonic cancer cell proliferation and COX2 by oats avenanthramides (Avns). FASEB J. 2007, 21, A102–A103. [Google Scholar] [CrossRef]
- Fu, R.; Yang, P.; Li, Z.; Liu, W.; Amin, S.; Li, Z. Avenanthramide A triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death Dis. 2019, 10, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreasen, M.F.; Christensen, L.P.; Meyer, A.S.; Hansen, A. Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J. Agric. Food Chem. 2000, 48, 2837–2842. [Google Scholar] [CrossRef]
- Nystrom, L.; Lampi, A.-M.; Andersson, A.A.M.; Kamal-Eldin, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Li, L.; Ward, J.L.; Fras, A.; et al. Phytochemicals and dietary fiber components in rye varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9758–9766. [Google Scholar] [CrossRef]
- Ravisankar, S.; Queiroz, V.A.V.; Awika, J.M. Rye flavonoids—Structural profile of the flavones in diverse varieties and effect of fermentation and heat on their structure and antioxidant properties. Food Chem. 2020, 324, 126871. [Google Scholar] [CrossRef]
- Kulichova, K.; Sokol, J.; Nemecek, P.; Maliarova, M.; Maliar, T.; Havrlentova, M.; Kraic, J. Phenolic compounds and biological activities of rye (Secale cereale L.) grains. Open Chem. 2019, 17, 988–999. [Google Scholar] [CrossRef]
- Kozubek, A.; Nienartowicz, B. Cereal grain resorcinolic lipids inhibit H2O2-induced peroxidation of biological membranes. Acta Biochim. Pol. 1995, 42, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.; Santhakumar, A.B.; Chinkwo, K.A.; Blanchard, C.L. Q-TOF LC/MS identification and UHPLC-Online ABTS antioxidant activity guided mapping of barley polyphenols. Food Chem. 2018, 266, 323–328. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Sun, G.; Yang, B.; Zhao, M. Assessment of endogeneous antioxidative compounds and antioxidant activities of lager beers. J. Sci. Food Agric. 2013, 93, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food. Chem. 2020, 305, 125437. [Google Scholar] [CrossRef] [PubMed]
- Piazzon, A.; Forte, M.; Nardini, M. Characterization of phenolics content and antioxidant activity of different beer types. J. Agric. Food Chem. 2010, 58, 10677–10683. [Google Scholar] [CrossRef]
- Habschied, K.; Loncaric, A.; Mastanjevic, K. Screening of polyphenols and antioxidative activity in industrial beers. Foods 2020, 9, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinson, J.A.; Mandarano, M.; Hirst, M.; Trevithick, J.R.; Bose, P. Phenol antioxidant quantity and quality in foods: Beers and the effect of two types of beer on an animal model of atherosclerosis. J. Agric. Food Chem. 2003, 51, 5528–5533. [Google Scholar] [CrossRef]
- Bustos, L.; Soto, E.; Parra, F.; Echiburu-Chau, C.; Parra, C. Brewing of a porter craft beer enriched with the plant Parastrephia lucida: A promising source of antioxidant compounds. J. Am. Soc. Brew. Chem. 2019, 77, 261–266. [Google Scholar] [CrossRef]
- Horincar, G.; Enachi, E.; Bolea, C.; Rapeanu, G.; Aprodu, I. Value-added lager beer enriched with eggplant (Solanum melogena L.) peel extract. Molecules 2020, 25, 731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasinski, A.; Kawa-Rygielska, J.; Szumny, A.; Czubaszek, A.; Gasior, J.; Pietrzak, W. Volatile compounds content, physicochemical parameters, and antioxidant activity of beers with addition of mango fruit (Mangifera indica L.). Molecules 2020, 25, 3033. [Google Scholar] [CrossRef]
- Gasinski, A.; Kawa-Rygielska, J.; Szumny, A.; Gasior, J.; Glowacki, A. Assessment of volatiles and polyphenol content, physicochemical parameters and antioxidant activity in beers with dotted hawthorn (Crataegus punctata L.). Foods 2020, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Lim, J.; Nguyen, T.T.H.; Mok, I.-K.; Piao, M.; Kim, D. Composition and biochemical properties of ale beer enriched with lignans from Schisandra chinensis baillon (omija) fruits. Food Sci. Biotechnol. 2020, 29, 609–617. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P. Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, P.A.; Vidal, J.; Avila, M.I.; Labbe, M.; Cohen, S.; Salazar, F.N. Effect of the addition of propolis extract on bioactive compounds and antioxidant activity of craft beer. J. Chem. 2017, 2017, 6716053. [Google Scholar] [CrossRef] [Green Version]
- Gorzelany, J.; Michalowska, D.; Pluta, S.; Kapusta, I.; Belcar, J. The effect of the addition of ozonated and non-ozonated fruits of the Saskatoon berry (Amelanchier alnifolia Nutt.) on the quality and pro-healthy profile of craft wheat beers. Molecules 2022, 27, 4544. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Ghiselli, A. Determination of free and bound phenolic acids in beer. Food Chem. 2004, 84, 137–143. [Google Scholar] [CrossRef]
- Nardini, M.; Natella, F.; Scaccini, C.; Ghiselli, A. Phenolic acids from beer are absorbed and extensively metabolized in humans. J. Nutr. Biochem. 2006, 17, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Floridi, S.; Montanari, L.; Marconi, O.; Fantozzi, P. Determination of free phenolic acids in wort and beer by coulometric array detection. J. Agric. Food. Sci. 2003, 51, 1548–1554. [Google Scholar] [CrossRef] [PubMed]
- Radonjic, S.; Maras, V.; Raicevic, J.; Kosmerl, T. Wine or beer? Comparison, changes and improvement of polyphenolic compounds during technological phases. Molecules 2020, 25, 4960. [Google Scholar] [CrossRef]
- Cos, P.; Rajan, P.; Vedernikova, I.; Calomme, M.; Pieters, L.; Vlietinck, A.J.; Augustyns, K.; Haemers, A.; Vanden Berghe, D. In vitro antioxidant profile of phenolic acid derivatives. Free Radical Res. 2002, 36, 711–716. [Google Scholar] [CrossRef]
- Mancuso, C.; Santangelo, R. Ferulic acids: Pharmacological and toxicological aspects. Food Chem. Toxicol. 2014, 65, 185–195. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.M.; Babazadeh, D.; Fangfang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Habtemariam, S. Protecytive effects of caffeic acid and the Alzheimer’s brain: An update. Mini Rev. Med. Chem. 2017, 17, 667–674. [Google Scholar] [CrossRef]
- Szwajgier, D.; Borowiec, K.; Pustelniak, K. The neuroprotective effects of phenolic acids: Molecular mechanism of action. Nutrients 2017, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Nasr Bouzaiene, N.; Kilani Jaziri, S.; Kovacic, H.; Chekir-Ghedira, L.; Ghedira, K.; Luis, J. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur. J. Pharmacol. 2015, 766, 99–105. [Google Scholar] [CrossRef]
- Su, P.; Shi, Y.; Wang, J.; Shen, Z.; Zhang, J. Anticancer agents derived from natural cinnamic acids. Anticancer Agents Med. Chem. 2015, 15, 980–987. [Google Scholar] [CrossRef]
- Wang, T.; Gong, X.; Jiang, R.; Li, H.; Du, W.; Kuang, G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am. J. Transl. Res. 2016, 8, 968–980. [Google Scholar]
- De Souza Rosa, L.; Araujo Jordao, N.; da Costa Pereira Soares, N.; Freire de Mesquita, J.; Monteiro, M.; Junger Teodoro, A. Pharmacokinetic, antiproliferative and apoptotic effects of phenolic acids in human colon adenocarcinoma cells using in vitro and in silico approaches. Molecules 2018, 23, 2569. [Google Scholar] [CrossRef] [Green Version]
- Kellner, V.; Jurkova, M.; Culik, J.; Horac, T.; Cejka, P. Some phenolic compounds in Czech hops and beer of pilsner type. Brew. Sci. 2007, 60, 31–37. [Google Scholar]
- Marova, I.; Parilova, K.; Friedl, Z.; Obruca, S.; Duronova, K. Analysis of phenolic compounds in lager beers of different origins: A contribution to potential determination of the authenticity of Czech beer. Chromatographia 2011, 73, S83–S95. [Google Scholar] [CrossRef]
- Jandera, P.; Skerikova, V.; Rehova, L.; Hajek, T.; Baldrianova, L.; Skopova, G.; Kellner, V.; Horna, A. RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a CoulArray detector. J. Sep. Sci. 2005, 28, 1005–1022. [Google Scholar] [CrossRef]
- Madigan, D.; Mc Murrough, I. Determination of proanthocyanidins and catechins in beer and barley by high-performance liquid chromatography with dual-electrode electrochemical detection. Analyst 1994, 119, 863–868. [Google Scholar] [CrossRef]
- Petrucci, R.; Di Matteo, P.; De Francesco, G.; Mattiello, L.; Perretti, G.; Russo, P. Novel fast identification and determination of free polyphenols in untreated craft beers by HPLC-PDA-ESI-MS/MS in SIR Mode. J. Agric. Food Chem. 2020, 68, 7894–7994. [Google Scholar] [CrossRef] [PubMed]
- Achilli, G.; Cellerino, G.P.; Gamache, P.H. Identification and determination of phenolic constituents in natural beverages and plant extracts by means of a coulometric electrode array system. J. Chromatogr. A 1993, 632, 111–117. [Google Scholar] [CrossRef]
- Lapcik, O.; Hill, M.; Hampl, R.; Wahala, K.; Adlercreutz, H. Identification of isoflavonoids in beer. Steroids 1998, 63, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Ducruet, J.; Rebenaque, P.; Diserens, S.; Kosinska-Cagnazzo, A.; Heritier, I.; Andlauer, W. Amber ale beer enriched with goji berries—The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Boronat, A.; Soldevila-Domenech, N.; Rodriguez-Morato, J.; Martinez-Huelamo, M.; Lamuela-Raventos, R.M.; de la Torre, R. Beer phenolic composition of simple phenols, prenylated flavonoids and alkylresorcinols. Molecules 2020, 25, 2582. [Google Scholar] [CrossRef] [PubMed]
- Ceslova, L.; Holcapek, M.; Fidler, M.; Drstickova, J.; Lisa, M. Characterization of prenylflavonoids and hop bitter acids in various classes of Czech beers and hop extracts using high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 7249–7257. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.F.; Taylor, A.W.; Deinzer, M.L. Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1999, 832, 97–107. [Google Scholar] [CrossRef]
- Maragou, N.C.; Rosenberg, E.; Thomaidis, N.S.; Koupparis, M.A. Direct determination of the estrogenic compounds 8-prenylnaringenin, zearalenone, α- and β-zearalenol in beer by liquid chromatography-mass spectrometry. J. Chromatogr. A 2008, 1202, 47–57. [Google Scholar] [CrossRef]
- Rong, H.; Zhao, Y.; Lazou, K.; De Keukeleire, D.; Milligan, S.R.; Sandra, P. Quantitation of 8-prenylnaringenin, a novel phytoestrogen in hops (Humulus lupulus L.), hop products and beers, by benchtop HPLC using electrospray ionization. Chromatographia 2000, 51, 545–552. [Google Scholar] [CrossRef]
- Tekel, J.; De Keukeleire, D.; Rong, H.; Daeseleire, E.; Van Peteghem, C. Determination of the hop-derived phytoestrogen, 8-prenylnaringenin, in beer by gas chromatography/mass spectrometry. J. Agric. Food Chem. 1999, 47, 5059–5063. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Rotches-Ribalta, M.; Zamora-Ros, R.; Llorach, R.; Lamuela-Raventos, R.M.; Estruch, R.; Andres-Lacueva, C. Determination of resveratrol and piceid in beer matrices by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 698–705. [Google Scholar] [CrossRef]
- Smoliga, J.M.; Baur, J.A.; Hausenblas, H.A. Resveratrol and health—A comprehensive review of human clinical trials. Mol. Nutr. Food Res. 2011, 55, 1129–1141. [Google Scholar] [CrossRef]
- Tome-Carneiro, J.; Larrosa, M.; Gonzales-Sarrias, A.; Tomas-Barberan, F.A.; Garcia-conesa, M.T.; Espin, J.C. Resveratrol and clinical trials: The crossroad from in vitro studies to human evidence. Curr. Pharm. Des. 2013, 19, 6064–6093. [Google Scholar] [CrossRef] [Green Version]
- Springer, M.; Moco, S. Resveratrol and its human metabolites—Effects on metabolic health and obesity. Nutrients 2019, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Soldevila-Domenech, N.; Boronat, a.; Mateus, J.; Diaz-Pellicer, P.; Matilla, I.; Perez-Otero, M.; Aldea-Perona, A.; de la Torre, R. Generation of the antioxidant hydroxytyrosol from tyrosol present in beer and red wine in a randomized clinical trial. Nutrients 2019, 11, 2241. [Google Scholar] [CrossRef] [Green Version]
- Visioli, F.; Bellomo, G.; Galli, C. Free radical scavenging properties of olive oil polyphenols. Biochem. Biophys. Res. Commun. 1998, 247, 60–64. [Google Scholar] [CrossRef]
- Visioli, F.; Galli, C.; Plasmati, E.; Viappiani, S.; Hernandez, A.; Colombo, C.; Sala, A. Olive phenol hydroxytyrosol prevents passive smoking-induced oxidative stress. Circulation 2000, 102, 2169–2171. [Google Scholar] [CrossRef]
- Giovannini, C.; Straface, E.; Modesti, D.; Coni, E.; Cantafora, A.; De Vincenzi, M.; Malorni, W.; Masella, R. Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. J. Nutr. 1999, 129, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Samuel, S.M.; Thirunavukkarasu, M.; Penumathsa, S.V.; Paul, D.; Maulik, N. Akt/FOXO3a/SIRT1-Mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: Switching gears toward survival and longevity. J. Agric. Food Chem. 2008, 56, 9692–9698. [Google Scholar] [CrossRef] [Green Version]
- Karkovic Markovic, A.; Toric, J.; Barbaric, M.; Jakobusic Brala, C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [Green Version]
- Miro-Casas, E.; Covas, M.; Fito, M.; Farrè-Albadalejo, M.; Marrugat, J.; de La Torre, R. Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin oil in humans. Eur. J. Clin. Nutr. 2003, 57, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Miro-Casas, E.; Covas, M.-I.; Farre, M.; Fito, M.; Ortuno, J.; Weinbrenner, T.; Roset, P.; de La Torre, R. Hydroxytyrosol disposition in humans. Clin. Chem. 2003, 49, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wei, Z.; Zhang, T.; Ng, K.H.; Ye, J.; He, W. Physicochemical, electronic nose and tongue, sensory evaluation determination combined with chemometrics to characterize Ficus hirta Vahl. (Moraceae) beer. J. Food Qual. 2022, 2022, 8948603. [Google Scholar] [CrossRef]
- Cho, J.-H.; Kim, I.-D.; Dhungana, S.K.; Do, H.-M.; Shin, D.-H. Persimmon fruit enhanced quality characteristics and antioxidant potential of beer. Food Sci. Biotechnol. 2018, 27, 1067–1073. [Google Scholar] [CrossRef]
- Zapata, P.J.; Martinez-Espla, A.; Girones-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, A.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT-Food Sci. Technol. 2019, 103, 139–146. [Google Scholar] [CrossRef]
- Jung, K.-M.; Kim, S.-Y.; Seo, E.-C.; Lee, H.I.; Kwon, O.H.; Kim, H.R.; Dhungana, S.-K.; Park, Y.-S.; Kim, I.-D. Influence of peach (Prunus persica L. Batsch) fruit addition on quality characteristics and antioxidant activities of beer. Int. J. Sci. 2017, 6, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Gasinski, A.; Kawa-Rygielska, J.; Mikulski, D.; Klosowski, G.; Glowacki, A. Application of white grape pomace in the brewing technology and its impact on the concentration of esters and alcohols, physicochemical parameters and antioxidative properties of the beer. Food Chem. 2022, 367, 130646. [Google Scholar] [CrossRef]
- Veljovic, M.; Despotovic, S.; Stojanovic, M.; Pecic, S.; Vukosavljevic, P.; Belovic, M.; Leskosek-Cukalovic, I. The fermentation kinetics and physicochemical properties of special beer with addition of prokupac grape variety. Chem. Ind. Chem. Eng. Q. 2015, 21, 391–397. [Google Scholar] [CrossRef]
- Kim, C.Y.; Jang, K.-S.; Kwon, O.H.; Jeon, S.-G.; Kwon, J.-B.; Dhungana, S.K.; Mun, J.-H.; Park, Y.S.; Kim, I.-D. Addition of green pepper enhanced antioxidant potential and overall acceptance of beer. Int. J. Sci. 2017, 6, 49–54. [Google Scholar] [CrossRef]
- Martinez, A.; Vegara, S.; Herranz-Lopez, M.; Martì, N.; Valero, M.; Micol, V.; Saura, D. Kinetic changes of polyphenols, anthocyanins and antioxidant capacity in forced aged hibiscus ale beer. J. Inst. Brew. 2017, 123, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Cremonezi Piva, R.; Verdan, M.H.; do Socorro Mascarenhas Santos, M.; Batistote, M.; Lima Cardoso, C.A. Manufacturing and characterization of craft beers with leaves from Ocinum selloi benth. J. Food Sci. Technol. 2021, 58, 4403–4410. [Google Scholar] [CrossRef]
- Dordevic, S.; Popovic, D.; Despotovic, S.; Veljovic, M.; Atanackovic, M.; Cvejic, J.; Nedovic, V.; Leskosek-Cukalovic, I. Extract of medicinal plants as functional beer additives. Chem. Ind. Chem. Eng. 2016, 22, 301–308. [Google Scholar] [CrossRef]
- Guglielmotti, M.; Passaghe, P.; Buiatti, S. Use of olive (Olea europaea L.) leaves as beer ingredient, and their influence on beer chemical composition and antioxidant activity. J. Food Sci. 2020, 85, 2278–2284. [Google Scholar] [CrossRef]
- Farneti, B.; Masuero, D.; Costa, F.; Magnago, P.; Malnoy, M.; Costa, G.; Vrhovsek, U.; Mattivi, F. Is there room for improving the nutraceutical composition of apple? J. Agric. Food Chem. 2015, 63, 2750–2759. [Google Scholar] [CrossRef]
- Peng, X.-L.; Xu, J.; Sun, X.F.; Ying, C.-J.; Hao, L.-P. Analysis of trans-resveratrol and trans-piceid in vegetable foods using high-performance liquid chromatography. Int. J. Food Sci. Nutr. 2015, 66, 729–735. [Google Scholar] [CrossRef]
- Ibern-Gomez, M.; Roig-Perez, S.; Lamuela-Raventos, R.M.; de la Torre-Boronat, M.C. Resveratrol and piceid levels in natural and blended peanut butters. J. Agric. Food Chem. 2000, 48, 6352–6354. [Google Scholar] [CrossRef]
- Hurst, W.J.; Glinski, J.A.; Miller, K.B.; Apgar, J.; Davey, M.H.; Stuart, D.A. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J. Agric. Food Chem. 2008, 56, 8374–8378. [Google Scholar] [CrossRef]
- Henry-Vitrac, C.; Desmouliere, A.; Girard, D.; Merillon, J.M.; Krisa, S. Transport, deglycosylation, and metabolism of trans-piceid by small intestinal epithelial cells. Eur. J. Nutr. 2006, 45, 376–382. [Google Scholar] [CrossRef]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci. 2014, 15, 18508–18524. [Google Scholar] [CrossRef] [Green Version]
- Woffenden, H.M.; Ames, J.M.; Chandra, S. Relationships between antioxidant activity, color, and flavour compounds of crystal malt extracts. J. Agric. Food Chem. 2001, 49, 5524–5530. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.D.; Hanna-Khalil, B.; Carson, R. A review of the potential health benefits of low alcohol and alcohol-free beer: Effects of ingredients and craft brewing processes on potentially bioactive metabolites. Beverages 2020, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Lasanta, C.; Duran-Guerrero, E.; Belen Diaz, A.; Castro, R. Influence of fermentation temperature and yeast type on the chemical and sensory profile of handcrafted beers. J. Sci. Food Agric. 2021, 101, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Leitao, C.; Marchioni, E.; Bergaentzlè, M.; Zhao, M.; Didierjean, L.; Taidi, B.; Ennahar, S. Effects of processing steps on the phenolic content and antioxidant activity of beer. J. Agric. Food Chem. 2011, 59, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H. Effects of processing stages on the profile of phenolic compounds in beer. In Processing and Impact on Active Components in Food; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 533–539. [Google Scholar]
- Paiva, R.A.M.; Mutz, Y.S.; Conte-Junior, C.A. A review on the obtaining of functional beers by addition of non-cereal adjuncts rich in antioxidant compounds. Antioxidants 2021, 10, 1332. [Google Scholar] [CrossRef]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [Green Version]
- GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef] [Green Version]
- Branyik, T.; Silva, D.P.; Baszczynski, M.; Lehnert, R.; Almeida e Silva, J.B. A review of methods of low alcohol and alcohol-free beer production. J. Food Eng. 2012, 108, 493–506. [Google Scholar] [CrossRef]
- Gschaedler, A. Contribution of non-conventional yeasts in alcoholic beverages. Curr. Opin. Food Sci. 2017, 13, 73–77. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Conventional and non-conventional yeasts in beer production. Fermentation 2018, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Durga Prasad, C.G.; Vidyalakshmi, R.; Baskaran, N.; Tito Anand, M. Influence of Pichia myanmarensis in fermentation to produce quinoa based non-alcoholic beer with enhanced antioxidant activity. J. Cereal Sci. 2022, 103, 103390. [Google Scholar] [CrossRef]
- Nagatsuka, Y.; Kawasaki, H.; Seki, T. Pichia mianmarensis sp. nov., a novel cation-tolerant yeast isolated from palm sugar in Myanmar. Int. J. Syst. Evol. Microbiol. 2005, 55, 1379–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phenolic Acid | mg/L Beer | Reference |
---|---|---|
Gallic acid (free) | 0.06–10.4 | [101,105,117,128,129] |
Protocatechuic acid (free) | 0.02–0.30 | [101,117,128,130] |
p-Hydroxybenzoic acid (free) | 0.38–9.04 | [117,131,132] |
Gentisic acid (free) | 0.07–0.30 | [117,128] |
Chlorogenic acid (free) | 0–2.38 | [115,117,130,128,129] |
2,6-dihydroxybenzoic acid (free) | 2.53 ± 0.11 | [117] |
Vanillic | ||
free | 0–3.6 | [84,101,103,104,115,116,117,128,130,132,133] |
total | 1.17–5.45 | [84,103,104,115,116] |
Homovanillic acid (free) | 0.41 ± 0.04 | [117] |
Caffeic acid | ||
free | 0–2.53 | [84,103,104,105,115,116,117,128,130] |
total | 0.98–6.38 | [84,103,104,115,116] |
m-Hydroxybenzoic acid (free) | 0–1.03 | [117,132] |
Syringic acid | ||
free | 0–1.13 | [84,101,103,104,115,117,128,130,133] |
total | 0–1.23 | [84,103,104,115] |
p-Coumaric acid | ||
free | 0.01–5.58 | [84,101,103,104,105,115,116,117,130,132] |
total | 0.55–3.10 | [84,103,104,115,116] |
Ferulic acid | ||
free | 0.10–11.03 | [84,101,103,104,115,116,117,100,128,130,131,132,133] |
total | 9.97–22.60 | [84,103,104,115,116] |
4-hydroxyphenylacetic acid | ||
free | 0.05–1.47 | [104,115,116,128,130,133] |
total | 0.40–1.46 | [104,115,116] |
Sinapic acid | ||
free | 0.20–1.39 | [84,103,104,115,116,117,130] |
total | 2.19–6.16 | [84,103,104,115,116] |
m-Coumaric acid (free) | 0.105 ± 0.006 | [117] |
Salicylic acid (free) | 0.19–6.66 | [117,130] |
o-Coumaric acid (free) | 0.47 ± 0.04 | [117] |
Flavonoids | mg/L beer | Reference |
Catechin | 0.03–5.40 | [101,130,129,130,131,132,133] |
Epicatechin | 0.02–4.55 | [101,105,128,129,130,131] |
Rutin | 0.06–4.85 | [128,129,130,131,133] |
Quercetin | 0.06–2.23 | [128,129,132] |
Kaempferol | <0.06–16.4 | [129,132,133] |
Daidzein | 0.23–0.36 | [128] |
Genistein | 0.06–0.08 | [128] |
Formononetin | 0.17–1.30 | [128] |
Luteolin | 0.10–0.19 | [128] |
Apigenin | 0.80–0.81 | [128] |
Myricetin | 0.15–0.16 | [128] |
Naringin | 0.70–2.63 | [128] |
Naringenin | 0.06–2.34 | [129] |
Prenylflavonoids | mg/L beer | Reference |
8-Prenylnaringenin | 0–0.021 | [48,134,135,136,137,138,139,140,141] |
6-Geranylnaringenin | 0.001–0.074 | [138] |
Isoxanthohumol | 0.04–3.44 | [48,136,137,138] |
Xanthohumol | 0.002–0.69 | [40,48,136,137,138] |
6-Prenylnaringenin | 0.011–0.56 | [136,138] |
Alkylresorcinols | µg/L beer | Reference |
Total alkylresorcinols | 1.01 ± 2.03 | [136] |
Stilbenes | mg/L beer | Reference |
trans-Resveratrol | 0–0.067 | [142] |
cis-Resveratrol | 0–0.023 | [143] |
cis-Piceid | 0–0.024 | [144] |
trans-Piceid | 0–0.009 | [145] |
Phenolic alcohols | mg/L beer | Reference |
Tyrosol | 0.2–44.4 | [117,136,146] |
Hydroxytyrosol | 0.0–0.13 | [136,146] |
Fruit Typology | Adjunct (g/L Beer) | TPC GAE mg/L § | TFC CATE mg/L § | FRAP mM Fe2SO4 eq. § | ABTS mM TE | DPPH mM TE § | Ref. |
---|---|---|---|---|---|---|---|
Apples | 20 | 399.0 ± 11.0 | 67.9 ± 0.4 | 3.1 ± 0.07 | 1.62 ± 0.02 | - | [103] |
(383.0–482.0) | (51.9–73.2) | (3.4–4.4) | (1.5–2.0) | ||||
Apricot | 200 | 454.0 ± 12.0 | 70.4 ± 0.9 | 4.20 ± 0.05 | 1.7 ± 0.04 | - | [103] |
(383.0–482.0) | (51.9–73.2) | (3.4–4.4) | (1.5–2.0) | ||||
Cherry juice | 150-180 | 398.0–689.0 | - | 1.1–2.6 a | 4.8–6.5 | 5.2–6.4 | [112] |
(315.0 ± 16.0) | (0.86 ± 0.03) a | (4.63 ± 0.01) | (4.81 ± 0.23) | ||||
Cherry | 300 | 767.0 ± 1.3 | 221.8 ± 3.3 | 9.8 ± 0.11 | 3.5 ± 0.06 | - | [103] |
(383.0–482.0) | (51.9–73.2) | (3.4–4.4) | (1.5–2.0) | ||||
Chestnut | 40 | 883.4 ± 10.9 | 71.7 ± 0.9 | 6.2 ± 0.08 | 3.4 ± 0.03 | - | [84] |
(273.8–320.6) | (26.6–63.5) | (1.7–2.8) | (1.5–1.8) | ||||
Cocoa bean | 10 | 1026.4 ± 3.0 | 96.4 ± 2.0 | 8.1 ± 0.10 | 3.9 ± 0.04 | - | [84] |
(382.7–446.1) | (51.9–59.0) | (3.4–3.9) | (1.5–2.6) | ||||
Coffee | 35 | 582.7 ± 6.4 | 69.5 ± 1.0 | 5.0 ± 0.14 | 2.9 ± 0.03 | - | [84] |
(382.7–446.1) | (51.9–59.0) | (3.4–3.9) | (1.5–2.6) | ||||
Dotted hawthorn | 100 100 | 410.1 ± 11.8 | 1.3 ± 0.02 | 2.0 ± 0.12 | 2.2 ± 0.01 | [110] | |
Juice | 279.6 ± 2.0 | - | 0.9 ± 0.01 | 1.4 ± 0.11 | 0.4 ± 0.04 | ||
Fruit | (200.5 ± 1.9) | - | (0.5 ± 0.01) | (0.9 ± 0.09) | (0.3 ± 0.03) | ||
Eggplant peels extract | 10 | 631.0 ± 3.0 | 171.0 ± 9.0 b | - | 80.0 ± 3.17 c | [108] | |
(426.0 ± 12.0) | (65.0 ± 6.0) b | (57.3 ± 0.37) c | |||||
Goji berry | 50 | 357.0–623.0 | - | - | 2.4–3.8 | - | [135] |
(335.0 ± 11.0) | (2.3 ± 0.11) | ||||||
Grape | 200 | 631.0 ± 10.0 | 148.9 ± 2.0 | 6.8 ± 0.18 | 2.8 ± 0.01 | - | [103] |
(383.0–482.0) | (51.9–73.2) | (3.4–4.4) | (1.5–2.0) | ||||
Grape | 200 | 501.5 | - | 1.3 a | 4.0 | 3.3 | [158] |
(219.0) | (0.48) a | (1.6) | (1.5) | ||||
Grape | 300 | 569.6 ± 4.4 | - | 2.6 ± 0.03 a | - | 1.0 ± 0.01 | [159] |
(467.8 ± 6.2) | (1.3 ± 0.07) a | (0.73 ± 0.03) | |||||
Green pepper | 6 | 1190.9 ± 6.7 | - | - | - | 78.3 ± 1.23 c | [160] |
(723.2 ± 4.21) | (65.7 ± 2.0) c | ||||||
Green-pepper basil | 5 | 371.9 ± 1.9 | - | - | - | 54.9 ± 0.4 c | [162] |
(291.2 ± 4.0) | (45.1 ± 0.2) c | ||||||
Green tea | 9 | 464.4 ± 3.9 | 42.0 ± 0.3 | 3.6 ± 0.05 | 2.4 ± 0.03 | - | [84] |
(382.7–446.1) | (51.9–59.0) | (3.4–3.9) | (1.5–2.6) | ||||
Hairy-fig fruit | 100 | - | - | - | - | 0.41 ± 0.01 | [154] |
0.12 ± 0.06 | |||||||
Hibiscus extract | 20 | 743.2 ± 7.0 | - | - | 9.28 | - | [161] |
(294.2 ± 65.5) | (5.71) | ||||||
Honey | 62 | 538.3 ± 8.3 | 48.7 ± 1.0 | 3.9 ± 0.01 | 2.5 ± 0.03 | - | [84] |
(382.7–446.1) | (51.9–59.0) | (3.4–3.9) | (1.5–2.6) | ||||
Hop-cone extract | 0.5 | 316.7 ± 1.76 | - | 4.3 ± 0.07 a | - | 2.8 ± 0.03 | [163] |
(280.3 ± 1.1) | (4.1 ± 0.02) a | (2.5 ± 0.02) | |||||
Juniper-berry extract | 0.5 | 365.4 ± 2.8 | - | 4.5 ± 0.02 | - | 3.1 ± 0.09 | [163] |
(280.3 ± 1.1) | (4.15 ± 0.02) | (2.5 ± 0.02) | |||||
Licorice | 2 | 819.7 ± 6.9 | 81.4 ± 1.3 | 6.1 ± 0.04 | 3.4 ± 0.01 | - | [84] |
(382.7–446.1) | (51.9–59.0) | (3.4–3.9) | (1. 5–2.6) | ||||
Mango | 200 200 200 | 267.6 ± 6.9 | - | 1.7 ± 0.14 a | 1.7 ± 0.21 | 2.0 ± 0.09 | [109] |
juice | 218.6 ± 4.8 | - | 1.3 ± 0.06 a | 1.2 ± 0.12 | 1.5 ± 0.07 | ||
pulp | 233.1 ± 6.1 | - | 1.5 ± 0.07 a | 1.3 ± 0.15 | 1.7 ± 0.06 | ||
raw | (187.4 ± 6.3) | - | (1.0 ± 0.06) a | (0.97 ± 0.07) | (1.4 ± 0.10) | ||
Melissa extract | 0.5 | 363.1 ± 2.2 | - | 4.5 ± 0.07 a | - | 3.0 ± 0.08 | [163] |
(280.3 ± 1.1) | (4.1 ± 0.02) a | (2.5 ± 0.02) | |||||
Nettle-root extract | 0.5 | 317.2 ± 1.57 | - | 4.2 ± 0.04 a | - | 2.8 ± 0.07 | [163] |
(280.3 ± 1.14) | (4.1 ± 0.02) a | (2.5 ± 0.02) | |||||
Omija fruit | 2 | 606.8 ± 16.6 | 406.7 ± 4.0 b | 3.0 ± 0.05 | - | 2.0 ± 0.13 | [111] |
(519.1 ± 15.8) | (303.2 ± 4.9) b | (1.8 ± 0.09) | (0.9 ± 0.03) | ||||
Orange peel | 5 | 639.0 ± 4.0 | 92.4 ± 0.7 | 5.6 ± 0.04 | 2.7 ± 0.09 | - | [103] |
(383–482) | (51.9–73.2) | (3.4–4.4) | (1.5–2.0) | ||||
Parastrephia lucida leaf | 50 | 800.6 ± 4.0 | 601.1 ± 3.0 b | 5.5 ± 0.04 a | 3.3 ± 0.11 | - | [107] |
(413.2 ± 2.2) | (333.5 ± 12.8) b | (1.9 ± 0.05) a | (1.1 ± 0.10) | ||||
Peach | 50 | 618.4 ± 2.0 | - | - | - | 88.9 ± 1.3 c | [157] |
(500.4 ± 4.1) | (86.1 ± 1.3) c | ||||||
Peach | 200 | 510.0 ± 5.0 | 87.3 ± 1.3 | 4.6 ± 0.06 | 1.9 ± 0.03 | - | [103] |
(383–482) | (51.9–73.2) | (3.4–4.4) | (1.5–2.03) | ||||
Persimmon fruit | 15 | 701.1 ± 2.0 | - | - | - | 90.2 ± 1.36 c | [155] |
(507.1 ± 3.0) | (80.1 ± 1.1) c | ||||||
Plum | 200 | 598 ± 7.0 | 138.8 ± 3.5 | 5.7 ± 0.02 | 1.9 ± 0.02 | - | [103] |
(383–482) | (51.9–73.2) | (3.38–4.39) | (1.55–2.03) | ||||
Propolis extract | 0.25 | 306.5 ± 45.9 | 26.9 ± 2.7 b | 1.9 ± 0.25 a | 0.81 ± 0.20 | 0.6 ± 0.18 | [113] |
(242.0 ± 21.2) | (16.9 ± 2.2) b | (1.4 ± 0.24) a | (0.63 ± 0.04) | (0.5 ± 0.16) | |||
Quince | 100 | 159.0–175.5 d | - | - | 7.2–7.3 | - | [156] |
(134.7 ± 8.5) d | (7.1 ± 0.10) | ||||||
Raspberry | 300 | 465.0 ± 6.0 | 90.4 ± 0.5 | 5.7 ± 0.09 | 2.3 ± 0.04 | - | [103] |
(403.0 ± 5.0) | (59.0 ± 0.7) | (3.3 ± 0.03) | 1.3 ± 0.02 | ||||
Saskatoon berry | 250 | 377.9–413.4 | - | 1.6–2.0 | 2.18–2.22 | 2.4–2.9 | [114] |
(243.9 ± 1.8) | (2.2 ± 0.04) | (1.8 ± 0.05) | (2.3 ± 0.07) | ||||
Thyme extract | 0.5 | 384.2 ± 3.0 | - | 4.7 ± 0.08 a | - | 3.7 ± 0.10 | [163] |
(280.3 ± 1.1) | (4.1 ± 0.02) a | (2.5 ± 0.02) | |||||
Walnut | 35 | 964.7 ± 9.6 | 90.1 ± 1.8 | 10.2 ± 0.02 | 5.2 ± 0.05 | - | [84] |
(382.7–446.1) | (51.9–59.0) | (3.4–3.9) | (1.5–2.6) |
Adjunct Typology | Amount Added | Bioactive Compound | Ref. | |
---|---|---|---|---|
(g/L) | ||||
Apple | 20 | Total phenolic acids: 31.2 ± 1.4 mg/L | Flavonoids: | [103] |
Neochlorogenic acid: 0.79 ± 0.08 mg/L | Catechin: 5.2 ± 0.15 mg/L | |||
Vanillic acid: 4.4 ± 0.07 mg/L | Rutin: 0.56 ± 0.01 mg/L | |||
Caffeic acid: 4.32 ± 0.03 mg/L | Quercetin: 0.48 ± 0.03 mg/L | |||
Syringic acid: 1.1 ± 0.04 mg/L | Stilbenes: | |||
p-Coumaric acid: 2.1 ± 0.16 mg/L | trans-Resveratrol: 0.56 ± 0.02 mg/L | |||
Ferulic acid: 12.7 ± 0.67 mg/L | ||||
Sinapic acid: 6.6 ± 0.40 mg/L | ||||
Apricot | 200 | Total phenolic acids: 40.7 ± 1.3 mg/L | Flavonoids: | [103] |
Chlorogenic acid: 12.7 ± 0.18 mg/L | Catechin: 10.0 ± 0.94 mg/L | |||
Neochlorogenic acid: 7.2 ± 0.22 mg/L | Myricetin: 0.99 ± 0.08 mg/L | |||
Vanillic acid: 4.5 ± 0.06 mg/L | Quercetin: 3.2 ± 0.01 mg/L | |||
Caffeic acid: 17.8 ± 0.86 mg/L | Stilbenes: | |||
Syringic acid: 0.6 ± 0.07 mg/L | trans-Resveratrol: 0.11 ± 0.01 mg/L | |||
p-Coumaric acid: 2.2 ± 0.01 mg/L | ||||
Ferulic acid: 13.3 ± 0.34 mg/L | ||||
Sinapic acid: 2.2 ± 0.01 mg/L | ||||
Cherry juice | 150–180 | Flavonoids: | [112] | |
Delphinidin galactoside: 0.1 mg/L | ||||
Cyanidin galactoside: 1.4–1.7 mg/L | ||||
Cyanidin rubinoside: 1.0–1.2 mg/L | ||||
Pelargonidin galactoside: 3.4–4.0 mg/L | ||||
Pelargonidin rubinoside: 0.9–1.0 mg/L | ||||
Quercetin glucuronide: 2.3–2.8 mg/L | ||||
Kaempferol galactoside: 1.1–1.3 mg/L | ||||
Cherry | 300 | Total phenolic acids: 145.8 ± 11.0 mg/L | Flavonoids: | [103] |
Chlorogenic acid: 10.0 ± 0.36 mg/L | Catechin: 7.14 ± 0.10 mg/L | |||
Neochlorogenic acid: 18.5 ± 0.6 mg/L | Myricetin: 1.9 ± 0.02 mg/L | |||
Vanillic acid: 4.7 ± 0.22 mg/L | Quercetin: 4.0 ± 0.08 mg/L | |||
Caffeic acid: 54.6 ± 4.3 mg/L | ||||
Syringic acid: 0.50 ± 0.05 mg/L | ||||
p-Coumaric acid: 62.4 ± 5.5 mg/L | ||||
Ferulic acid: 16.0 ± 0.34 mg/L | ||||
Sinapic acid: 7.58 ± 0.58 mg/L | ||||
Chestnut | 40 | Total phenolic acids: 45.4 ± 0.68 mg/L | Flavonoids: | [84] |
Vanillic acid: 5.1 ± 0.06 mg/L | Catechin: 4.6 ± 0.13 mg/L | |||
Caffeic acid: 3.5 ± 0.03 mg/L | Epicatechin: 3.7 ± 0.12 mg/L | |||
Syringic acid: 1.2 ± 0.05 mg/L | Stilbenes: | |||
p-Coumaric acid: 3.4 ± 0.07 mg/L | trans-Resveratrol: 0.3 ± 0.02 mg/L | |||
Ferulic acid: 27.5 ± 0.43 mg/L | ||||
Sinapic acid: 4.7 ± 0.04 mg/L | ||||
Cocoa bean | 10 | Total phenolic acids: 38.7 ± 1.14 mg/L | Flavonoids: | [84] |
Vanillic acid: 3.4 ± 0.17 mg/L | Catechin: 4.6 ± 0.02 mg/L | |||
Caffeic acid: 3.7 ± 0.01 mg/L | Epicatechin: 1.8 ± 0.11 mg/L | |||
Syringic acid: 1.4 ± 0.05 mg/L | Myricetin: 0.65 ± 0.02 mg/L | |||
p-Coumaric acid: 3.3 ± 0.13 mg/L | Quercetin: 1.5 ± 0.06 mg/L | |||
Ferulic acid: 22.1 ± 0.73 mg/L | Stilbenes: | |||
Sinapic acid: 4.9 ± 0.05 mg/L | trans-Resveratrol: 0.3 ± 0.01 mg/L | |||
Coffee | 35 | Total phenolic acids: 36.2 ± 1.1 mg/L | Flavonoids: | [84] |
Chlorogenic acid: 1.6 ± 0.10 mg/L | Epicatechin: 1.3 ± 0.07 mg/L | |||
Vanillic acid: 2.0 ± 0.14 mg/L | Myricetin: 0.39 ± 0.03 mg/L | |||
Caffeic acid: 9.2 ± 0.21 mg/L | Quercetin: 0.54 ± 0.02 mg/L | |||
p-Coumaric acid: 1.9 ± 0.08 mg/L | Stilbenes: | |||
Ferulic acid: 20.5 ± 0.64 mg/L | trans-Resveratrol: 0.23 ± 0.01 mg/L | |||
Sinapic acid: 2.5 ± 0.02 mg/L | ||||
Eggplant-peel extract | 10 | Flavonoids: | [108] | |
total monomeric anthocyanins: | ||||
83.0 ± 2.0 mg/L delphinidin-3-glucoside equivalents | ||||
Goji berry | 50 | Phenolic acids (free forms): | Flavonoids: | [135] |
p-Coumaric acid: 1.4–8.0 mg/L | Rutin: 1.4–23.1 mg/L | |||
Ferulic acid: 2.0–7.6 mg/L | ||||
Grape | 200 | Total phenolic acids: 49.7 ± 2.2 mg/L | Flavonoids: | [103] |
Chlorogenic acid: 0.90 ± 0.04 mg/L | Catechin: 7.3 ± 0.59 mg/L | |||
Vanillic acid: 7.0 ± 0.07 mg/L | Quercetin: 1.7 ± 0.06 mg/L | |||
Caffeic acid: 13.4 ± 0.24 mg/L | Stilbenes: | |||
Syringic acid: 2.5 ± 0.15 mg/L | trans-Resveratrol: 2.2 ± 0.03 mg/L | |||
p-Coumaric acid: 7.2 ± 0.13 mg/L | ||||
Ferulic acid: 17.4 ± 1.6 mg/L | ||||
Sinapic acid: 2.2 ± 0.03 mg/L | ||||
Green tea | 9 | Total phenolic acids: 26.3 ± 1.0 mg/L | Flavonoids: | [84] |
Vanillic acid: 2.8 ± 0.15 mg/L | Catechin: 3.0 ± 0.09 mg/L | |||
Caffeic acid: 1.5 ± 0.18 mg/L | Epicatechin: 3.1 ± 0.05 mg/L | |||
Syringic acid: 0.96 ± 0.04 mg/L | Rutin: 0.68 ± 0.02 mg/L | |||
p-Coumaric acid: 2.2 ± 0.16 mg/L | Myricetin: 1.7 ± 0.05 mg/L | |||
Ferulic acid: 14.3 ± 0.40 mg/L | Quercetin: 1.2 ± 0.09 mg/L | |||
Sinapic acid: 4.5 ± 0.08 mg/L | Stilbenes: | |||
trans-Resveratrol: 0.32 ± 0.02 mg/L | ||||
Honey | 62 | Total phenolic acids: 34.4 ± 0.88 mg/L | Flavonoids: | [84] |
Vanillic acid: 3.1 ± 0.22 mg/L | Epicatechin: 0.94 ± 0.05 mg/L | |||
Caffeic acid: 2.4 ± 0.17 mg/L | Rutin: 1.3 ± 0.02 mg/L | |||
Syringic acid: 1.2 ± 0.10 mg/L | Myricetin: 2.7 ± 0.18 mg/L | |||
p-Coumaric acid: 1.7 ± 0.03 mg/L | Quercetin: 4.7 ± 0.23 mg/L | |||
Ferulic acid: 19.2 ± 0.33 mg/L | Stilbenes: | |||
Sinapic acid: 6.7 ± 0.03 mg/L | trans-Resveratrol: 0.24 ± 0.01 mg/L | |||
Licorice | 2 | Total phenolic acids: 36.9 ± 1.3 mg/L | Flavonoids: | [84] |
Vanillic acid: 2.3 ± 0.11 mg/L | Rutin: 0.92 ± 0.10 mg/L | |||
Caffeic acid: 3.7 ± 0.04 mg/L | Myricetin: 8.8 ± 0.07 mg/L | |||
Syringic acid: 0.67 ± 0.03 mg/L | Quercetin: 2.6 ± 0.15 mg/L | |||
p-Coumaric acid: 2.9 ± 0.14 mg/L | Stilbenes: | |||
Ferulic acid: 20.6 ± 0.87 mg/L | trans-Resveratrol: 0.20 ± 0.01 mg/L | |||
Sinapic acid: 6.7 ± 0.07 mg/L | ||||
Olive leaf | 9.9 | Oleuropein: 42–73 mg/L | [164] | |
3-hydroxytyrosol: 43–75 mg/L | ||||
Omija fruit | 2 | Lignans: | [111] | |
Schisandrin: 9.0–12.1 mg/L | ||||
Gomisin A: 2.2–3.1 mg/L | ||||
Gomisin B: 0.65–0.86 mg/L | ||||
Orange peel | 5 | Total phenolic acids: 48.1 ± 1.7 mg/L | Flavonoids: | [103] |
Vanillic acid: 4.6 ± 0.45 mg/L | Catechin: 10.9 ± 0.70 mg/L | |||
Caffeic acid: 3.6 ± 0.09 mg/L | Rutin: 1.5 ± 0.17 mg/L | |||
Syringic acid: 0.55 ± 0.02 mg/L | Myricetin: 0.76 ± 0.04 mg/L | |||
p-Coumaric acid: 4.9 ± 0.13 mg/L | Quercetin: 0.76 ± 0.01 mg/L | |||
Ferulic acid: 27.9 ± 0.48 mg/L | ||||
Sinapic acid: 6.5 ± 0.55 mg/L | ||||
Peach | 200 | Total phenolic acids: 35.8 ± 2.0 mg/L | Flavonoids: | [103] |
Chlorogenic acid: 0.81 ± 0.05 mg/L | Catechin: 5.7 ± 0.10 mg/L. | |||
Neochlorogenic acid: 3.4 ± 0.11 mg/L | Myricetin: 1.8 ± 0.07 mg/L. | |||
Vanillic acid: 6.1 ± 0.76 mg/L | Quercetin: 0.30 ± 0.01 mg/L. | |||
Caffeic acid: 16.3 ± 0.87 mg/L | Stilbenes: | |||
Syringic acid: 0.72 ± 0.02 mg/L | trans-Resveratrol: 1.0 ± 0.04 mg/L. | |||
p-Coumaric acid: 1.3 ± 0.03 mg/L | ||||
Ferulic acid: 9.2 ± 0.23 mg/L | ||||
Sinapic acid: 2.2 ± 0.10 mg/L | ||||
Plum | 200 | Total phenolic acids: 119.8 ± 8.7 mg/L | Flavonoids: | [103] |
Chlorogenic acid: 8.94 ± 0.22 mg/L | Catechin: 6.4 ± 0.37 mg/L | |||
Neochlorogenic acid: 60.3 ± 1.2 mg/L | Myricetin: 5.3 ± 0.32 mg/L | |||
Vanillic acid: 2.7 ± 0.31 mg/L | Quercetin: 1.5 ± 0.06 mg/L | |||
Caffeic acid: 89.8 ± 7.5 mg/L | ||||
Syringic acid: 0.58 ± 0.03 mg/L | ||||
p-Coumaric acid: 12.2 ± 0.58 mg/L | ||||
Ferulic acid: 14.2 ± 0.29 mg/L | ||||
Sinapic acid: 0.33 ± 0.02 mg/L | ||||
Quince | 100 | Total hydroxycinnamic acids: | [156] | |
32.4–35.6 mg/L | ||||
Neochlorogenic acid: 3.9–5.1 mg/L | ||||
Chlorogenic acid: 6.5–9.7 mg/L | ||||
3,5-Dicaffeoylquinic acid: 3.0–3.2 mg/L | ||||
Raspberry | 300 | Total phenolic acids: 26.5 ± 0.80 mg/L | Flavonoids: | [103] |
Chlorogenic acid: 0.84 ± 0.10 mg/L | Catechin: 6.0 ± 0.49 mg/L | |||
Neochlorogenic acid: 2.6 ± 0.22 mg/L | Myricetin: 1.5 ± 0.10 mg/L | |||
Vanillic acid: 5.1 ± 0.22 mg/L | Quercetin: 3.0 ± 0.12 mg/L | |||
Caffeic acid: 2.8 ± 0.20 mg/L | Stilbenes: | |||
Syringic acid: 1.2 ± 0.09 mg/L | trans-Resveratrol: 0.14 ± 0.01mg/L | |||
p-Coumaric acid: 1.2 ± 0.12 mg/L | ||||
Ferulic acid: 13.1 ± 0.08 mg/L | ||||
Sinapic acid: 3.1 ± 0.08 mg/L | ||||
Saskatoon berry | 250 | Phenolic acids (free): | Flavonoids: | [114] |
Caffeic acid: 0.87–0.96 mg/L | Kaempferol-3-O-glc-pent: 0.66–0.80 mg/L | |||
Chlorogenic acid: 1.46–2.17 mg/L | Kaempferol-3-O-rut: 0.78–0.81 mg/L | |||
Neochlorogenic acid: 1.07–1.21 mg/L | Kaempferol-3-O-rha-7-O-pent: 0.94–0.97 mg/L | |||
Sinapic acid glucoside: 1.05–2.23 mg/L | ||||
Ferulic acid derivatives: 0.79–1.00 mg/L | ||||
Walnut | 35 | Total phenolic acids: 20.5 ± 0.88 mg/L | Flavonoids: | [84] |
Vanillic acid: 2.2 ± 0.26 mg/L | Epicatechin: 1.8 ± 0.11 mg/L | |||
Caffeic acid: 3.2 ± 0.15 mg/L | Myricetin: 4.4 ± 0.27 mg/L | |||
p-Coumaric acid: 4.3 ± 0.24 mg/L | Quercetin: 6.5 ± 0.31 mg/L | |||
Ferulic acid: 8.2 ± 0.17 mg/L | Stilbenes: | |||
Sinapic acid: 2.7 ± 0.06 mg/L | trans-Resveratrol: 0.26 ± 0.20 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardini, M. An Overview of Bioactive Phenolic Molecules and Antioxidant Properties of Beer: Emerging Trends. Molecules 2023, 28, 3221. https://doi.org/10.3390/molecules28073221
Nardini M. An Overview of Bioactive Phenolic Molecules and Antioxidant Properties of Beer: Emerging Trends. Molecules. 2023; 28(7):3221. https://doi.org/10.3390/molecules28073221
Chicago/Turabian StyleNardini, Mirella. 2023. "An Overview of Bioactive Phenolic Molecules and Antioxidant Properties of Beer: Emerging Trends" Molecules 28, no. 7: 3221. https://doi.org/10.3390/molecules28073221
APA StyleNardini, M. (2023). An Overview of Bioactive Phenolic Molecules and Antioxidant Properties of Beer: Emerging Trends. Molecules, 28(7), 3221. https://doi.org/10.3390/molecules28073221