Evaluation of In Vivo Prepared Albumin-Drug Conjugate Using Immunoprecipitation Linked LC-MS Assay and Its Application to Mouse Pharmacokinetic Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bioanalytical Method Development and Qualification
2.2. In Vitro Plasma Stability in Mouse and Human Plasma
2.3. Application for In Vivo Mouse Pharmacokinetic Study
3. Materials and Methods
3.1. Materials
3.2. Preparation of Stocks, Standard (STD) and Quality Control (QC) Samples
3.3. Sample Preparation
3.4. Method Qualification
3.5. In Vitro Mouse and Human Plasma Stability
3.6. Application for Preclinical In Vivo Mouse Pharmacokinetic Study
3.7. LC-qTOF/MS Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, T. All About Albumin: Biochemistry, Genetics and Medical Application; Academic Press Limited: Cambridge, MA, USA, 1995. [Google Scholar]
- He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature 1992, 358, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleep, D. Albumin and its application in drug delivery. Expert Opin. Drug Deliv. 2015, 12, 793–812. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: Harnessing nature to cure disease. Mol. Cell. Ther. 2016, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Sande, L.; Cosyns, S.; Willaert, W.; Ceelen, W. Albumin-based cancer therapeutics for intraperitoneal drug delivery: A review. Drug Deliv. 2020, 27, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm. 2021, 18, 1862–1894. [Google Scholar] [CrossRef]
- Chatterjee, M.; Ben-Josef, E.; Robb, R.; Vedaie, M.; Seum, S.; Thirumoorthy, K.; Palanichamy, K.; Harbrecht, M.; Chakravarti, A.; Williams, T.M. Caveolae-Mediated Endocytosis Is Critical for Albumin Cellular Uptake and Response to Albumin-Bound ChemotherapyCaveolin-1, Albumin, and Nab-Paclitaxel Response. Cancer Res. 2017, 77, 5925–5937. [Google Scholar] [CrossRef] [Green Version]
- Komiya, K.; Nakamura, T.; Nakashima, C.; Takahashi, K.; Umeguchi, H.; Watanabe, N.; Sato, A.; Takeda, Y.; Kimura, S.; Sueoka-Aragane, N. SPARC is a possible predictive marker for albumin-bound paclitaxel in non-small-cell lung cancer. OncoTargets Ther. 2016, 9, 6663. [Google Scholar] [CrossRef] [Green Version]
- Sanità, G.; Armanetti, P.; Silvestri, B.; Carrese, B.; Calì, G.; Pota, G.; Pezzella, A.; d’Ischia, M.; Luciani, G.; Menichetti, L. Albumin-modified melanin-silica hybrid nanoparticles target breast cancer cells via a SPARC-dependent mechanism. Front. Bioeng. Biotechnol. 2020, 8, 765. [Google Scholar] [CrossRef]
- Elsadek, B.; Kratz, F. Impact of albumin on drug delivery—New applications on the horizon. J. Control. Release 2012, 157, 4–28. [Google Scholar] [CrossRef]
- Graeser, R.; Esser, N.; Unger, H.; Fichtner, I.; Zhu, A.; Unger, C.; Kratz, F. INNO-206, the (6-maleimidocaproyl hydrazone derivative of doxorubicin), shows superior antitumor efficacy compared to doxorubicin in different tumor xenograft models and in an orthotopic pancreas carcinoma model. Investig. New Drugs 2010, 28, 14–19. [Google Scholar] [CrossRef]
- Legigan, T.; Clarhaut, J.; Renoux, B.; Tranoy-Opalinski, I.; Monvoisin, A.; Berjeaud, J.-M.; Guilhot, F.o.; Papot, S.b. Synthesis and antitumor efficacy of a β-glucuronidase-responsive albumin-binding prodrug of doxorubicin. J. Med. Chem. 2012, 55, 4516–4520. [Google Scholar] [CrossRef]
- Pes, L.; Koester, S.D.; Magnusson, J.P.; Chercheja, S.; Medda, F.; Ajaj, K.A.; Rognan, D.; Daum, S.; Nollmann, F.I.; Fernandez, J.G. Novel auristatin E-based albumin-binding prodrugs with superior anticancer efficacy in vivo compared to the parent compound. J. Control. Release 2019, 296, 81–92. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kawano, I.; Iwase, H. Nab-paclitaxel for the treatment of breast cancer: Efficacy, safety, and approval. OncoTargets Ther. 2011, 4, 123. [Google Scholar] [CrossRef] [Green Version]
- Mahtani, R.L.; Parisi, M.; Glück, S.; Ni, Q.; Park, S.; Pelletier, C.; Faria, C.; Braiteh, F. Comparative effectiveness of early-line nab-paclitaxel vs. paclitaxel in patients with metastatic breast cancer: A US community-based real-world analysis. Cancer Manag. Res. 2018, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- Belbekhouche, S.; Guerrouache, M.; Carbonnier, B. Thiol–maleimide michael addition click reaction: A new route to surface modification of porous polymeric monolith. Macromol. Chem. Phys. 2016, 217, 997–1006. [Google Scholar] [CrossRef]
- Northrop, B.H.; Frayne, S.H.; Choudhary, U. Thiol–maleimide “click” chemistry: Evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity. Polym. Chem. 2015, 6, 3415–3430. [Google Scholar] [CrossRef]
- Su, D.; Zhang, D. Linker design impacts antibody-drug conjugate pharmacokinetics and efficacy via modulating the stability and payload release efficiency. Front. Pharmacol. 2021, 12, 687926. [Google Scholar] [CrossRef]
- Aggarwal, N.; Sloane, B.F. Cathepsin B: Multiple roles in cancer. Proteom. Clin. Appl. 2014, 8, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Awolade, P.; Cele, N.; Kerru, N.; Gummidi, L.; Oluwakemi, E.; Singh, P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur. J. Med. Chem. 2020, 187, 111921. [Google Scholar] [CrossRef]
- Kang, M.S.; Kong, T.W.S.; Khoo, J.Y.X.; Loh, T.-P. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody–drug conjugates. Chem. Sci. 2021, 12, 13613–13647. [Google Scholar] [CrossRef]
- Tranoy-Opalinski, I.; Legigan, T.; Barat, R.; Clarhaut, J.; Thomas, M.; Renoux, B.; Papot, S. β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: An update. Eur. J. Med. Chem. 2014, 74, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.I.; Park, M.-H.; Byeon, J.-J.; Shin, S.-H.; Choi, J.; Park, Y.; Park, Y.-H.; Chae, J.; Shin, Y.G. Quantification of an Antibody-Conjugated Drug in Fat Plasma by an Affinity Capture LC-MS/MS Method for a Novel Prenyl Transferase-Mediated Site-Specific Antibody–Drug Conjugate. Molecules 2020, 25, 1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renoux, B.; Fangous, L.; Hötten, C.; Péraudeau, E.; Eddhif, B.; Poinot, P.; Clarhaut, J.; Papot, S. A β-glucuronidase-responsive albumin-binding prodrug programmed for the double release of monomethyl auristatin E. MedChemComm 2018, 9, 2068–2071. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, D.M.; Cardillo, T.M.; Govindan, S.V.; Rossi, E.A.; Sharkey, R.M. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 2015, 6, 22496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, U.Y.; Benoit, L.T.; Stevens, N.S.; Emmerton, K.K.; Zaval, M.; Cochran, J.H.; Senter, P.D. Lactone stabilization is not a necessary feature for antibody conjugates of camptothecins. Mol. Pharm. 2018, 15, 4063–4072. [Google Scholar] [CrossRef]
- Bateman, K.P.; Cohen, L.; Emary, B.; Pucci, V. Standardized workflows for increasing efficiency and productivity in discovery stage bioanalysis. Bioanalysis 2013, 5, 1783–1794. [Google Scholar] [CrossRef]
- Lahnsteiner, M.; Kastner, A.; Mayr, J.; Roller, A.; Keppler, B.K.; Kowol, C.R. Improving the stability of maleimide–thiol conjugation for drug targeting. Chem. A Eur. J. 2020, 26, 15867–15870. [Google Scholar] [CrossRef]
- Nilsen, J.; Sandlie, I.; Roopenian, D.C.; Andersen, J.T. Animal models for evaluation of albumin-based therapeutics. Curr. Opin. Chem. Eng. 2018, 19, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Kolakowski, R.V.; Haelsig, K.T.; Emmerton, K.K.; Leiske, C.I.; Miyamoto, J.B.; Cochran, J.H.; Lyon, R.P.; Senter, P.D.; Jeffrey, S.C. The methylene alkoxy carbamate self-immolative unit: Utilization for the targeted delivery of alcohol-containing payloads with antibody–drug conjugates. Angew. Chem. Int. Ed. 2016, 55, 7948–7951. [Google Scholar] [CrossRef]
- Kostova, V.; Désos, P.; Starck, J.-B.; Kotschy, A. The chemistry behind ADCs. Pharmaceuticals 2021, 14, 442. [Google Scholar] [CrossRef]
- Gavriel, A.; Sambrook, M.; Russell, A.T.; Hayes, W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym. Chem. 2022, 13, 3188–3269. [Google Scholar] [CrossRef]
- Gough, K.; Hutchison, M.; Keene, O.; Byrom, B.; Ellis, S.; Lacey, L.; McKellar, J. Assessment of dose proportionality: Report from the statisticians in the pharmaceutical industry/pharmacokinetics UK joint working party. Drug Inf. J. 1995, 29, 1039–1048. [Google Scholar] [CrossRef]
- Smith, B.P.; Vandenhende, F.R.; DeSante, K.A.; Farid, N.A.; Welch, P.A.; Callaghan, J.T.; Forgue, S.T. Confidence interval criteria for assessment of dose proportionality. Pharm. Res. 2000, 17, 1278–1283. [Google Scholar] [CrossRef]
- Hummel, J.; McKendrick, S.; Brindley, C.; French, R. Exploratory assessment of dose proportionality: Review of current approaches and proposal for a practical criterion. Pharm. Stat. J. Appl. Stat. Pharm. Ind. 2009, 8, 38–49. [Google Scholar] [CrossRef]
Intra-Run Assay | ||||
---|---|---|---|---|
Run No. | Statistics | Low QC (400 ng/mL) | Medium QC (2000 ng/mL) | High QC (8000 ng/mL) |
1 | Mean concentration (ng/mL) | 417.25 | 1994.94 | 7487.20 |
Accuracy (%) | 104.31 | 99.75 | 93.59 | |
Precision (%, CV) | 15.07 | 21.36 | 3.58 | |
2 | Mean concentration (ng/mL) | 447.86 | 2090.10 | 8071.21 |
Accuracy (%) | 111.96 | 104.50 | 100.89 | |
Precision (%, CV) | 10.77 | 6.31 | 17.29 | |
3 | Mean concentration (ng/mL) | 394.98 | 1867.89 | 7990.39 |
Accuracy (%) | 98.75 | 93.39 | 99.88 | |
Precision (%, CV) | 15.02 | 4.73 | 18.32 | |
Inter-Run Assay | ||||
Run 1~3 | Mean concentration (ng/mL) | 420.03 | 1984.31 | 7849.60 |
Accuracy (%) | 105.01 | 99.22 | 98.12 | |
Precision (%, CV) | 12.25 | 11.74 | 12.69 |
Assessment | Statistics | Low QC (400 ng/mL) | Medium QC (2000 ng/mL) | High QC (8000 ng/mL) |
---|---|---|---|---|
Short-term stability | Mean concentration | 362.18 | 1917.73 | 8152.33 |
Accuracy (%) | 90.54 | 95.89 | 101.90 | |
Precision (%, CV) | 12.15 | 17.46 | 6.62 | |
Long-term stability | Mean concentration | 446.90 | 1724.19 | 6159.21 |
Accuracy (%) | 111.73 | 86.21 | 76.99 | |
Precision (%, CV) | 8.23 | 3.17 | 3.02 | |
Freeze-thaw stability | Mean concentration | 484.37 | 1969.98 | 8172.28 |
Accuracy (%) | 121.09 | 98.50 | 102.15 | |
Precision (%, CV) | 1.84 | 8.64 | 12.78 |
PK Parameters | ||||||
---|---|---|---|---|---|---|
T1/2 (min) | Cmax (ng/mL) | AUClast (min × ng/mL) | AUCINF (min × ng/mL) | CL (mL/min/kg) | Vss (mL/kg) | |
MAC glucuronide phenol linked SN-38 IV 1 mg/kg | 2187.81 | 3291.42 | 2,495,425.63 | 2,845,522.93 | 0.35 | 863.47 |
SD | 531.83 | 529.00 | 236,162.83 | 209,510.79 | 0.03 | 163.66 |
MAC glucuronide phenol linked SN-38 IV 3 mg/kg | 2986.94 | 11,772.15 | 10,577,105.23 | 10,884,918.68 | 0.28 | 818.41 |
SD | 822.30 | 2030.98 | 1,777,851.60 | 1,782,896.03 | 0.04 | 138.86 |
SN-38 IV 1 mg/kg | 239.19 | 218.71 | 4357.47 | 5225.42 | 191.49 | 36,420 |
SD | 34.23 | 41.04 | 288.08 | 28.32 | 1.04 | 9470 |
Time (min) | Mobile Phase B (%) |
---|---|
0.0 | 10 |
0.5 | 10 |
0.95 | 95 |
1.4 | 95 |
1.5 | 10 |
3.0 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.-H.; Park, M.; Park, Y.; Park, S.-J.; Lee, J.; Hwang, S.; Lee, J.; Lee, Y.; Jo, E.; Shin, Y.G. Evaluation of In Vivo Prepared Albumin-Drug Conjugate Using Immunoprecipitation Linked LC-MS Assay and Its Application to Mouse Pharmacokinetic Study. Molecules 2023, 28, 3223. https://doi.org/10.3390/molecules28073223
Lim J-H, Park M, Park Y, Park S-J, Lee J, Hwang S, Lee J, Lee Y, Jo E, Shin YG. Evaluation of In Vivo Prepared Albumin-Drug Conjugate Using Immunoprecipitation Linked LC-MS Assay and Its Application to Mouse Pharmacokinetic Study. Molecules. 2023; 28(7):3223. https://doi.org/10.3390/molecules28073223
Chicago/Turabian StyleLim, Jeong-Hyeon, Minjae Park, Yuri Park, Seo-Jin Park, Jiyu Lee, Sangsoo Hwang, Jeongmin Lee, Yujin Lee, Eunjeong Jo, and Young G. Shin. 2023. "Evaluation of In Vivo Prepared Albumin-Drug Conjugate Using Immunoprecipitation Linked LC-MS Assay and Its Application to Mouse Pharmacokinetic Study" Molecules 28, no. 7: 3223. https://doi.org/10.3390/molecules28073223
APA StyleLim, J. -H., Park, M., Park, Y., Park, S. -J., Lee, J., Hwang, S., Lee, J., Lee, Y., Jo, E., & Shin, Y. G. (2023). Evaluation of In Vivo Prepared Albumin-Drug Conjugate Using Immunoprecipitation Linked LC-MS Assay and Its Application to Mouse Pharmacokinetic Study. Molecules, 28(7), 3223. https://doi.org/10.3390/molecules28073223