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Abstract: Beer is one of the oldest and most common beverages worldwide. The phenolic contents
and antioxidant properties of beer are crucial factors in evaluating its nutritional quality. Special
beers brewed with the addition of adjuncts are gaining in consumer preference, in response to
demands for healthy food and new gustatory and olfactory stimuli. Many studies recently dealt with
functional beers brewed with the addition of adjuncts. This review focuses on bioactive molecules,
particularly the composition of phenolic compounds, and the antioxidant activity of beer. The current
knowledge concerning the effect of the addition of adjuncts in the form of fruit, vegetables, herbs,
and natural foods on the polyphenol content, antioxidant properties, and phenolic profile of beer
is reviewed, with an outline of the emerging trends in brewing processes. Future studies need to
complete the identification and characterization of the bioactive molecules in beer, as well as studying
their absorption and metabolic fate in humans.
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1. Introduction

Oxidative stress is a process in which the physiological balance between pro-oxidants
and antioxidants is disrupted, resulting in potential damage to human health [1]. Dietary
antioxidants may represent a crucial strategy in counteracting the negative effects of
oxidative stress.

Diets rich in fruits and vegetables are associated with healthy effects, such as reduced
risk of chronic diseases and cancer. Polyphenols constitute the most abundant class of
natural dietary antioxidants, being present in virtually all fruits and vegetables. They may
act as reducing agents, free-radical scavengers, singlet oxygen quenchers, and, potentially,
as chelators of prooxidants. Epidemiological studies strongly indicated that the long-
term consumption of polyphenol-rich foods exerts protection against the development of
cardiovascular disease, cancer, diabetes, neurodegenerative diseases, and ageing [2–7].

Depending on diet composition and individual habits, polyphenol intake may be of
several hundred milligrams per day, largely exceeding that of other dietary antioxidants,
such as vitamin E, vitamin C, and carotenes [8,9]. For individuals regularly consuming
wine, coffee, beer, fruit juice, chocolate, and tea, these beverages will be the major sources
of phenolic antioxidants [9,10]. The study of the health effects of alcoholic beverages has
largely focused on wine. Several epidemiological studies reported significant reductions in
all-cause and, particularly, cardiovascular mortality in moderate wine drinkers compared to
abstainers and to individuals drinking excess alcohol [11–13]. Moderate beer consumption
has also been associated with a decreased incidence of cardiovascular disease, hypertension,
diabetes, neurodegenerative disease, cancer, and osteoporosis [14–19]. Beer drinking has
been reported to increase plasma antioxidant capacity and anticoagulant activities, to
positively affect plasma-lipid levels in humans, and to alleviate post-menopausal symptoms
in women [20–22].

Beer is a popular product consumed in large amounts all over the world as nutritious
and refreshing beverage. Beer is a source of carbohydrates, amino acids, minerals, vitamins,
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and bioactive compounds, such as polyphenols, particularly phenolic acids, in the form
of benzoic and cinnamic-acid derivatives and flavonoids. The bioactive compounds in
beer naturally result from its ingredients or are produced through the brewing process
(secondary metabolites from yeast and lactic acid bacteria). It has been reported that about
30% of beer polyphenols originate from hops, and the remaining 70% from malt [23–25].
Moreover, polyphenols may be metabolized during the brewing process, which may
enhance or reduce their potential activity [26].

The quality of beer may be improved through novel brewing approaches, in terms of
ingredients, brewing method, and fermentation type, to increase its content of bioactive
compounds and to lower its alcohol content. The growing demand for a great variety of beer
types from consumers, including alcohol-free beers, has led producers to explore and increase
the range of ingredients, as well as renewing interest in different yeasts and fermenting
bacteria. In addition to the most familiar products, beers produced by the addition of fruit,
spices, vegetables, and natural foods during the fermentation process are becoming very
popular all over the world, responding to demands for new gustatory, olfactory, and visual
stimuli from consumers. The addition of whole fruit to beer is traditionally practiced in
Belgium to produce cherry lambic (Kriek) or raspberry lambic (Framboise) by adding sour
cherries (Prunus cerasus L.) or raspberries (Rubus idaeus L.) to fermenting lambic beer. The
sugar present in fruit triggers a secondary fermentation. During the refermentation and
maturation of fruit beers, flavors and bioactive compounds, particularly carotenoids and
polyphenols (the latter being quantitatively the most abundant), are extracted from the fruit.

In this review, attention is focused on bioactive molecules, particularly phenolic
compounds, and the antioxidant activity of beer. The novelty of this review is that the
phenolic composition of the main beer ingredients (hops, barley, wheat, rye, and oats)
is reviewed and quantitative data are presented for each phenolic molecule. Moreover,
the effects the addition of fruit, vegetables, herbs, and natural foods (adjuncts) on the
polyphenol content and antioxidant properties of beer, in comparison with conventional
beers, are reviewed, outlining the emerging trends in the brewing process. As a further
novelty, the identification and quantitation of single phenolic molecules in beer brewed with
or without adjuncts are reviewed and presented for all the classes of phenolic molecules
under study.

2. Methodology

A systematic literature search through PubMed, Scopus, and Web of Science databases
was carried out. The original articles investigating the antioxidant properties and bioactive
phenolic molecules of beer were identified using the following search keywords: polyphe-
nols and beer, flavonoids and beer, fruit and beer, health and beer, spice and beer, special
beer, flavoring beer, hop, rye, oat, barley, wheat, vegetables, lignan, stilbenes, tyrosol,
hydroxytyrosol, alkylresorcinols. A large amount of research (range, 1992–2022) was se-
lected according to the relevance to the topic. The focus was on the new insights regarding
bioactive phenolic molecules and antioxidant properties of beer obtained with or without
adjunct addition during brewing process. A few studies (4) in which the amount of added
adjunct/L beer was not specified were not included in this review.

The CAS (Chemical Abstract Service) numbers of the phenolic compounds are: caffeic
acid, 331-39-5; chlorogenic acid, 327-97-9; p-coumaric acid, 501-98-4; ferulic acid, 1135-24-6;
gallic acid, 149-91-7; gentisic acid, 490-79-9; p-hydroxybenzoic acid, 99-96-7; protocathecuic
acid, 99-50-3; syringic acid, 530-57-4; o-coumaric acid, 614-60-8; 2,4-dihydroxybenzoic acid,
89-86-1; sinapic acid, 530-59-6; vanillic acid, 121-34-6; 2,6-dihydroxybenzoic acid, 303-07-1;
homovanillic acid, 306-08-1; 4-hydroxyphenylacetic acid, 156-38-7; salycilic acid, 69-72-7;
catechin, 154-23-4; epigallocatechin, 970-74-1; epicatechin, 490-46-0; isorhamnetin, 480-19-3;
kaempferol, 520-18-3; naringenin, 480-41-1; naringin, 10236-47-2; procyanidin B1, 20315-
25-7; procyanidin B2, 29106-49-8; procyanidin C1, 37064-30-5; quercetin, 117-39-5; rutin,
153-18-4; genistein, 446-72-0; formononetin, 485-72-3; luteolin, 491-70-3; hesperidin, 520-26-
3; myricetin, 529-44-2; apigenin, 520-36-5; malvidin 643-84-5; vicenin II, 23666-13-9; vitexin,
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3681-93-4; daidzein, 486-66-8; avenanthramide A, 108605-70-5; avenanthramide B, 108605-
69-2; avenanthramide C, 116764-15-9; desmethylxanthohumol, 115063-39-3; isoxanthohu-
mol, 70872-29-6; 8-prenylnaringenin, 68682-02-0; xanthohumol, 6754-58-1; trans-resveratrol,
501-36-0; trans-piceid, 27208-80-6; cis-piceid, 148766-36-3; cis-resveratrol, 61434-67-1; ty-
rosol, 501-94-0; hydroxytyrosol, 10597-60-1; delphinidin galactoside, 28500-00-7; cyanidin
galactoside, 142506-26-1; cyanidin rutinoside, 28338-59-2; pelargonidin galactoside, 34425-
22-4; pelargonidin rutinoside, 33978-17-5; quercetin glucuronide, 22688-79-5; kaempferol
galactoside, 23627-87-4; kaempferol 3-O-rutinoside, 31921-42-3.

3. Bioactive Compounds from Common Ingredients

Beer can be limited to four ingredients: barley, hops, water, and yeast. The addition
of yeast was introduced late, once its role in the fermentation process was understood. In
addition to barley, different cereal grains and carbohydrate sources may be used, such as
wheat, rye, and oats. In Table 1, the main bioactive phenolic compounds found in hops,
barley, wheat, oats, and rye are reported. Concerning the phenolic acid content, the data
in the literature are not homogeneous. Many authors report the levels of the free form
of phenolic acids, while some others refer to the contents of total, conjugated, or bound
phenolic acids. Free phenolic acids make the smallest contribution to the total phenolic
acid content. In cereals, the free-phenolic-acid contribution to the total phenolic acid level
has been reported to be typically <0.5–1.0%, while soluble conjugated and bound phenolic
acids represent the greatest proportion of the total phenolic acid content [27].

In this review, unless otherwise specified, the concentration of total/conjugated phe-
nolic acids is reported. When this is not possible due to a lack of data from the literature,
the concentrations of the free forms of phenolic acids are reported and specified.

Hops, (Humulus lupulus L.), an angiosperm plant (Cannabaceae family), initially used
for their preservative properties, became appreciated over the years for the bitterness and
aroma they impart to beer. Hops are largely used in traditional medicine. The potentially
healthy effects of hops have been attributed to their polyphenols, which exert antioxidant
activities and enhance nitric-oxide production [28]. About 1000 different polyphenolic
substances have been found in hop cones, accounting for about three-to-eight percent
of dry hop cones. The positive healthy effects of hop polyphenols on various chronic
diseases, such as menopause [29], cancer [30–33], inflammation [31,32,34], arthritis [32],
insulin sensitivity, type II diabetes, and metabolic syndrome [35] have been described.
Further, hops have been reported to contain antimicrobial compounds, associated with
a group of 56 phenolic compounds, with a wide range of potential activity, including
the inhibition of virus replication and bacterial and fungal growth [36]. The polyphenol
content of hops may vary greatly due to cultivation conditions, the time of harvest, and
further modifications occurring during processing, brewing, and storage [28,37,38]. Hop
bracts have been described as containing 40–140 mg/g polyphenols [33]. The phenolic
composition of hop extracts has been reported to be more than 55% proanthocyanidins and
more than 28% flavonoid glycosides [33].

The phenolic contents of hops are reported in Table 1. Caffeic, chlorogenic, p-coumaric,
gallic, syringic, protocatechuic, ferulic, p-hydroxybenzoic, and gentisic phenolic acids have
been identified [28,39–41]. Among flavonoids, the flavonols isorhamnetine, kaempferol,
quercetin, catechin, epigallocatechin, epicatechin, and the flavanones naringenin and naringin
have been measured by liquid chromatography–mass spectrometry (LC-MS) [28,41]. The
glycosylated flavonoid rutin was also detected [39]. Moreover, the oligomeric flavonoid
proanthocyanidins and the prenylflavonoids xanthohumol, isoxanthohumol, desmethylx-
anthohumol, and 8-prenylnaringenin have been identified [28,35,39,40]. Xanthohumol
may represent about 1% of the dry weight of hop cones [42]; however, due to its hy-
drophobicity, its content in wort and beer is low. Xanthohumol becomes isomerized to
isoxanthohumol during hop boiling [35]. Furthermore, 8-prenylnaringenin, has been re-
ported to possess high estrogenic activity [42]. In addition, other biological activities have
been ascribed to prenylflavonoids, including the inhibition of bone resorption and osteo-
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porosis prevention [43,44], the inhibition of the cytochrome-P450-mediated activation of
procarcinogens [45,46], antiproliferative effects on breast- and colon-cancer cell lines [46],
and anti-angiogenic activity [47,48].

The stilbene trans-resveratrol and its glucoside trans-piceid were detected in Amer-
ican and European hops by means of high-performance liquid chromatography (HPLC-
MS) [25,49]. Their content varies greatly in the range of 0.5–11.7 mg/kg (Table 1). This
discovery opens new perspectives for understanding the health benefits of hops. In fact,
the cardioprotective effects of red wine have been attributed to resveratrol [50]. These
effects include antiplatelet, anti-inflammatory, estrogenic, cardioprotective, antitumor, and
antiviral properties [50,51]. The resveratrol glucoside trans-piceid seems to possess very
similar biological activity [51,52].

A large proportion of beer phenolics derives from barley (Hordeum vulgare L.). These are
especially present as phenolic acids, flavonoids, lignans, and alkylresorcinols (Table 1). The
main phenolic acids in barley are the protocatechuic, p-hydroxybenzoic, 2,4-dihydroxybenzoic,
chlorogenic, gallic, vanillic, syringic, ferulic, caffeic acid, p-coumaric, o-coumaric, and
sinapic acids [53–60]. Among flavonoids, flavan-3-ols (catechin, epicatechin), flavonols
(kaempferol, myricetin, quercetin, rutin), flavones (apigenin, tricin, saponarin), flavanones
(naringenin, naringin, hesperidin), proanthocyanidins, and anthocyanins (cyanidin malonyl
glucoside, cyanidin 3-galactoside, cyanidin 3-glucoside, pelargonidin, peonidin 3-glucoside,
cyanidin acetyl galactoside, delphinidin 3-glucoside, malvidin 3-glucoside) have been
identified [55,58,59,61]. The most abundant polyphenols in barley have been reported to be
ferulic acid and procyanidin B [62].

Alkylresorcinols, also known as resorcinolic lipids, are bioactive phenolics composed
of long aliphatic chains and resorcinol-type phenolic rings. They are present in whole-grain
cereals, such as wheat, barley, and rye. The total content of alkylresorcinols in barley is
reported in Table 1. It varies in the ranges of 3.2–10.3 mg/100 g DW, according to An-
dersson et al. [56], and 28.6–35.4 mg/100 g FW, according to Mattila et al. [53]. In vivo
and in vitro studies and epidemiological investigations showed that ARs can affect many
physiological and pathological processes related to the immune system, metabolic regula-
tion, cell signaling, and gene expression. They have been shown to exhibit antimicrobial,
anticancer, antilipidemic, and antioxidant activities [63–65].

Lignans are natural polyphenols commonly present in plants. Barley has been reported
to contain lignans (total 1.25 mg/100 g FW, Table 1) [60]. Furthermore, HPLC/MS analyses led
to the identification of pinoresinol, medioresinol, syringaresinol, lariciresinol, cyclolariciresinol,
secoisolariciresinol, secoisolariciresinol-sesquilignan, matairesinol, 7-oxomatairesinol,
7-hydroxymatairesinol, todolactol A, and α-conidendrin, with pinoresinol, lariciresinol, 7-
hydroxymatairesinol, and syringaresinol as the major lignan components [60]. Due to their
structural similarity to estradiol, lignans are classified as phytoestrogens. Lignans have been
shown to be converted by the intestinal microflora to the mammalian lignans enterodiol and
enterolactone in human intervention studies [60,66]. The effects on human health and dis-
eases of phytoestrogens, including lignans, and their metabolites have been widely reviewed,
including their effects on cancer and cardiovascular diseases [67–70]. Lignans have been
described as possessing a variety of biological properties, such as antioxidative, antitumor,
antiviral, antibacterial, antifungal, estrogenic, and cardioprotective activities [67].

In addition to polyphenols, barley also contains tocopherols (alpha, gamma, and delta),
tocotrienols, carotenoids (lutein and zeaxanthin), and phytosterols [56,71]. All these phyto-
chemicals exhibit strong antioxidant, antiproliferative, and cholesterol-lowering activities,
which are potentially useful in lowering the risk of certain human diseases, such as cancer,
cardiovascular disease, diabetes, and obesity [72]. Malt, which is used for the manufactur-
ing of beer, contains various compounds from barley, such as phenolic compounds, and
from the malting process, such as Maillard-reaction products, which can play significant
roles in malting and brewing through their antioxidant properties [73–75]. Regarding the
malting process, the contents of some phenolic compounds and their antioxidant activities
have been reported to increase remarkably during the later stages of germination and
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subsequent kilning [76]. Malt extracts from barley have been reported to contain high
amounts of polyphenols, to scavenge hydroxyl and superoxide radicals, and to confer
protection against reactive-oxygen-species-induced lipid, protein, and DNA damage [74].

Another common ingredient of beer is wheat (Triticum aestivum L.), which is used
in large amounts to produce wheat beers. Wheat, as with barley and all cereals, is an
important source of dietary polyphenols. Compared with vegetables and fruits, the con-
tents and biological activities of polyphenols in cereals have long been underestimated.
The contribution of cereals to the intake of dietary polyphenols in Spain has been re-
ported to be around 360 mg/day [16]. The chief phenolics in wheat are phenolic acids,
flavonoids, alkylresorcinols, and lignans (Table 1). Among phenolic acids, ferulic, gallic,
vanillic, caffeic, p-coumaric, p-hydroxybenzoic, sinapic, and syringic acids have been de-
tected, with ferulic acid the most abundant. The flavonoids catechin, epicatechin, apigenin,
malvidin, and luteolin glucosides have been detected, with catechin and apigenin as the
most abundant [16,54,63,77]. Proanthocyanidins (procyanidins B3, prodelphinidin, and
propelargonidin) have also been identified in wheat [61].

Alkylresorcinols and lignans are also present in wheat (Table 1) [27,53,54,77,78]. Alkylresorci-
nols are present in wheat at high levels, in the range of 19.1–142.9 mg/100 g DW [27,53,54,77–80].
The total lignans have been reported to be 9.22 mg/100 g FW, with hydroxymatairesinol, sec-
oisolariciresinol, lariciresinol, siringaresinol, iso-hydroxymatairesinol, and 7-oxo-matairesinol
as the major lignans. In addition, the stilbene pinosylvin has been identified in wheat [60,81].

In addition to wheat, the use of oats and rye in beer production is also frequent [82–84].
In addition to being good sources of carbohydrates, oats (Avena sativa L.) contain a range of
phenolic antioxidants. The main polyphenols in oats are avenanthramides, phenolic acids,
and flavonoids (Table 1). Among phenolic acids, gallic, protocathecuic, p-hydroxybenzoic,
caffeic, syringic, p-coumaric, ferulic, sinapic, and vanillic acids have been detected, with
ferulic acid being the most abundant [53,85,86]. Furthermore, the flavonoids vicenin II,
vitexin, daidzein, and apigenin glucoside arabinoside have been identified [77].

Avenanthramides are phenolic alkaloids consisting of amide conjugates of anthranilic
acid (an aromatic β-amino acid) or 5-hydroxyanthranilic acid, with hydroxycinnamic
acids, mainly p-coumaric acid (avenanthramide A), ferulic acid (avenanthramide B), and
caffeic acid (avenanthramide C). They have been reported to possess antioxidant activities,
with caffeic and ferulic acid derivatives being the most effective compounds [87]. The
avenanthramide content of oats is reported in Table 1 [53,77,85,86,88,89]. Avenanthramide B
is the most abundant, followed by avenanthramide A and avenanthramide C. Remarkably,
avenanthramides that are unique to oats have been reported to be bioavailable in humans
and may exert anti-inflammatory, antiproliferative, antiatherogenic, and vasodilatory
effects, as well as protecting against cardiovascular diseases and colon cancer [90–94].

The rate of lignans in oats were reported to be 3.49 mg/100 g FW by Smeds et al., with
pinoresinol, lariciresinol, 7-hydroxymatairesinol, matairesinol, and syringaresinol as major
components [60].

Rye (Secale cereale L.) is a traditional dietary ingredient in some regions, especially
Northern and Western Europe. It is an important source of bioactive compounds (Table 1).
Furthermore, it has been reported to contain polyphenols, alkylresorcinols, and lignans [66].
The major antioxidant phenolic compounds in rye are the following phenolic acids
(103–300 mg/100 g DW): p-hydroxybenzoic, vanillic, syringic, ferulic, p-coumaric, caf-
feic, and sinapic acids. Of these, ferulic acid is the most abundant [66,95,96]. Among
flavonoids, the rye flavones crysoeriol, apigenin, and tricin were identified in the form
of glycosides [97,98]. The alkylresorcinol contents of rye are reported in Table 1. Alkyl-
resorcinols are of particular interest due to their potential use as biomarkers of rye and
wheat intake [53,66,80,96]. In fact, among the cereals used for human food, alkylresorci-
nols are present at high levels only in rye and wheat. Purified alkylresorcinols from rye
have been reported to be incorporated into human erythrocyte membranes and to protect
erythrocyte-membrane lipids from peroxide-induced oxidation [99].
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Among rye lignans, syringaresinol, pinoresinol, lariciresinol, secoisolariciresinol,
matairesinol, isolariciresinol, 7-hydroxymatairesinol, 7-oxo-matairesinol, cyclolariciresinol,
and medioresinol have been identified, with lariciresinol, pinoresinol, and syringaresinol
as the major lignans [60,66].

Table 1. Contents of bioactive phenolic compounds in common beer ingredients.

Phenolic Compound Reference

Hops

Phenolic acids a:
Caffeic acid: 0.01–15.8 mg/100 g DW [28,39,41]
Chlorogenic acid: 0.47–163.7 mg/100 g DW [28,39,41]
p-Coumaric acid: 0.01–28.8 mg/100 g DW [28,39]
Ferulic acid: 0.01–0.10 mg/g DW [39]
Gallic acid: 0.08–3.41 mg/g DW [39,41]
Gentisic acid: 1.5–6.7 mg/100 g DW [28]
p-Hydroxybenzoic acid: 1.87 ± 0.01 mg/g DW [41]
Protocatechuic acid: 0.42–2.25 mg/g DW [39,41]
Syringic acid: 0.03–12.9 mg/g DW [28,39,41]
Flavonoids:
Catechin: 1.2–56.1 mg/100 g DW [28,39,41]
Epigallocatechin: 10.3–28.6 mg/100 g DW [28]
Epicatechin: 0.08–8.4 mg/100 g DW [28,39]
Isorhamnetin: 0.5–3.3 mg/100 g DW [28]
Kaempferol: 0.44–49.4 mg/100 g DW [28,41]
Naringenin: 3.9–11.0 mg/100 g DW [28]
Naringin: 1.7–3.9 mg/100 g DW [28]
Procyanidin B1: 18.4–50.6 mg/g DW [28]
Procyanidin B2: 8.4–14.6 mg/g DW [28]
Procyanidin C1: 3.8–16.9 mg/g DW [28]
Quercetin: 1.03–111.8 mg/100 g DW [28,41]
Rutin: 0.61–0.88 mg/g DW [39]
Prenylflavonoids: [48]
Desmethylxanthohumol: 120.0 mg/100 g DW [28,48]
Isoxanthohumol: 8.0–35.2 mg/100 g DW [28,48]
8-Prenylnaringenin: 1.5–23.8 mg/100 g DW [28,39,40,48]
Xanthohumol: 85.6–480.0 mg/100 g DW
Stilbenes: [25,49]
Total trans-Stilbenes: 0.05–1.17 mg/100 g FW [25]
trans-Resveratrol: 0.003–0.228 mg/100 g FW [25]
trans-Piceid: 0.04–1.10 mg/100 g FW

Barley

Phenolic acids:

Total: 0.2–67.5 mg/100 g DW; 16.5–24.1 mg/100 g FW [53,56,59]
Caffeic: 0.17 ± 0.01 mg/100 g FW [53]
Chlorogenic: 0–9.84 mg/100 g DW [58]
o-Coumaric: 1.5–6.0 mg/100 g DW [58]
p-Coumaric: 4.0 ± 0.49 mg/100 g FW; 0.17–58.3 mg/100 g DW [53,56,58]
Gallic: 0.1–136.6 mg/100 g DW [58]
p-Hydroxybenzoic: 0.31 ± 0.05 mg/100 g FW; 0.58–2.67 mg/100 g DW [53,56]
2,4-Dihydroxybenzoic: 0.68–6.16 mg/100 g DW [56]
Protocatechuic: 0.16 ± 0.01 mg/100 g FW [53]
Sinapic acid: 1.10 ± 0.17 mg/100 g FW; 0.14–2.44 mg/100 g DW [53,56]
Syringic: 0.50 ± 0.03 mg/100 g FW; 0.1–91.6 mg/100 g DW [53,56,58]
Ferulic: 25.0 ± 3.2 mg/100 g FW; 0.59–4.25 mg/100g DW [53,56,58]
Vanillic acid: 0.71 ± 0.08 mg/100 g FW; 0.10–3.91 mg/100 g DW [53,56,58]
Flavonoids:
Total: 6.2–30.1 mg/100 g DW; 7.8–16.2 mg/100 g FW [57,59]
Catechin: 0.1–10.5 mg/100 g DW; 0.48–2.4 mg/100 g FW [57–59,100]
Hesperidin: 0.5–24.9 mg/100 g DW [58]
Kaempferol: 1.27–19.2 mg/100 g DW; 1.2–2.4 mg/100 g FW [57–59]
Myricetin: 0–73.3 mg/100 g DW; 3.1–4.3 mg/100 g FW [57–59]
Naringin: 0.77–6.97 mg/100 g DW [58]
Naringenin: 4.7–50.2 mg/100 g DW [58]
Quercetin: 2.0–8.7 mg/100 g DW; 1.5–6.7 mg/100 g FW [57–59]
Rutin: 1.4–11.8 mg/100 g DW; 0.07–0.46 mg/100 g FW [58,59]
Alkylresorcinols: 3.2–10.3 mg/100 g DW; 2.86–3.54 mg/100 g FW [53,56,80]
Lignans: Total: 1.25 mg/100 g FW [60]
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Table 1. Cont.

Phenolic Compound Reference

Wheat

Phenolic acids:
Caffeic: 0–3.3 mg/100 g DW; 98.6 ± 11.9 mg/100 g FW [27,78]
p-Coumaric: 0.30–1.21 mg/100g DW; 0.38–3.7 mg/100 g FW [27,53]
Ferulic: 10.0–219.3 mg/100 g FW; 0.94–6.23 mg/100 g DW [27,53,78]
Gallic acid: 2.8 ± 0.4 mg/100 g FW [78]
p-Hydroxybenzoic: 0.23–1.11 mg/100 g DW [27]
Sinapic: 2.8–12.8 mg/100 g DW; 0.8–6.3 mg/100 g FW [27,53,78]
Syringic: 0.39–2.22 mg/100 g DW; 0.22–1.3 mg/100 g FW [27,53]
Vanillic: 0.88–2.45 mg/100 g DW; 0.37–17.6 mg/100 g FW [27,53,78]
Flavonoids:
Apigenin: 20.4 ± 1.5 mg/100 g FW [78]
Catechin: 94.2 ± 5.6 mg/100 g FW [78]
Epicatechin: 14.5 ± 0.9 mg/100 g FW [78]
Malvidin: 2.9 ± 0.2 mg/100 g FW [78]
Alkylresorcinols:
Total: 19.1–142.9 mg/100 g DW; 74.8–76.62 mg/100 g FW [53,79,80]
Lignans:
Total: 9.22 mg/100 g FW [60]

Oats

Phenolic acids:
Total: 35.1–143.5 mg/100 g DW; 46.9–65.1 mg/100 g FW [53,86,89]
Caffeic: 0.95–7.02 mg/100 g DW; 0.11–1.94 mg/100 g FW [53,85,89]
p-Coumaric: 1.3–2.2 mg/100 g DW; 0.21–1.2 mg/100 g FW [53,85,86]
Ferulic: 4.5–19.0 mg/100 g DW; 2.3–33.0 mg/100 g FW [53,85,86,89]
Gallic acid: 14.4–70.4 mg/100 g DW [89]
p-Hydroxybenzoic: 3.2–6.0 mg/100 g DW; 0.33–2.2 mg/100 g FW [53,85,86]
Protocathecuic acid: 1.1–10.4 mg/100 g DW [89]
Sinapic: 3.4–5.2 mg/100g DW; 0.9–3.6 mg/100 g FW [53,85,86]
Syringic: 2.5–5.0 mg/100 g DW; 0.68–2.8 mg/100 g FW [53,85,86]
Vanillic: 1.8–42.7 mg/100 g DW; 0.4–2.4 mg/100 g FW [53,85,86,89]
Flavonoids:
Vicenin II: 0.70 ± 0.02 mg/100 g DW [77]
Vitexin: 2.47 ± 0.19 mg/100 g DW [77]
Daidzein: 2.92 ± 0.01 mg/100 g DW [77]
Apigenin-6/8-C-pentoside-8/6C-hexoside I: 1.15 ± 0.84 mg/100 g DW [77]
Avenanthramides:
Total: 4.2–14.7 mg/100 g DW; 1.3–5.0 mg/100 g FW [53,77,85,86,88,89]
Avenanthramide A: 0.68–2.38 mg/100 g FW [85]
Avenanthramide B: 1.2–3.7 mg7100 g FW [85]
Avenanthramide C: 0.1–1.24 mg/100 g FW [85]
Lignans:
Total: 3.5 mg/100 g FW [60]

Rye

Phenolic acids:
Total: 49.1–300.0 mg/ 100 g DW [66,96]
Caffeic: 0.4–7.7 mg/100 g DW [66]
p-Coumaric: 0.74–6.5 mg/100 g DW [95,96]
Ferulic: 3.5–117.4 mg/100 g DW [95,96]
p-Hydroxybenzoic: 0.7–2.4 mg/100 g DW [66]
Sinapic: 5.2–14.0 mg/100 g DW [95,96]
Syringic: 0.02–0.6 mg/100 g DW [66,96]
Vanillic: 0.46–4.6 mg/100g DW [66,96]
Flavonoids:
Total: 4.2–20.4 mg/100 g DW [98]
Total flavones: 5.6–13.7 mg/100 g DW [97]
Alkylresorcinols: 36–320 mg/100 g DW; 2–130 mg/100 g FW [53,66,80,96]
Lignans:
Total: 0.11–2.27 mg/100 g DW; 11.2 mg/100 g FW [60,66]

Values reported represent concentration range or mean ± standard deviation. FW = fresh weight; DW: dry weight.
a For hops, the contents of free forms of phenolic acids are reported.

4. Polyphenol Contents and Antioxidant Properties of Conventional Beers

Several studies investigated the characteristics of beers with respect to their phenolic
contents and to their antioxidant properties. The total polyphenol content of beer is
conventionally measured by the colorimetric Folin assay. For conventional beers, the
total polyphenols content has been reported to range from 88 mg/L to 500 mg/L of gallic
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acid equivalents (GAE) for the most common beer types [20,84,101–106]. The content
greatly depends on the beer type, with highest values measured in abbey, bock, and black
beers, (622, 875 and 855 mg/L GAE respectively) [104–106]. A total polyphenol content of
1366 mg/L GAE has occasionally been reported for a Danish porter beer [107]. The total
flavonoid content is usually measured by the aluminum chloride colorimetric method. For
conventional beers, it has been reported to vary from 26.6 mg/L to 73.2 mg/L of catechin
equivalents (CATE) [84,103,108].

Regarding the antioxidant activities of conventional beers, these have been measured by
several assays, most frequently ABTS, FRAP, and DPPH. The antioxidant activity measured
by the ABTS method gave values in the range of 0.16–2.74 mM Trolox equivalents (TE) for
conventional beers [84,101–103,107,109,110]. The results reported in the literature for FRAP
measurements commonly vary from 1.50 to 4.66 Fe2SO4 mM equivalents, with the higher values
measured in ale, bock, and abbey [84,103,104,111]. For FRAP measurements reported as mM
TE instead of Fe2SO4, the values are in the range 0.51–2.56 mM TE [107,109,112,113]. A value
of 4.12 mM TE has occasionally been reported for a Danish porter beer [107]. The antioxidant
activity of beer evaluated with the DPPH method gives values in the range of 0.24–1.35 mM TE
for conventional beers [101,102,110,111,113], whereas higher values have been described for
some craft beers (1.44 mM TE/L; 4.81 mM TE/L; 2.27 mM TE/L [109,112,114]).

A significant correlation has been reported between the total polyphenol content and
antioxidant activity of beer [84,101–104]. Similarly, a strict correlation was found between
the total flavonoid content and antioxidant activity of beer [84,103,104].

5. Identification of Bioactive Phenolic Molecules in Beers

In addition to the evaluation of the total polyphenol and flavonoid contents and to
the measurement of antioxidant activity, many studies focused on the identification of
bioactive phenolic molecules in beers. The total polyphenol and flavonoid contents were
measured with colorimetric methods, while for the characterization and identification
of bioactive phenolic molecules, high-resolution techniques were employed, including
high-performance liquid chromatography (HPLC), high-performance liquid chromatog-
raphy coupled with mass spectrometry (HPLC-MS), ultra-high-performance liquid chro-
matography (UHPLC), ultra-high-performance liquid chromatography coupled with mass
spectrometry (UHPLC-MS), nuclear magnetic resonance (NMR), gas chromatography (GC),
and gas chromatography coupled with mass spectrometry (GC-MS). Table 2 summarizes
the phenolic molecules identified in conventional beers. The main phenolic compounds in
beer are phenolic acids in the form of benzoic- and cinnamic-acid derivatives. Ferulic acid,
caffeic acid, vanillic acid, homovanillic acid, sinapic acid, p-coumaric acid, o-coumaric acid,
gallic acid, protocatechuic acid, 4-hydroxyphenylacetic acid, gentisic acid, chlorogenic acid,
m-coumaric acid, 2,6-dihydroxybenzoic acid, m-hydroxybenzoic acid, p-hydroxybenzoic
acid, salicylic acid, and syringic acid have been identified in conventional beers, with ferulic
acid as the most abundant phenolic acid, followed by caffeic, sinapic, p-coumaric, and
vanillic acids [84,101,103,104,115–118]. The results in Table 2 show that most phenolic acids
are present in beer in conjugated, esterified forms, while free forms are present at lower lev-
els. Most of the antioxidant activity of beer (55–88%) has been reported to be derived from
six phenolics, with ferulic acid representing over 50%, followed by syringic acid, catechin,
caffeic acid, protocatechuic acid, and epicatechin [101]. A strict correlation has been re-
ported between antioxidant activity and the total phenolic acid contents of beer, particularly
ferulic, protocathecuic, caffeic, syringic, sinapic, p-coumaric, 4-hydroxy-phenylacetic, and
vanillic acids [101,103,104]. Phenolic acids exhibit strong antioxidant properties and have
been reported to play a role in ameliorating ischemia/reperfusion injury, inflammation,
Alzheimer’s and Parkinson’s disease, diabetes mellitus, and skin disease [119–122]. They
have also been described as possessing antidepressant-like effects [123] and anticancer
activity [124–127].
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Table 2. Bioactive compounds in conventional beers.

Phenolic Acid mg/L Beer Reference

Gallic acid (free) 0.06–10.4 [101,105,117,128,129]
Protocatechuic acid (free) 0.02–0.30 [101,117,128,130]
p-Hydroxybenzoic acid (free) 0.38–9.04 [117,131,132]
Gentisic acid (free) 0.07–0.30 [117,128]
Chlorogenic acid (free) 0–2.38 [115,117,128–130]
2,6-dihydroxybenzoic acid (free) 2.53 ± 0.11 [117]
Vanillic
free 0–3.6 [84,101,103,104,115–117,128,130,132,133]
total 1.17–5.45 [84,103,104,115,116]
Homovanillic acid (free) 0.41 ± 0.04 [117]
Caffeic acid
free 0–2.53 [84,103–105,115–117,128,130]
total 0.98–6.38 [84,103,104,115,116]
m-Hydroxybenzoic acid (free) 0–1.03 [117,132]
Syringic acid
free 0–1.13 [84,101,103,104,115,117,128,130,133]
total 0–1.23 [84,103,104,115]
p-Coumaric acid
free 0.01–5.58 [84,101,103–105,115–117,130,132]
total 0.55–3.10 [84,103,104,115,116]
Ferulic acid
free 0.10–11.03 [84,100,101,103,104,115–117,128,130–133]
total 9.97–22.60 [84,103,104,115,116]
4-hydroxyphenylacetic acid
free 0.05–1.47 [104,115,116,128,130,133]
total 0.40–1.46 [104,115,116]
Sinapic acid
free 0.20–1.39 [84,103,104,115–117,130]
total 2.19–6.16 [84,103,104,115,116]
m-Coumaric acid (free) 0.105 ± 0.006 [117]
Salicylic acid (free) 0.19–6.66 [117,130]
o-Coumaric acid (free) 0.47 ± 0.04 [117]
Flavonoids mg/L beer Reference
Catechin 0.03–5.40 [101,129,130,130–133]
Epicatechin 0.02–4.55 [101,105,128–131]
Rutin 0.06–4.85 [128–131,133]
Quercetin 0.06–2.23 [128,129,132]
Kaempferol <0.06–16.4 [129,132,133]
Daidzein 0.23–0.36 [128]
Genistein 0.06–0.08 [128]
Formononetin 0.17–1.30 [128]
Luteolin 0.10–0.19 [128]
Apigenin 0.80–0.81 [128]
Myricetin 0.15–0.16 [128]
Naringin 0.70–2.63 [128]
Naringenin 0.06–2.34 [129]
Prenylflavonoids mg/L beer Reference
8-Prenylnaringenin 0–0.021 [48,134–141]
6-Geranylnaringenin 0.001–0.074 [138]
Isoxanthohumol 0.04–3.44 [48,136–138]
Xanthohumol 0.002–0.69 [40,48,136–138]
6-Prenylnaringenin 0.011–0.56 [136,138]
Alkylresorcinols µg/L beer Reference
Total alkylresorcinols 1.01 ± 2.03 [136]
Stilbenes mg/L beer Reference
trans-Resveratrol 0–0.067 [142]
cis-Resveratrol 0–0.023 [143]
cis-Piceid 0–0.024 [144]
trans-Piceid 0–0.009 [145]
Phenolic alcohols mg/L beer Reference
Tyrosol 0.2–44.4 [117,136,146]
Hydroxytyrosol 0.0–0.13 [136,146]

Values are expressed as concentration range or as mean ± standard deviation.

Among flavonoids, catechin, epicatechin, rutin, quercetin, naringenin, apigenin, lute-
olin, and kaempferol have been identified in beers (Table 2) [101,105,118,130,131]. Catechin,
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epicatechin, and rutin have been detected in some commercial beers. Rutin, quercetin,
and kaempferol have also been identified in detectable amounts in one out of three ale
beers by HPLC-ESI-MS [129]. Very low amounts of the flavonoids genistein, biochanin
A, daidzein, and formononetin (<0.004 mg/L) have been detected in conventional beers
by radioimmunoassay [134]. A significant correlation was found between antioxidant
activity and total flavonoids content [84,103]. Among flavonoids, a strict correlation has
been reported between the antioxidant activity and the catechin and epicatechin con-
tents of beer [100]. However, it must be taken into consideration that flavonoids in beers
have been reported as present at very low levels in many studies, and are often unde-
tectable [84,103,112,132,134,135].

The prenylflavonoid contents in beers are shown in Table 2. Isoxanthohumol, xan-
thohumol, and 6-prenylnaringenin, which are the most abundant compounds, have been
reported to constitute more than 90% of the total amount of prenylflavonoids in beer,
with 8-prenylnaringenin and 6-geranylnaringenin being minor components [136–139].
The content of 8-prenylnaringenin has been reported to be higher in ale and stout beers
(0.011–0.021 mg/L) compared to lager beers (0–0.0089 mg/L), due to the generally rich
hopping of ales (“triple” beers) [136–140]. However, it has been reported that many beers
do not contain prenylflavonoids in detectable amounts [137,139,141]. Prenylflavonoids are
present at high levels in hops, with their content varying across hop varieties [28,39,40,48].
They are transferred to beer during brewing, although, due to their hydrophobicity, their
content in beer is low.

The contents of the stilbene trans-resveratrol and its glycoside cis-piceid in beer have
been reported to be in the ranges of 0–0.067 and 0–0.024 mg/L, respectively, with lower
levels of cis-resveratrol and trans-piceid (Table 2). Resveratrol was found in 79% out of 110
beers analyzed, while piceid was present in only 33% of them [142]. These stilbene deriva-
tives have been found in some hop varieties, which are used for beer production and are
transferred to beer during brewing [25]. Regarding the stilbene resveratrol, bioavailability
studies on humans demonstrated its absorption and rapid metabolism; the glucuronide and
sulfate conjugates were found to be the major plasma and urine metabolites [3]. Resveratrol
has been reported to have beneficial effects on cardiovascular disease, aging, Alzheimer’s
disease, cancer, and numerous health-promoting properties, such as antioxidant, anti-
inflammatory, anti-diabetes, anti-obesity, and antiproliferative effects, in both animals and
humans [143–145].

The presence of the phenolic alcohols tyrosol and hydroxytyrosol has been reported in beer,
ranging from 0.2 to 44.4 mg/L and from 0.0 to 0.13 mg/L, respectively (Table 2) [117,136,146].
Tyrosol, hydroxytyrosol, and their metabolites exhibited strong antioxidant activities and
antiatherogenic, cardioprotective, anticancer, neuroprotective, and endocrine effects in
in vivo and in vitro studies [147–151]. Hydroxytyrosol has been demonstrated to be ab-
sorbed from the diet in humans and to be present in plasma and urine in conjugated
forms [151–153]. Moreover, one clinical trial showed that tyrosol is absorbed from beer in
humans and endogenously bio-transformed into hydroxytyrosol [146].

Alkylresorcinols have also been identified in beer, in the range of 0.02–11.04 µg/L
beer (Table 2) [136]. Alkylresorcinols are present at high levels in barley and wheat and
are transferred to beer during the brewing process. Similarly to prenylflavonoids, the low
content of alkylresorcinols in beer may be due to their hydrophobicity.

6. Polyphenol Contents and Antioxidant Properties of Beers with Added Fruit,
Vegetable, Herbs, and Natural Food

Recently, characterizations of the bioactive phenolic compounds and antioxidant activ-
ity in several fruit beers have been reported [84,103,109–112,114,135,154–159]. Fruit beers
obtained through the addition of fresh fruits (hairy-fig fruits, Ficus hirta Vahl. [154]; per-
simmon fruits, Diospyros kaki L [155]; quinces, Cydonia oblonga Miller [156]; peaches, Prunus
persica L. [103,157]; apricots, Prunus armeniaca L. [103]; grapes, Vitis vinifera L. [103,158,159];
plums, Prunus domestica L. [103]; oranges, Citrus sinensis L. [103]; apples, Malus domes-
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tica L. [103]; cherries, Prunus avium L. [103,112]; raspberries, Rubus idaeus L. [103]; walnuts,
Juglans regia L. [84]; chestnuts Castanea sativa L. [84]; saskatoon-berry fruits, Amelanchier
alnifolia Nutt. [114]; goji berries, Lycium barbarum L. [135]; omija fruits, Schisandra chi-
nensis L. [111]; mango, Mangifera indica L. [109]; and dotted hawthorn, Crataegus punc-
tata L. [110] during the fermentation process resulted in significant enrichment in phenolic
compounds, in both quality and quantity, and considerable improvements in antioxidant
activities compared to conventional beers. A similar trend has been observed for beers
obtained through the addition of vegetables, herbs, and natural foods during the fermen-
tation process: cocoa (Theobroma cacao L.) beans [84], honey (Wildflower honey) [84], green
tea (Camelia sinensis L.) [84], coffee (Coffea arabica L. and Coffea robusta L.) [84], licorice
(Glycyrrhiza glabra L.) [84], eggplant (Solanum melongena L.) peel extract [108], green pepper
(Capsicum annuum L.) [160], propolis extract [113] and hibiscus (Hibiscus sabdariffa L.) [161]
extract, green-pepper basil (Ocinum selloi benth) [162], Parastrephia lucida leaves [107],
lemon-balm leaf (Melissa officinalis L.) [163], thyme (Thymus vulgaris L.) [163], juniper
berries (Juniperus communis L.) [163], nettle root (Urtica dioica L.) [163], hop cones (Humulus
lupulus L.) [163] and olive leaves (Olea europaea L.) [164].

Table 3 summarizes the data from the literature concerning the total polyphenol and
flavonoid contents of special beers obtained through the addition of fruits, vegetables,
herbs, or natural foods during the brewing process in comparison to control beers obtained
without the addition of adjuncts (values in parentheses). The amount of adjuncts added
during the brewing process varies from 0.25 to 300 g/L in beer. In most of the studies,
the adjuncts added were fresh fruits and vegetables. Goji berries and omija fruits were
used in dried forms. In nine studies, the adjunct was added in the form of an extract,
particularly water extracts for hibiscus and ethanol/water extracts for propolis, eggplant
peel, melissa, thyme, nettle root, juniper berries, hop cones, and urtica root. Beers produced
with the addition of fruits, vegetables, herbs, or natural foods have been reported to exhibit
total polyphenol contents that are significantly higher than those measured in control
beers without the addition of adjuncts, except for apple and apricot beers (Table 3). The
polyphenol concentrations were measured in 37 out of the 38 reports. The highest values
(>700 mg/L GAE equivalents) were measured in beers with added cherries, chestnuts,
cocoa beans, green pepper, hibiscus extract, Parastrephia lucida leaves, licorice, and walnuts,
regardless of the amount of adjunct added. Similarly, the total flavonoid contents of the
beers with added fruits, vegetables, herbs, or natural foods, measured in 19 out of the
38 reports, were reported to be significantly higher compared to those of control beers
without adjuncts, except for apple, apricot, green tea, and honey beers (Table 3). Cherry,
cocoa-bean, eggplant-peel extract, grape, licorice, omija-fruit, orange-peel, peach, plum,
raspberry, and walnut beers exhibited the highest values (>80 mg/L catechin equivalents),
regardless of the amount of adjunct added (Table 3).
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Table 3. Antioxidant activity, and total polyphenol and flavonoid contents of beers with added fruits, vegetables, herbs, and natural foods.

Fruit Typology Adjunct
(g/L Beer)

TPC
GAE mg/L §

TFC
CATE mg/L §

FRAP
mM Fe2SO4 eq. §

ABTS
mM TE

DPPH
mM TE § Ref.

Apples 20
399.0 ± 11.0 67.9 ± 0.4 3.1 ± 0.07 1.62 ± 0.02 - [103](383.0–482.0) (51.9–73.2) (3.4–4.4) (1.5–2.0)

Apricot 200
454.0 ± 12.0 70.4 ± 0.9 4.20 ± 0.05 1.7 ± 0.04 - [103](383.0–482.0) (51.9–73.2) (3.4–4.4) (1.5–2.0)

Cherry juice 150-180
398.0–689.0 - 1.1–2.6 a 4.8–6.5 5.2–6.4

[112](315.0 ± 16.0) (0.86 ± 0.03) a (4.63 ± 0.01) (4.81 ± 0.23)

Cherry 300
767.0 ± 1.3 221.8 ± 3.3 9.8 ± 0.11 3.5 ± 0.06 - [103](383.0–482.0) (51.9–73.2) (3.4–4.4) (1.5–2.0)

Chestnut 40
883.4 ± 10.9 71.7 ± 0.9 6.2 ± 0.08 3.4 ± 0.03 - [84](273.8–320.6) (26.6–63.5) (1.7–2.8) (1.5–1.8)

Cocoa bean 10
1026.4 ± 3.0 96.4 ± 2.0 8.1 ± 0.10 3.9 ± 0.04 - [84](382.7–446.1) (51.9–59.0) (3.4–3.9) (1.5–2.6)

Coffee 35
582.7 ± 6.4 69.5 ± 1.0 5.0 ± 0.14 2.9 ± 0.03 - [84](382.7–446.1) (51.9–59.0) (3.4–3.9) (1.5–2.6)

Dotted hawthorn
100
100

410.1 ± 11.8 1.3 ± 0.02 2.0 ± 0.12 2.2 ± 0.01
[110]Juice 279.6 ± 2.0 - 0.9 ± 0.01 1.4 ± 0.11 0.4 ± 0.04

Fruit (200.5 ± 1.9) - (0.5 ± 0.01) (0.9 ± 0.09) (0.3 ± 0.03)

Eggplant peels extract 10
631.0 ± 3.0 171.0 ± 9.0 b

- 80.0 ± 3.17 c
[108]

(426.0 ± 12.0) (65.0 ± 6.0) b (57.3 ± 0.37) c

Goji berry 50
357.0–623.0 - - 2.4–3.8 - [135](335.0 ± 11.0) (2.3 ± 0.11)

Grape 200
631.0 ± 10.0 148.9 ± 2.0 6.8 ± 0.18 2.8 ± 0.01 - [103](383.0–482.0) (51.9–73.2) (3.4–4.4) (1.5–2.0)

Grape 200
501.5 - 1.3 a 4.0 3.3

[158](219.0) (0.48) a (1.6) (1.5)

Grape 300
569.6 ± 4.4 - 2.6 ± 0.03 a

- 1.0 ± 0.01
[159](467.8 ± 6.2) (1.3 ± 0.07) a (0.73 ± 0.03)

Green pepper 6
1190.9 ± 6.7 - - - 78.3 ± 1.23 c

[160](723.2 ± 4.21) (65.7 ± 2.0) c

Green-pepper basil 5
371.9 ± 1.9 - - - 54.9 ± 0.4 c

[162](291.2 ± 4.0) (45.1 ± 0.2) c

Green tea 9
464.4 ± 3.9 42.0 ± 0.3 3.6 ± 0.05 2.4 ± 0.03 - [84](382.7–446.1) (51.9–59.0) (3.4–3.9) (1.5–2.6)

Hairy-fig fruit 100 - - - - 0.41 ± 0.01
[154]0.12 ± 0.06
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Table 3. Cont.

Fruit Typology Adjunct
(g/L Beer)

TPC
GAE mg/L §

TFC
CATE mg/L §

FRAP
mM Fe2SO4 eq. §

ABTS
mM TE

DPPH
mM TE § Ref.

Hibiscus extract 20
743.2 ± 7.0 - - 9.28 - [161](294.2 ± 65.5) (5.71)

Honey 62
538.3 ± 8.3 48.7 ± 1.0 3.9 ± 0.01 2.5 ± 0.03 - [84](382.7–446.1) (51.9–59.0) (3.4–3.9) (1.5–2.6)

Hop-cone extract 0.5
316.7 ± 1.76 - 4.3 ± 0.07 a

- 2.8 ± 0.03
[163](280.3 ± 1.1) (4.1 ± 0.02) a (2.5 ± 0.02)

Juniper-berry extract 0.5
365.4 ± 2.8 - 4.5 ± 0.02 - 3.1 ± 0.09

[163](280.3 ± 1.1) (4.15 ± 0.02) (2.5 ± 0.02)

Licorice 2
819.7 ± 6.9 81.4 ± 1.3 6.1 ± 0.04 3.4 ± 0.01 - [84](382.7–446.1) (51.9–59.0) (3.4–3.9) (1. 5–2.6)

Mango
200
200
200

267.6 ± 6.9 - 1.7 ± 0.14 a 1.7 ± 0.21 2.0 ± 0.09

[109]
juice 218.6 ± 4.8 - 1.3 ± 0.06 a 1.2 ± 0.12 1.5 ± 0.07
pulp 233.1 ± 6.1 - 1.5 ± 0.07 a 1.3 ± 0.15 1.7 ± 0.06
raw (187.4 ± 6.3) - (1.0 ± 0.06) a (0.97 ± 0.07) (1.4 ± 0.10)

Melissa extract 0.5
363.1 ± 2.2 - 4.5 ± 0.07 a

- 3.0 ± 0.08
[163](280.3 ± 1.1) (4.1 ± 0.02) a (2.5 ± 0.02)

Nettle-root extract 0.5
317.2 ± 1.57 - 4.2 ± 0.04 a

- 2.8 ± 0.07
[163](280.3 ± 1.14) (4.1 ± 0.02) a (2.5 ± 0.02)

Omija fruit 2
606.8 ± 16.6 406.7 ± 4.0 b 3.0 ± 0.05 - 2.0 ± 0.13

[111]
(519.1 ± 15.8) (303.2 ± 4.9) b (1.8 ± 0.09) (0.9 ± 0.03)

Orange peel 5
639.0 ± 4.0 92.4 ± 0.7 5.6 ± 0.04 2.7 ± 0.09 - [103](383–482) (51.9–73.2) (3.4–4.4) (1.5–2.0)

Parastrephia lucida leaf 50
800.6 ± 4.0 601.1 ± 3.0 b 5.5 ± 0.04 a 3.3 ± 0.11 - [107]

(413.2 ± 2.2) (333.5 ± 12.8) b (1.9 ± 0.05) a (1.1 ± 0.10)

Peach 50
618.4 ± 2.0 - - - 88.9 ± 1.3 c

[157](500.4 ± 4.1) (86.1 ± 1.3) c

Peach 200
510.0 ± 5.0 87.3 ± 1.3 4.6 ± 0.06 1.9 ± 0.03 - [103](383–482) (51.9–73.2) (3.4–4.4) (1.5–2.03)

Persimmon fruit 15
701.1 ± 2.0 - - - 90.2 ± 1.36 c

[155](507.1 ± 3.0) (80.1 ± 1.1) c

Plum 200
598 ± 7.0 138.8 ± 3.5 5.7 ± 0.02 1.9 ± 0.02 - [103](383–482) (51.9–73.2) (3.38–4.39) (1.55–2.03)

Propolis extract 0.25
306.5 ± 45.9 26.9 ± 2.7 b 1.9 ± 0.25 a 0.81 ± 0.20 0.6 ± 0.18

[113]
(242.0 ± 21.2) (16.9 ± 2.2) b (1.4 ± 0.24) a (0.63 ± 0.04) (0.5 ± 0.16)
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Table 3. Cont.

Fruit Typology Adjunct
(g/L Beer)

TPC
GAE mg/L §

TFC
CATE mg/L §

FRAP
mM Fe2SO4 eq. §

ABTS
mM TE

DPPH
mM TE § Ref.

Quince 100
159.0–175.5 d

- - 7.2–7.3 - [156]
(134.7 ± 8.5) d (7.1 ± 0.10)

Raspberry 300
465.0 ± 6.0 90.4 ± 0.5 5.7 ± 0.09 2.3 ± 0.04 - [103](403.0 ± 5.0) (59.0 ± 0.7) (3.3 ± 0.03) 1.3 ± 0.02

Saskatoon berry 250
377.9–413.4 - 1.6–2.0 2.18–2.22 2.4–2.9

[114](243.9 ± 1.8) (2.2 ± 0.04) (1.8 ± 0.05) (2.3 ± 0.07)

Thyme extract 0.5
384.2 ± 3.0 - 4.7 ± 0.08 a

- 3.7 ± 0.10
[163](280.3 ± 1.1) (4.1 ± 0.02) a (2.5 ± 0.02)

Walnut 35
964.7 ± 9.6 90.1 ± 1.8 10.2 ± 0.02 5.2 ± 0.05 - [84](382.7–446.1) (51.9–59.0) (3.4–3.9) (1.5–2.6)

GAE: gallic-acid equivalents; CATE: catechin equivalents; TE: Trolox equivalents. Values are expressed as range of concentration or as mean ± standard deviation. Values within
brackets refer to control beer without adjunct addition. § Unless otherwise specified. a FRAP values are expressed as mM TE instead of mM Fe2SO4 equivalents. b Total flavonoid
contents are expressed as mM-quercetin equivalents instead of catechin equivalents. c DPPH values are expressed as percentage inhibition instead of mM TE. d Values are expressed as
mg-pyrogallol equivalents instead of GAE.



Molecules 2023, 28, 3221 15 of 29

Regarding the antioxidant activity of special beers obtained with the addition of fruit,
vegetables, herbs or natural foods, the antioxidant activity was measured with a FRAP
assay in 29 out of the 38 reports reported in Table 3. The strongest antioxidant activity was
measured in cherry, chestnut, cocoa-bean, coffee, grape, licorice, orange-peel, peach, plum,
raspberry, juniper-berry-extract, Melissa-extract, Parastrephia lucida-leaf, thyme-extract, and
walnut beers (≥4.5 mM Fe2SO4 or TE equivalents), regardless of the amount of adjunct
added. The antioxidant activities measured in the beers with adjuncts added has been
reported to be significantly higher than those measured in the control beers with no addition
of adjuncts, except for apple, apricot, green-tea, honey, and saskatoon-berry beers. The
antioxidant activity was evaluated with an ABTS assay in 25 out of the 38 reports reported
in Table 2. The highest ABTS values were detected in cherry, chestnut, cocoa-bean, coffee,
goji-berry, grape, hibiscus-extract, honey, licorice, orange-peel, Parastrephia lucida-leaf, hop-
cone, juniper-berry-extract, melissa-extract, nettle-root extract, thyme-extract, and walnut
(≥2.5 mM TE) beers, regardless of the amount of adjunct added. The antioxidant activities
measured with the ABTS assay in beers with added fruits, vegetables, herbs, or natural
foods were reported to be significantly higher in than those measured in control beers with
no adjuncts, except for apple, apricot, quince, green-tea, peach, plum, and honey beers. A
DPPH assay was used in 19 out of the 38 reports to evaluate the antioxidant activities of
beers with added fruits, vegetables, herbs, or natural foods (Table 3). The highest values
(>2.5 mM TE) were measured in cherry, grape, and saskatoon-berry beers. The DPPH
values measured in beers with adjuncts were reported to be significantly higher than those
obtained in control beers without adjuncts, except for beers with added dotted hawthorn
fruit, peaches, and propolis extract. A significant strict correlation between antioxidant
activity and total polyphenol/total flavonoid contents was found in beers with added fruits,
vegetables, herbs, and natural foods [84,103,113,163]. A correlation between antioxidant
activity and total hydroxycinnamic =-acid content has been reported in beer with added
quince fruit [156].

7. Identification of Bioactive Compounds in Beers with Added Fruits, Vegetables,
Herbs, and Natural Food

Recently, many studies described the composition of bioactive molecules of special
beers produced with the addition of fruits, vegetables, herbs, and natural foods. Table 4
summarizes the main results obtained in 23 reports. Regardless of the amount of adjunct
added, some conclusions may be drawn. The addition of fruits, vegetables, herbs, and
natural foods influences the quality and quantity of polyphenols in beer. The concentration
of most phenolic acids is generally increased by the addition of adjuncts, particularly
chlorogenic, neochlorogenic, caffeic and p-coumaric acids, with the extent of the increment
varying for the different adjuncts. Chlorogenic acid was present at the highest level in
apricot beer (12.71 mg/L), followed by quince, cherry, and plums beers, while neochloro-
genic acid exhibited very high concentrations in plum beer (60.3 mg/L), followed by
cherry, apricots, and quince beers. The presence of neochlorogenic acid was not reported in
conventional beer, while chlorogenic acid was present in conventional beer at low levels
(Table 2). Caffeic acid is remarkably high in plum beer (89.80 mg/L), followed by cherry
(54.6 mg/L), apricot (17.83 mg/L), peach (16.3 mg/L), grape (13.41 mg/L), and coffee
(9.20 mg/L) beers, while the highest value reported for conventional beer was 6.38 mg/L
(Table 3). Furthermore, 3,5-Dicaffeoylquinic acid has been detected in quince beers at levels
of 3.0–3.2 mg/L (Table 4). The content of p-coumaric acid was remarkably high in cherry
beer (62.40 mg/L), followed by plum (12.20 mg/L), grape (7.23 mg/L), goji-berry (up to
7.98 mg/L), orange-peel (4.94 mg/L), chestnut (3.36 mg/L), walnut (4.32 mg/L), and cocoa
(3.26 mg/L) beers, while the values reported for the other adjuncts were close to those
measured in conventional beers (Table 3). For ferulic acid, the highest values were reported
for orange peel (27.87 mg/L) and chestnut (27.55 mg/L) beers (Table 4), while for the
remaining adjuncts, the concentrations of ferulic acid reported were in the range of those
measured in conventional beers (Table 2). The content of vanillic acid in the beers brewed
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with adjuncts was almost always close to that reported for conventional beers (Table 2). The
highest levels were measured in grape (6.98 mg/L) and peach (6.11 mg/L) beers. A similar
trend was observed for syringic acid, with values reported for beers with added adjuncts
very close to those measured in conventional beers (Table 2), except for grape beer, which
exhibited the highest syringic acid content (2.46 mg/L). The content of sinapic acid reported
for beers with added adjuncts was also quite close to that measured in conventional beers
(Table 2), except for cherry beer, which exhibited the highest sinapic-acid concentration
(7.58 mg/L), and licorice and orange-peel beers, with concentrations somewhat higher than
those measured in conventional beers (Table 2).

Table 4. Bioactive phenolic compounds in beers with added fruits, vegetables, herbs, and natural foods.

Adjunct
Typology

Amount Added Bioactive Compound Ref.(g/L)

Apple 20

Total phenolic acids: 31.2 ± 1.4 mg/L Flavonoids:

[103]

Neochlorogenic acid: 0.79 ± 0.08 mg/L Catechin: 5.2 ± 0.15 mg/L
Vanillic acid: 4.4 ± 0.07 mg/L Rutin: 0.56 ± 0.01 mg/L
Caffeic acid: 4.32 ± 0.03 mg/L Quercetin: 0.48 ± 0.03 mg/L
Syringic acid: 1.1 ± 0.04 mg/L Stilbenes:
p-Coumaric acid: 2.1 ± 0.16 mg/L trans-Resveratrol: 0.56 ± 0.02 mg/L
Ferulic acid: 12.7 ± 0.67 mg/L
Sinapic acid: 6.6 ± 0.40 mg/L

Apricot 200

Total phenolic acids: 40.7 ± 1.3 mg/L Flavonoids:

[103]

Chlorogenic acid: 12.7 ± 0.18 mg/L Catechin: 10.0 ± 0.94 mg/L
Neochlorogenic acid: 7.2 ± 0.22 mg/L Myricetin: 0.99 ± 0.08 mg/L
Vanillic acid: 4.5 ± 0.06 mg/L Quercetin: 3.2 ± 0.01 mg/L
Caffeic acid: 17.8 ± 0.86 mg/L Stilbenes:
Syringic acid: 0.6 ± 0.07 mg/L trans-Resveratrol: 0.11 ± 0.01 mg/L
p-Coumaric acid: 2.2 ± 0.01 mg/L
Ferulic acid: 13.3 ± 0.34 mg/L
Sinapic acid: 2.2 ± 0.01 mg/L

Cherry juice 150–180

Flavonoids:

[112]

Delphinidin galactoside: 0.1 mg/L
Cyanidin galactoside: 1.4–1.7 mg/L
Cyanidin rubinoside: 1.0–1.2 mg/L
Pelargonidin galactoside: 3.4–4.0 mg/L
Pelargonidin rubinoside: 0.9–1.0 mg/L
Quercetin glucuronide: 2.3–2.8 mg/L
Kaempferol galactoside: 1.1–1.3 mg/L

Cherry 300

Total phenolic acids: 145.8 ± 11.0 mg/L Flavonoids:

[103]

Chlorogenic acid: 10.0 ± 0.36 mg/L Catechin: 7.14 ± 0.10 mg/L
Neochlorogenic acid: 18.5 ± 0.6 mg/L Myricetin: 1.9 ± 0.02 mg/L
Vanillic acid: 4.7 ± 0.22 mg/L Quercetin: 4.0 ± 0.08 mg/L

Caffeic acid: 54.6 ± 4.3 mg/L
Syringic acid: 0.50 ± 0.05 mg/L
p-Coumaric acid: 62.4 ± 5.5 mg/L
Ferulic acid: 16.0 ± 0.34 mg/L
Sinapic acid: 7.58 ± 0.58 mg/L

Chestnut 40

Total phenolic acids: 45.4 ± 0.68 mg/L Flavonoids:

[84]

Vanillic acid: 5.1 ± 0.06 mg/L Catechin: 4.6 ± 0.13 mg/L
Caffeic acid: 3.5 ± 0.03 mg/L Epicatechin: 3.7 ± 0.12 mg/L
Syringic acid: 1.2 ± 0.05 mg/L Stilbenes:
p-Coumaric acid: 3.4 ± 0.07 mg/L trans-Resveratrol: 0.3 ± 0.02 mg/L
Ferulic acid: 27.5 ± 0.43 mg/L
Sinapic acid: 4.7 ± 0.04 mg/L

Cocoa bean 10

Total phenolic acids: 38.7 ± 1.14 mg/L Flavonoids:

[84]

Vanillic acid: 3.4 ± 0.17 mg/L Catechin: 4.6 ± 0.02 mg/L
Caffeic acid: 3.7 ± 0.01 mg/L Epicatechin: 1.8 ± 0.11 mg/L
Syringic acid: 1.4 ± 0.05 mg/L Myricetin: 0.65 ± 0.02 mg/L
p-Coumaric acid: 3.3 ± 0.13 mg/L Quercetin: 1.5 ± 0.06 mg/L
Ferulic acid: 22.1 ± 0.73 mg/L Stilbenes:
Sinapic acid: 4.9 ± 0.05 mg/L trans-Resveratrol: 0.3 ± 0.01 mg/L
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Table 4. Cont.

Adjunct
Typology

Amount Added Bioactive Compound Ref.(g/L)

Coffee 35

Total phenolic acids: 36.2 ± 1.1 mg/L Flavonoids:

[84]

Chlorogenic acid: 1.6 ± 0.10 mg/L Epicatechin: 1.3 ± 0.07 mg/L
Vanillic acid: 2.0 ± 0.14 mg/L Myricetin: 0.39 ± 0.03 mg/L
Caffeic acid: 9.2 ± 0.21 mg/L Quercetin: 0.54 ± 0.02 mg/L
p-Coumaric acid: 1.9 ± 0.08 mg/L Stilbenes:
Ferulic acid: 20.5 ± 0.64 mg/L trans-Resveratrol: 0.23 ± 0.01 mg/L
Sinapic acid: 2.5 ± 0.02 mg/L

Eggplant-peel
extract

10
Flavonoids:

[108]total monomeric anthocyanins:
83.0 ± 2.0 mg/L delphinidin-3-glucoside
equivalents

Goji berry 50
Phenolic acids (free forms): Flavonoids:

[135]p-Coumaric acid: 1.4–8.0 mg/L Rutin: 1.4–23.1 mg/L
Ferulic acid: 2.0–7.6 mg/L

Grape 200

Total phenolic acids: 49.7 ± 2.2 mg/L Flavonoids:

[103]

Chlorogenic acid: 0.90 ± 0.04 mg/L Catechin: 7.3 ± 0.59 mg/L
Vanillic acid: 7.0 ± 0.07 mg/L Quercetin: 1.7 ± 0.06 mg/L
Caffeic acid: 13.4 ± 0.24 mg/L Stilbenes:
Syringic acid: 2.5 ± 0.15 mg/L trans-Resveratrol: 2.2 ± 0.03 mg/L
p-Coumaric acid: 7.2 ± 0.13 mg/L
Ferulic acid: 17.4 ± 1.6 mg/L
Sinapic acid: 2.2 ± 0.03 mg/L

Green tea 9

Total phenolic acids: 26.3 ± 1.0 mg/L Flavonoids:

[84]

Vanillic acid: 2.8 ± 0.15 mg/L Catechin: 3.0 ± 0.09 mg/L
Caffeic acid: 1.5 ± 0.18 mg/L Epicatechin: 3.1 ± 0.05 mg/L
Syringic acid: 0.96 ± 0.04 mg/L Rutin: 0.68 ± 0.02 mg/L
p-Coumaric acid: 2.2 ± 0.16 mg/L Myricetin: 1.7 ± 0.05 mg/L
Ferulic acid: 14.3 ± 0.40 mg/L Quercetin: 1.2 ± 0.09 mg/L
Sinapic acid: 4.5 ± 0.08 mg/L Stilbenes:

trans-Resveratrol: 0.32 ± 0.02 mg/L

Honey 62

Total phenolic acids: 34.4 ± 0.88 mg/L Flavonoids:

[84]

Vanillic acid: 3.1 ± 0.22 mg/L Epicatechin: 0.94 ± 0.05 mg/L
Caffeic acid: 2.4 ± 0.17 mg/L Rutin: 1.3 ± 0.02 mg/L
Syringic acid: 1.2 ± 0.10 mg/L Myricetin: 2.7 ± 0.18 mg/L
p-Coumaric acid: 1.7 ± 0.03 mg/L Quercetin: 4.7 ± 0.23 mg/L
Ferulic acid: 19.2 ± 0.33 mg/L Stilbenes:
Sinapic acid: 6.7 ± 0.03 mg/L trans-Resveratrol: 0.24 ± 0.01 mg/L

Licorice 2

Total phenolic acids: 36.9 ± 1.3 mg/L Flavonoids:

[84]

Vanillic acid: 2.3 ± 0.11 mg/L Rutin: 0.92 ± 0.10 mg/L
Caffeic acid: 3.7 ± 0.04 mg/L Myricetin: 8.8 ± 0.07 mg/L
Syringic acid: 0.67 ± 0.03 mg/L Quercetin: 2.6 ± 0.15 mg/L
p-Coumaric acid: 2.9 ± 0.14 mg/L Stilbenes:
Ferulic acid: 20.6 ± 0.87 mg/L trans-Resveratrol: 0.20 ± 0.01 mg/L
Sinapic acid: 6.7 ± 0.07 mg/L

Olive leaf 9.9
Oleuropein: 42–73 mg/L [164]3-hydroxytyrosol: 43–75 mg/L

Omija fruit 2

Lignans:

[111]Schisandrin: 9.0–12.1 mg/L
Gomisin A: 2.2–3.1 mg/L
Gomisin B: 0.65–0.86 mg/L

Orange peel 5

Total phenolic acids: 48.1 ± 1.7 mg/L Flavonoids:

[103]

Vanillic acid: 4.6 ± 0.45 mg/L Catechin: 10.9 ± 0.70 mg/L
Caffeic acid: 3.6 ± 0.09 mg/L Rutin: 1.5 ± 0.17 mg/L
Syringic acid: 0.55 ± 0.02 mg/L Myricetin: 0.76 ± 0.04 mg/L
p-Coumaric acid: 4.9 ± 0.13 mg/L Quercetin: 0.76 ± 0.01 mg/L
Ferulic acid: 27.9 ± 0.48 mg/L
Sinapic acid: 6.5 ± 0.55 mg/L
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Table 4. Cont.

Adjunct
Typology

Amount Added Bioactive Compound Ref.(g/L)

Peach 200

Total phenolic acids: 35.8 ± 2.0 mg/L Flavonoids:

[103]

Chlorogenic acid: 0.81 ± 0.05 mg/L Catechin: 5.7 ± 0.10 mg/L.
Neochlorogenic acid: 3.4 ± 0.11 mg/L Myricetin: 1.8 ± 0.07 mg/L.
Vanillic acid: 6.1 ± 0.76 mg/L Quercetin: 0.30 ± 0.01 mg/L.
Caffeic acid: 16.3 ± 0.87 mg/L Stilbenes:
Syringic acid: 0.72 ± 0.02 mg/L trans-Resveratrol: 1.0 ± 0.04 mg/L.
p-Coumaric acid: 1.3 ± 0.03 mg/L
Ferulic acid: 9.2 ± 0.23 mg/L
Sinapic acid: 2.2 ± 0.10 mg/L

Plum 200

Total phenolic acids: 119.8 ± 8.7 mg/L Flavonoids:

[103]

Chlorogenic acid: 8.94 ± 0.22 mg/L Catechin: 6.4 ± 0.37 mg/L
Neochlorogenic acid: 60.3 ± 1.2 mg/L Myricetin: 5.3 ± 0.32 mg/L
Vanillic acid: 2.7 ± 0.31 mg/L Quercetin: 1.5 ± 0.06 mg/L
Caffeic acid: 89.8 ± 7.5 mg/L
Syringic acid: 0.58 ± 0.03 mg/L
p-Coumaric acid: 12.2 ± 0.58 mg/L
Ferulic acid: 14.2 ± 0.29 mg/L
Sinapic acid: 0.33 ± 0.02 mg/L

Quince 100

Total hydroxycinnamic acids:

[156]
32.4–35.6 mg/L
Neochlorogenic acid: 3.9–5.1 mg/L
Chlorogenic acid: 6.5–9.7 mg/L
3,5-Dicaffeoylquinic acid: 3.0–3.2 mg/L

Raspberry 300

Total phenolic acids: 26.5 ± 0.80 mg/L Flavonoids:

[103]

Chlorogenic acid: 0.84 ± 0.10 mg/L Catechin: 6.0 ± 0.49 mg/L
Neochlorogenic acid: 2.6 ± 0.22 mg/L Myricetin: 1.5 ± 0.10 mg/L
Vanillic acid: 5.1 ± 0.22 mg/L Quercetin: 3.0 ± 0.12 mg/L
Caffeic acid: 2.8 ± 0.20 mg/L Stilbenes:
Syringic acid: 1.2 ± 0.09 mg/L trans-Resveratrol: 0.14 ± 0.01mg/L
p-Coumaric acid: 1.2 ± 0.12 mg/L
Ferulic acid: 13.1 ± 0.08 mg/L
Sinapic acid: 3.1 ± 0.08 mg/L

Saskatoon berry 250

Phenolic acids (free): Flavonoids:

[114]

Caffeic acid: 0.87–0.96 mg/L Kaempferol-3-O-glc-pent: 0.66–0.80 mg/L
Chlorogenic acid: 1.46–2.17 mg/L Kaempferol-3-O-rut: 0.78–0.81 mg/L

Neochlorogenic acid: 1.07–1.21 mg/L Kaempferol-3-O-rha-7-O-pent: 0.94–0.97
mg/L

Sinapic acid glucoside: 1.05–2.23 mg/L
Ferulic acid derivatives: 0.79–1.00 mg/L

Walnut 35

Total phenolic acids: 20.5 ± 0.88 mg/L Flavonoids:

[84]

Vanillic acid: 2.2 ± 0.26 mg/L Epicatechin: 1.8 ± 0.11 mg/L
Caffeic acid: 3.2 ± 0.15 mg/L Myricetin: 4.4 ± 0.27 mg/L
p-Coumaric acid: 4.3 ± 0.24 mg/L Quercetin: 6.5 ± 0.31 mg/L
Ferulic acid: 8.2 ± 0.17 mg/L Stilbenes:
Sinapic acid: 2.7 ± 0.06 mg/L trans-Resveratrol: 0.26 ± 0.20 mg/L

Values represent concentration range or mean ± standard deviation. Glc, glucoside; pent, pentoside; rut,
rutinoside; rha, rhamnoside.

From the data shown in Table 4, it can be concluded that the addition of fruit to beer is
responsible for the highest concentration of phenolic acids compared other types of adjunct.
Moreover, a significant strict correlation has been reported between antioxidant activity
and total phenolic acid content, as measured by HPLC, as well as between antioxidant
activity and the caffeic, vanillic, p-coumaric, chlorogenic, and sinapic acid contents of fruit
beers [103,156].

Among the flavonoids, the catechin, quercetin, and myricetin contents (Table 4)
showed remarkable differences compared to conventional beers (Table 2). The catechin
content, reported in 11 out of 23 reports, was higher in all the beers with adjuncts than in the
conventional beers, except in two cases (green-tea and cocoa-bean beers). The highest cate-
chin concentration was measured in beers brewed with orange peel (10.87 mg/L), followed
by apricot (9.99 mg/L), grape (7.30 mg/L), cherry (7.14 mg/L), and plum beer (6.42 mg/L)
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(Table 4). The presence of quercetin was reported in 14 out of the 23 reports (Table 4). Its
concentration was remarkably higher in walnut (6.55 mg/L), honey (4.67 mg/L), cherry
(3.99 mg/L), apricot (3.23 mg/L), raspberry (3.07 mg/L), and licorice (2.63 mg/L) beers
than in conventional beers (Table 2). A strict correlation between antioxidant activity and
catechin and quercetin content has been reported in fruit beers [103]. Myricetin content
is reported in 12 out of 23 reports (Table 4). The concentration of myricetin was notably
higher in all the beers analyzed than in conventional beers (Table 2), with the highest values
detected in licorice beer (8.82 mg/L), followed by plum (5.31 mg/L), walnut (4.44 mg/L),
cherry (1.88 mg/L), peach (1.78 mg/L), green-tea (1.69 mg/L), and raspberry (1.54 mg/L)
beers. For conventional beers, only one study is available, giving a myricetin concentration
in the range of 0.15–0.16 mg/L (Table 2) [128].

The presence of epicatechin and rutin was reported in six out of the twenty-three
reports (Table 4), and their concentrations were in the range measured in conventional beers
(Table 2), except for beer brewed with goji berries, which exhibited a rutin concentration in
the range of 1.38–23.13 mg/L. Derivatives of the flavonoid kaempferol have been identified
in beer with added saskatoon berry (Table 4) [114].

The flavonoid derivatives delphinidin galactoside, cyanidin galactoside, cyanidin
rubinoside, pelargonidin galactoside, pelargonidin rubinoside, quercetin glucuronide, and
kaempferol galactoside have been identified and quantified in cherry beer (Table 4). The
presence of the monomeric anthocyanins delphinidin glucoside, delphinidin rutinoside,
delphinidin rutinoside glucoside, cyanidin rutinoside, and petunidin rutinoside has been
reported in beer brewed with eggplant peels [108]. Monomeric and polymeric anthocyanins
have also been identified in beer brewed with hibiscus extract [157].

The presence of lignans was reported in one report out of the 23. The lignans schisan-
drin (range 8.96–12.10 mg/L), gomisin A (2.19–3.12 mg/L), and gomisin B (0.65–0.86 mg/L)
are present in beer with added omija fruits (Table 4).

Regarding the stilbenes, the presence of resveratrol in beer with added adjuncts was
reported by 12 out of the 23 reports, in the range of 0.11–2.24 mg/L beer. The highest
resveratrol concentrations were found in beer with added grape (2.24 mg/L) and peaches
(1.0 mg/L), followed by apple (0.56 mg/L), chestnut, green-tea, cocoa-bean, walnut, honey,
coffee, licorice, raspberry, and apricot beers (Table 4). Interestingly, the levels of resveratrol
measured in the beers with adjuncts were significantly higher than those reported for
conventional beer (0.001–0.077 mg/L, Table 2). Resveratrol is known to be present at
high levels in grape and wine. Recently, apple was suggested to be the secondary dietary
source of resveratrols, particularly piceid, in the form of resveratrol glycoside [165,166].
Resveratrol and piceid have also been reported to be present in many vegetable foods,
such as peanut butter, cocoa, apricots, walnut, pear, plum, honey, persimmon, celery,
orange, lemon, strawberry, mulberry, and many others [23,25,49,166–168]. Thus, the high
level of resveratrol measured in the beers with adjuncts is likely to have arisen from the
different adjuncts added during the brewing process, in addition to that derived from hop.
Moreover, although the studies mainly focused on resveratrol and its protective effects,
evidence has shown that piceid may be absorbed as resveratrol after it is de-glycosilated in
the mammalian small intestine and exerts its biological effects [169,170].

In the beer brewed with olive leaves, the presence of oleuropein (42–73 mg/L) and
of the phenolic alcohol 3-hydroxytyrosol (43-75 mg/L) has been reported (Table 4). For
comparison, 3-hydroxytyrosol is reported to be present in conventional beer in the range of
0.03–0.1 mg/L (Table 2). Therefore, the addition of olive leaves to beer during the brewing
process resulted in enrichment with high amounts of oleuropein and in a significant in-
crease in 3-hydroxytyrosol concentrations compared with conventional beers. Oleuropein
is the main polyphenol present in olive leaves and fruits. It is a phytoalexin with a catechol
function, giving hydroxytyrosol upon hydrolysis. Oleuropein has been reported to produce
strong antioxidant and anti-inflammatory activities, as exerting hepatoprotective, anti-
cancer, antidiabetic, neuroprotective, antiatherogenic and cardioprotective effects [151,171].
It was also shown to possess high levels of antimicrobial and antiviral activity.
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No data concerning the presence of prenyl flavonoids or alkylresorcinols in beers with
adjuncts are reported in the literature.

8. Influence of Brewing Processes on Antioxidant Properties and Polyphenol Contents
of Beer

The production of beers rich in antioxidants has caught the attention of the brewing
industry. The choice of ingredients is critical to obtain beer with high nutritional value in
terms of phenolic antioxidant content. Moreover, beers exhibiting high phenolic contents
and high antioxidant activity show improved quality, more stable aroma and flavor, foam
stability, and longer shelf life compared to beers with lower phenolic levels and weaker
antioxidant properties. The addition of fruits, vegetables, herbs, and natural foods during
the brewing process results in a significant increase in polyphenol contents, particularly
phenolic acids, flavonoids, and stilbenes, and in antioxidant activity compared with conven-
tional beers. The polyphenol contents and the antioxidant activity of beers with adjuncts
have been reported to be comparable to or even higher than those measured in white
wines [84]. Moreover, the addition of adjuncts during the brewing process may lead to
the enrichment of beer with unusual compounds, or it may increase the concentration of
molecules that would otherwise be present in beer at low levels. An example of this is the
addition of olive leaves during the brewing process, which leads not only to remarkable
increases in 3-hydroxytyrosol contents compared to conventional beers, but also leads to
the enrichment of the beer with oleuropein, a bioactive compound that is not present at
all in conventional beers. The use of wheat and rye might help to increase the alkylre-
sorcinol content of beer, while the use of oats might enrich beer with avenantramides, a
particular class of polyphenols with strong antioxidant activity, only present in oats. In
addition to polyphenols, beer ingredients and adjuncts, such as fruit, vegetables, herbs, and
natural foods also contain other antioxidants, such as carotenoids, tocopherols, ascorbic
acid, and Maillard-reaction products; the latter are generated during malting and wort boil-
ing [71,172]. All these compounds, although present in beer at low levels, might contribute
to some extent to the overall antioxidant activity of beer.

The beer content of phenolic-antioxidant compounds is also significantly affected
by hops, temperature, and the yeast strain [38]. The hopping method appears to play a
significant role in the content of phenolic compounds, with higher polyphenol concentra-
tions observed in the boiling stage hopped beer compared to dry hopping. The optimal
time and method for adding hops to beer varies, including adding the hops into the mash
prior to boiling, adding them later in the brewing process, usually in the last 2–7 days
of fermentation (for dry-hopped beers), or using the method of infusing beers with hop
extracts at the point of consumption via a Randall. All these approaches have the potential
to vary the amount of bioactive compounds in the final beer [173]. Temperature may also
influence the polyphenol composition of final beer. It was reported that the content of
polyphenols increased as the fermentation temperature decreased. Gallic, chlorogenic,
and ferulic phenolic acids were reported to be present at higher concentrations in beer
fermented at 18 ◦C compared to beer fermented at 12 ◦C, while tyrosol and vanillic acid
were higher in beers fermented at 12 ◦C [174]. The type of yeast strain has also been
reported to influence the phenolic content of final beer [174].

The brewing process itself may influence the content of bioactive compounds in the
final beer in two possible ways. First, the production of alcohol and increasing alcohol
concentrations might help to dissolve compounds from hops. The second potential effect
regards the production of secondary metabolites, especially with prolonged fermenta-
tion [173]. Leitao et al. investigated the effect of the various processing steps on both the
content and the antioxidant activity of beer phenolic compounds [175]. The evaluation
of beer antioxidant activity at different steps of beer processing (brewing, boiling, and
fermentation) showed that the total antioxidant activity remained unchanged throughout,
while the polyphenol content showed a three-fold increase. Hopping and fermentation
were the main causes of this increase. However, the increase in the polyphenolic content
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measured after fermentation could be attributed to the better extraction of polyphenols due
to the presence of ethanol, rather than to a real increase in their content [175]. The analytical
method used by the authors (liquid chromatography–antioxidant, LC–AOx) showed that
the largest antioxidant contribution was from catechin, caffeic acid, ferulic acid, and sinapic
acid, in addition to three unidentified compounds, probably with flavanoid structures, such
as polymers of gallocatechin. Other authors determined the phenolic contents during the
beer-production process, reporting contrasting results, with the contents of the phenolics
remaining constant, increasing, or decreasing. Zhao reported that the polyphenol content
increases during malting and mashing but decreases significantly during fermentation and
storage [176].

Regarding beer with added fruits, vegetables, herbs, and natural food, the adjuncts
were added during wort boiling, fermentation, and maturation, or before packaging.
Additions performed during the wort-boiling step result in a more efficient extraction of
phenolic compounds from the adjunct compared to when the addition is performed in late
stages [177]. Ducruet et al. reported the effect of the addition of goji berries at different
stages of the brewing process [135]. The addition of goji berries at any stage during the
brewing process resulted in a beer with a significantly higher concentration of bioactive
compounds and stronger antioxidant activity than the control beer without any adjuncts; the
best result was obtained by adding the goji berries to the wort at the beginning of brewing
process, before wort boiling [135]. A similar behavior has been described for the addition
of omija fruits [111]. On the other hand, it has been observed that the addition of fresh
cherry juice before the beginning of the secondary fermentation stage results in polyphenol
contents and antioxidant activity that are significantly higher than those obtained by adding
fresh cherry juice to wort before the beginning of the primary fermentation stage [112].
Moreover, Gasinski et al. added mango fruit to beer in five different forms to ascertain
the kind of preparation that would improve beer quality [109]. The beer prepared with
fresh mango juice showed higher levels of polyphenols and antioxidant activity than those
prepared with pulp or raw mango.

Along with increasing interest in the potential health benefits of beer, it is important
to consider the potential negative aspects of beer consumption, which are associated with
its alcohol (and energy) content. The risks of alcohol consumption are well established,
with researchers having moved from the view that moderate (<14 units/week) alcohol
consumption may be associated with reduced risk of mortality and, especially, of cardio-
vascular disease to the more contemporary view that there may be no safe threshold for
alcohol consumption [178,179].

Recently, the increasing interest of consumers in health and alcohol-abuse issues
focused attention of breweries on low-alcohol and non-alcoholic beers. The technical
issues in producing beers with low alcohol content include the consequences of brewing
to a lower ethanol content than that of regular beer, and the physical removal of ethanol
after fermentation [180]. The dealcoholization approach can have undesirable effects, as
it can result in cooked flavors if heat is used to evaporate the ethanol. In addition, heat
might, in addition to removing alcohol, denature potential prebiotics and polyphenols.
Moreover, during fermentation, yeast produces various volatile by-products, such as esters
and alcohols, contributing to the aroma and flavor of the beer. The alcohol removal results
in the loss of these substances. Biological methods for non-alcoholic-beer production are
based on arrested fermentation, with a normal production of yeast or limited ethanol
production during fermentation. Among these, the use of non-conventional yeast strains to
produce low-alcohol or non-alcoholic beers, with improved flavor and aroma, is becoming
popular. Non-conventional yeast strains can ferment glucose, fructose, and sucrose, but not
maltose, an abundant sugar present in the wort, while producing typical concentrations of
aroma compounds and generating volatile flavor compounds [181,182].

Non-alcoholic beers have been reported to exhibit phenolic contents and antioxidant
activities that are somewhat lower than those of conventional beers [48,104,136,183]. The
lower phenolic contents of non-alcoholic beers might be due to the limitations of the fer-
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mentation or losses during the dealcoholization procedure. Recently, the characterization of
non-alcoholic beer fermented by Pichia myanmarensis, a non-conventional maltose-negative
yeast strain, and the effects of the addition of quinoa (Chenopodium quinoa Wild.) have
been reported [183]. The non-conventional yeast strain used in this study can ferment the
simple sugars but not the maltose present in the wort [184]. The ethanol content of the beer
obtained with this special yeast strain was in the non-alcoholic range (0.27–0.48% ABV).
The addition of different amounts of quinoa (range, 10–30%) during the brewing process
significantly increased the total polyphenol and total flavonoid contents and the antioxidant
activity of the beer. Therefore, the addition of adjuncts such as fruits, vegetables, herbs, and
natural foods might be used to increase the content of antioxidant bioactive molecules and
the antioxidant properties of non-alcoholic beers.

9. Conclusions and Future Perspectives

The antioxidant properties and phenolic contents of beer rely on the quantity and
quality of the starting ingredients, the adjuncts added, and the brewing process. The advent
of high-resolution chromatographic techniques coupled with mass spectrometry allowed
the reliable identification and accurate quantitation of phenolic molecules. The addition
of adjuncts, such as fruits, vegetables, herbs, and natural foods, results in enrichment in
phenolic acids, flavonoids, and stilbene molecules, thus improving the nutritional value of
beer. The use of specific ingredients, such as oats, and the addition of specific adjuncts, such
as olive leaves, enrich beer with particular classes of phenolic molecules, avenanthramides,
and phenolic alcohol, respectively, with strong antioxidant and biological activities. In the
same way, the use of wheat and rye in brewing processes may increase the alkylresorcinol
concentration in the final beer. The yeast strain, the temperature, and the stage of at
which the adjunct is added also influence the final composition and properties of beer. In
conclusion, beer may contribute remarkably to the overall dietary intake of antioxidants,
and the addition of adjuncts to beer may significantly strengthen this contribution.

Currently, there is increasing customer demand for diversity in beer styles, stimulating
the search for new approaches, such as alternative yeasts and the addition of natural
adjuncts to improve the taste and sensory characteristics of beers. Moreover, there is an
increasing demand for low-alcohol and non-alcoholic beers. Brewing might be developed
to maximize any theoretical health benefits and to minimize potential adverse effects.
Therefore, careful consideration should be given to novel brewing techniques and yeasts
that could help to moderate or minimize alcohol content whilst optimizing flavor, bioactive-
compound contents, and healthy effects. The addition of natural adjuncts (fruits, vegetables,
herbs, and natural foods) and the use of new brewing yeasts are innovative approaches
to the production of special and healthy beers. Future studies need to complete the
identification and characterization of the bioactive molecules in beer, as well as their
absorption and metabolic fate in humans.
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spectrometry; HPLC, high-performance liquid chromatography; HPLC-MS; high-performance liq-



Molecules 2023, 28, 3221 23 of 29

uid chromatography–mass spectrometry; UHPLC, ultra-high-performance liquid chromatography;
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