Effect of Seed Priming with Chitosan Hydrolysate on Lettuce (Lactuca sativa) Growth Parameters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Seed Germination
2.2. Influence of Chitosan on Plant Morphology
2.3. Root Activity
2.4. Effect on Photosynthetic Pigments in Leaves
2.5. Effect on Protein Content in Leaves
2.6. Phenolic Content and Activity of Enzymes of Phenolic Metabolism in Leaves
2.7. Effect on the Activity of β-1,3-Glucanases and Chitinases in Leaves
3. Materials and Methods
3.1. Chitosan Hydrolysate Preparation
3.2. Germination Assay
3.3. Electrolyte Leakage from Lettuce Seeds
3.4. Plant Growth
3.5. Leaf Area
3.6. Determination of Chlorophyll and Carotenoid Content in Lettuce Leaves
3.7. Determination of Total Phenolics in Lettuce Leaves
3.8. Extraction of Biomolecules from Lettuce Leaves
3.9. Determination of Protein Content in Lettuce Leaves
3.10. Polyphenol Oxidase Activity in Lettuce Leaves
3.11. β-1,3-Glucanase and Chitinase Activity in Lettuce Leaves
3.12. Determination of Phenylalanine Ammonia-Lyase Activity in Lettuce Leaves
3.13. Effect of Chitosan Treatment on Root Activity
3.14. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Johnson, R.; Puthur, J.T. Seed Priming as a Cost Effective Technique for Developing Plants with Cross Tolerance to Salinity Stress. Plant Physiol. Biochem. 2021, 162, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Fotopoulos, V. Priming and Pretreatment of Seeds and Seedlings; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer Singapore: Singapore, 2019; ISBN 978-981-13-8624-4. [Google Scholar] [CrossRef]
- Li, K.; Xing, R.; Liu, S.; Li, P. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. J. Agric. Food Chem. 2020, 68, 12203–12211. [Google Scholar] [CrossRef] [PubMed]
- Chamnanmanoontham, N.; Pongprayoon, W.; Pichayangkura, R.; Roytrakul, S.; Chadchawan, S. Chitosan Enhances Rice Seedling Growth via Gene Expression Network between Nucleus and Chloroplast. Plant Growth Regul. 2015, 75, 101–114. [Google Scholar] [CrossRef]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, M.A.R.; Bhowmik, P.; Mahmud, N.U.; Tanveer, M.; Islam, T. Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Guan, Y.; Hu, J.; Wang, X.; Shao, C. Seed Priming with Chitosan Improves Maize Germination and Seedling Growth in Relation to Physiological Changes under Low Temperature Stress. J. Zhejiang Univ. Sci. B 2009, 10, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Falcón-Rodríguez, A.B.; Costales, D.; Gónzalez-Peña, D.; Morales, D.; Mederos, Y.; Jerez, E.; Cabrera, J.C. Chitosans of Different Molecular Weight Enhance Potato (Solanum tuberosum L.) Yield in a Field Trial. Span. J. Agric. Res. 2017, 15, e0902. [Google Scholar] [CrossRef] [Green Version]
- Mondal, M.M.A.; Puteh, A.B.; Dafader, N.C. Foliar Application Of Chitosan Improved Morpho-Physiological Attributes And Yield in Summer Tomato (Solanum lycopersicum). Pak. J. Agric. Sci. 2016, 53, 339–344. [Google Scholar] [CrossRef]
- Monirul, I.M.; Humayun, K.M.; Mamun, A.N.; Monirul, I.; Monirul, I.M.; Pronabananda, D. Studies on Yield and Yield Attributes in Tomato and Chilli Using Foliar Application of Oligo-Chitosan. GSC Biol. Pharm. Sci. 2018, 3, 020–028. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Chen, Y.; Zhang, R.; Wang, W.; Zhao, X.; Du, Y.; Yin, H. Effects of Chitosan Oligosaccharides on the Yield Components and Production Quality of Different Wheat Cultivars (Triticum aestivum L.) in Northwest China. Field Crops Res. 2015, 172, 11–20. [Google Scholar] [CrossRef]
- Malerba, M.; Cerana, R. Chitosan Effects on Plant Systems. Int. J. Mol. Sci. 2016, 17, 996. [Google Scholar] [CrossRef]
- Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; et al. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce—A Comprehensive Review. Antioxidants 2022, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- ISTA. International Rules for Testing Seeds; ISTA: East Lansing, MI, USA, 2006; ISBN 9783906549699. [Google Scholar]
- Goñi, M.G.; Moreira, M.R.; Viacava, G.E.; Roura, S.I. Optimization of Chitosan Treatments for Managing Microflora in Lettuce Seeds without Affecting Germination. Carbohydr. Polym. 2013, 92, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.S.; Pereira, I.P.; Dias, L.S. Investigating and Modeling the Combined Effects of pH and Osmotic Pressure on Seed Germination for Use in Phytoactivity and Allelopathic Research. Plant Biosyst. 2017, 151, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, T. Ph Restraints on Lettuce Fruit Germination. Ann. Bot. 1975, 39, 797–805. [Google Scholar] [CrossRef]
- Viacava, G.E.; Roura, S.I. Principal Component and Hierarchical Cluster Analysis to Select Natural Elicitors for Enhancing Phytochemical Content and Antioxidant Activity of Lettuce Sprouts. Sci. Hortic. 2015, 193, 13–21. [Google Scholar] [CrossRef]
- Odat, N.; Tawaha, A.M.; Hasan, M.; Imran; Amanullah; Al-Tawaha, A.R.; Thangadurai, D.; Sangeetha, J.; Rauf, A.; Khalid, S.; et al. Seed Priming with Chitosan Alleviates Salinity Stress by Improving Germination and Early Growth Parameters in Common Vetch (Vicia sativa). IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 012059. [Google Scholar] [CrossRef]
- Al-Tawaha, A.R.M.; Al-Ghzawi, A.L.A. Effect of Chitosan Coating on Seed Germination and Salt Tolerance of Lentil (Lens culinaris L.). Res. Crop. 2013, 14, 489–491. [Google Scholar]
- Jogaiah, S.; Satapute, P.; De Britto, S.; Konappa, N.; Udayashankar, A.C. Exogenous Priming of Chitosan Induces Upregulation of Phytohormones and Resistance against Cucumber Powdery Mildew Disease Is Correlated with Localized Biosynthesis of Defense Enzymes. Int. J. Biol. Macromol. 2020, 162, 1825–1838. [Google Scholar] [CrossRef]
- Fu, X.; Zhu, L.; Li, L.; Zhang, T.; Li, M.; Mou, H. Eco-Friendly Preparation of Chitooligosaccharides with Different Degrees of Deacetylation from Shrimp Shell Waste and Their Effects on the Germination of Wheat Seeds. Mar. Life Sci. Technol. 2019, 1, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Al-Maskri, A.Y.; Al-Manthery, O.; Al-Habsi, K.; Khan, M.M. Effect of Accelerated Aging on Seed Germination, Vigour, Lipid Peroxidation, and Membrane Integrity in Wheat. J. Agric. Mar. Sci. 2001, 6, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Adetunji, A.E.; Sershen; Varghese, B.; Pammenter, N.W. Effects of Inorganic Salt Solutions on Vigour, Viability, Oxidative Metabolism and Germination Enzymes in Aged Cabbage and Lettuce Seeds. Plants 2020, 9, 1164. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, T.M.; Tekrony, D.M.; Egli, D.B. The Bulk Conductivity Test As an Indicator of Soybean Seed Quality. J. Seed Technol. 1988, 12, 37–53. [Google Scholar]
- Pandey, D.K. Conductivity Testing of Seeds. In Seed Analisys; Springer: Berlin/Heidelberg, Germany, 1992; pp. 273–304. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, Z.; Han, X.; Zhang, C.; Li, H.; Wu, M. Chitosan Soaking Improves Seed Germination of Platycodon grandiflorus and Enhances Its Growth, Photosynthesis, Resistance, Yield, and Quality. Horticulturae 2022, 8, 943. [Google Scholar] [CrossRef]
- Ling, Y.; Zhao, Y.; Cheng, B.; Tan, M.; Zhang, Y.; Li, Z. Seed Priming with Chitosan Improves Germination Characteristics Associated with Alterations in Antioxidant Defense and Dehydration-Responsive Pathway in White Clover under Water Stress. Plants 2022, 11, 2015. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Kim, Y.-H.; Kim, S.-B. Changes in the Respiration, Growth, and Vitamin C Content of Soybean Sprouts in Response to Chitosan of Different Molecular Weights. HortScience 2005, 40, 1333–1335. [Google Scholar] [CrossRef] [Green Version]
- Asgari-Targhi, G.; Iranbakhsh, A.; Ardebili, Z.O. Potential Benefits and Phytotoxicity of Bulk and Nano-Chitosan on the Growth, Morphogenesis, Physiology, and Micropropagation of Capsicum Annuum. Plant Physiol. Biochem. 2018, 127, 393–402. [Google Scholar] [CrossRef]
- Iglesias, M.J.; Colman, S.L.; Terrile, M.C.; París, R.; Martín-Saldaña, S.; Chevalier, A.A.; Álvarez, V.A.; Casalongué, C.A. Enhanced Properties of Chitosan Microparticles over Bulk Chitosan on the Modulation of the Auxin Signaling Pathway with Beneficial Impacts on Root Architecture in Plants. J. Agric. Food Chem. 2019, 67, 6911–6920. [Google Scholar] [CrossRef]
- Lopez-Moya, F.; Escudero, N.; Zavala-Gonzalez, E.A.; Esteve-Bruna, D.; Blázquez, M.A.; Alabadí, D.; Lopez-Llorca, L.V. Induction of Auxin Biosynthesis and WOX5 Repression Mediate Changes in Root Development in Arabidopsis Exposed to Chitosan. Sci. Rep. 2017, 7, 16813. [Google Scholar] [CrossRef] [Green Version]
- Forde, B.G. Nitrogen Signalling Pathways Shaping Root System Architecture: An Update. Curr. Opin. Plant Biol. 2014, 21, 30–36. [Google Scholar] [CrossRef]
- Walch-Liu, P.; Ivanov, I.I.; Filleur, S.; Gan, Y.; Remans, T.; Forde, B.G. Nitrogen Regulation of Root Branching. Ann. Bot. 2006, 97, 875–881. [Google Scholar] [CrossRef]
- Inoue, Y.; Yamaoka, K.; Kimura, K.; Sawai, K.; Arai, T. Effects of Low pH on the Induction of Root Hair Formation in Young Lettuce (Lactuca sativa L. Cv. Grand Rapids) Seedlings. J. Plant Res. 2000, 113, 39–44. [Google Scholar] [CrossRef]
- Li, J.; Han, A.; Zhang, L.; Meng, Y.; Xu, L.; Ma, F.; Liu, R. Chitosan Oligosaccharide Alleviates the Growth Inhibition Caused by Physcion and Synergistically Enhances Resilience in Maize Seedlings. Sci. Rep. 2022, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Gai, Z.; Zhang, J.; Li, C. Effects of Starter Nitrogen Fertilizer on Soybean Root Activity, Leaf Photosynthesis and Grain Yield. PLoS ONE 2017, 12, e0174841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhoum, G.S.; Sadak, M.S.; Badr, E.A.E.M. Mitigation of Adverse Effects of Salinity Stress on Sunflower Plant (Helianthus annuus L.) by Exogenous Application of Chitosan. Bull. Natl. Res. Cent. 2020, 44, 79. [Google Scholar] [CrossRef]
- Sadak, M.S.; Talaat, I.M. Attenuation of Negative Effects of Saline Stress in Wheat Plant by Chitosan and Calcium Carbonate. Bull. Natl. Res. Cent. 2021, 45, 136. [Google Scholar] [CrossRef]
- Kouril, R.; Ilík, P.; Naus, J.; Schoefs, B. On the Limits of Applicability of Spectrophotometric and Spectrofluorimetric Methods for the Determination of Chlorophyll A/b Ratio. Photosynth. Res. 1999, 62, 107–116. [Google Scholar] [CrossRef]
- Grover, A.; Mohanty, P. Leaf Senescence-Induced Alterations in Structure and Function of Higher Plant Chloroplasts. In Photosynthesis: Photoreactions to Plant Productivity; Springer Netherlands: Dordrecht, The Netherlands, 1993; pp. 225–255. [Google Scholar]
- Lichtenthaler, H.K.; Babani, F.; Langsdorf, G.; Buschmann, C. Measurement of Differences in Red Chlorophyll Fluorescence and Photosynthetic Activity between Sun and Shade Leaves by Fluorescence Imaging. Photosynthetica 2000, 38, 521–529. [Google Scholar] [CrossRef]
- Tamary, E.; Nevo, R.; Naveh, L.; Levin-Zaidman, S.; Kiss, V.; Savidor, A.; Levin, Y.; Eyal, Y.; Reich, Z.; Adam, Z. Chlorophyll Catabolism Precedes Changes in Chloroplast Structure and Proteome during Leaf Senescence. Plant Direct 2019, 3, e00127. [Google Scholar] [CrossRef]
- Fu, W.; Li, P.; Wu, Y. Effects of Different Light Intensities on Chlorophyll Fluorescence Characteristics and Yield in Lettuce. Sci. Hortic. 2012, 135, 45–51. [Google Scholar] [CrossRef]
- Fontes, P.C.R.; Pereira, P.R.G.; Conde, R.M. Critical Chlorophyll, Total Nitrogen, and Nitrate-nitrogen in Leaves Associated to Maximum Lettuce Yield. J. Plant Nutr. 1997, 20, 1061–1068. [Google Scholar] [CrossRef]
- Becker, C.; Urlić, B.; Jukić Špika, M.; Kläring, H.-P.; Krumbein, A.; Baldermann, S.; Goreta Ban, S.; Perica, S.; Schwarz, D. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose While Losing Chlorophylls, Β-Carotene and Xanthophylls. PLoS ONE 2015, 10, e0142867. [Google Scholar] [CrossRef] [PubMed]
- Hidangmayum, A.; Dwivedi, P.; Kumar, P.; Upadhyay, S.K. Seed Priming and Foliar Application of Chitosan Ameliorate Drought Stress Responses in Mungbean Genotypes Through Modulation of Morpho-Physiological Attributes and Increased Antioxidative Defense Mechanism. J. Plant Growth Regul. 2022. [Google Scholar] [CrossRef]
- Rasheed, R.; Ashraf, M.A.; Arshad, A.; Iqbal, M.; Hussain, I. Interactive Effects of Chitosan and Cadmium on Growth, Secondary Metabolism, Oxidative Defense, and Element Uptake in Pea (Pisum Sativum L.). Arab. J. Geosci. 2020, 13, 847. [Google Scholar] [CrossRef]
- Levin, D.A. Plant Phenolics: An Ecological Perspective. Am. Nat. 1971, 105, 157–181. [Google Scholar] [CrossRef]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of Phenolics in the Resistance Mechanisms of Plants against Fungal Pathogens and Insects. In Phytochemistry: Advances in Research; Imperato, F., Ed.; Research Signpost: Kerala, India, 2015; Volume 661, pp. 23–67. ISBN 8130800349. [Google Scholar]
- Rashmi, H.B.; Negi, P.S. Phenolic Acids from Vegetables: A Review on Processing Stability and Health Benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Chen, F.; Wang, X.; Rajapakse, N.C. Effect of Chitosan on the Biological Properties of Sweet Basil ( Ocimum basilicum L.). J. Agric. Food Chem. 2005, 53, 3696–3701. [Google Scholar] [CrossRef]
- Viacava, G.E.; Gonzalez-Aguilar, G.; Roura, S.I. Determination of Phytochemicals and Antioxidant Activity in Butterhead Lettuce Related to Leaf Age and Position. J. Food Biochem. 2014, 38, 352–362. [Google Scholar] [CrossRef]
- Ozgen, S.; Sekerci, S. Effect of Leaf Position on the Distribution of Phytochemicals and Antioxidant Capacity among Green and Red Lettuce Cultivars. Span. J. Agric. Res. 2011, 9, 801. [Google Scholar] [CrossRef] [Green Version]
- Pandjaitan, N.; Howard, L.R.; Morelock, T.; Gil, M.I. Antioxidant Capacity and Phenolic Content of Spinach As Affected by Genetics and Maturation. J. Agric. Food Chem. 2005, 53, 8618–8623. [Google Scholar] [CrossRef]
- Couture, R.; Cantwell, M.I.; Ke, D.; Saltveit, M.E. Physiological Attributes Related to Quality Attributes and Storage Life of Minimally Processed Lettuce. HortScience 1993, 28, 723–725. [Google Scholar] [CrossRef] [Green Version]
- Trotel-Aziz, P.; Couderchet, M.; Vernet, G.; Aziz, A. Chitosan Stimulates Defense Reactions in Grapevine Leaves and Inhibits Development of Botrytis cinerea. Eur. J. Plant Pathol. 2006, 114, 405–413. [Google Scholar] [CrossRef]
- Khan, W.; Prithiviraj, B.; Smith, D.L. Chitosan and Chitin Oligomers Increase Phenylalanine Ammonia-Lyase and Tyrosine Ammonia-Lyase Activities in Soybean Leaves. J. Plant Physiol. 2003, 160, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Enhancing Phytochemical Levels, Enzymatic and Antioxidant Activity of Spinach Leaves by Chitosan Treatment and an Insight into the Metabolic Pathway Using DART-MS Technique. Food Chem. 2016, 199, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Obianom, C.; Romanazzi, G.; Sivakumar, D. Effects of Chitosan Treatment on Avocado Postharvest Diseases and Expression of Phenylalanine Ammonia-Lyase, Chitinase and Lipoxygenase Genes. Postharvest Biol. Technol. 2019, 147, 214–221. [Google Scholar] [CrossRef]
- Mejía-Teniente, L.; Durán-Flores, F.d.D.; Chapa-Oliver, A.; Torres-Pacheco, I.; Cruz-Hernández, A.; González-Chavira, M.; Ocampo-Velázquez, R.; Guevara-González, R. Oxidative and Molecular Responses in Capsicum Annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications. Int. J. Mol. Sci. 2013, 14, 10178–10196. [Google Scholar] [CrossRef] [Green Version]
- Korus, A. Level of Vitamin C, Polyphenols, and Antioxidant and Enzymatic Activity in Three Varieties of Kale ( Brassica oleracea L. Var. Acephala) at Different Stages of Maturity. Int. J. Food Prop. 2011, 14, 1069–1080. [Google Scholar] [CrossRef] [Green Version]
- Yoruk, R.; Marshall, M.R. Physicochemical Properties And Function Of Plant Polyphenol Oxidase: A Review. J. Food Biochem. 2003, 27, 361–422. [Google Scholar] [CrossRef]
- Singh, A.; Singh, I.K. Molecular Aspects of Plant-Pathogen Interaction; Singh, A., Singh, I.K., Eds.; Springer Singapore: Singapore, 2018; ISBN 978-981-10-7370-0. [Google Scholar]
- Leubner-Metzger, G. Functions and Regulation of β-1,3-Glucanases during Seed Germination, Dormancy Release and after-Ripening. Seed Sci. Res. 2003, 13, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Boller, T. Antimicrobial Functions Of The Plant Hydrolases, Citinase And Beta-1,3-Glucanase. In Mechanisms of Plant Defense Responses; Fritig, B., Legrand, M., Eds.; Kluwer Academic Publishers: Alfen, The Netherlands, 1993; pp. 391–400. [Google Scholar] [CrossRef]
- Wyatt, S.E.; Pan, S.Q.; Kuć, J. β-1,3-Glucanase, Chitinase, and Peroxidase Activities in Tobacco Tissues Resistant and Susceptible to Blue Mould as Related to Flowering, Age and Sucker Development. Physiol. Mol. Plant Pathol. 1991, 39, 433–440. [Google Scholar] [CrossRef]
- Felix, G.; Meins, F. Developmental and Hormonal Regulation of β-1,3-Glucanase in Tobacco. Planta 1986, 167, 206–211. [Google Scholar] [CrossRef]
- Chun, S.C.; Chandrasekaran, M. Chitosan and Chitosan Nanoparticles Induced Expression of Pathogenesis-Related Proteins Genes Enhances Biotic Stress Tolerance in Tomato. Int. J. Biol. Macromol. 2019, 125, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Shagdarova, B.T.; Ilyina, A.V.; Lopatin, S.A.; Kartashov, M.I.; Arslanova, L.R.; Dzhavakhiya, V.G.; Varlamov, V.P. Study of the Protective Activity of Chitosan Hydrolyzate Against Septoria Leaf Blotch of Wheat and Brown Spot of Tobacco. Appl. Biochem. Microbiol. 2018, 54, 71–75. [Google Scholar] [CrossRef]
- Pandey, S.K.; Singh, H. A Simple, Cost-Effective Method for Leaf Area Estimation. J. Bot. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. [Google Scholar] [CrossRef]
- McCue, P.; Zheng, Z.; Pinkham, J.L.; Shetty, K. A Model for Enhanced Pea Seedling Vigour Following Low pH and Salicylic Acid Treatments. Process Biochem. 2000, 35, 603–613. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Filyushin, M.A.; Shagdarova, B.T.; Shchennikova, A.V.; Il’ina, A.V.; Kochieva, E.Z.; Varlamov, V.P. Pretreatment with Chitosan Prevents Fusarium Infection and Induces the Expression of Chitinases and β-1,3-Glucanases in Garlic (Allium sativum L.). Horticulturae 2022, 8, 383. [Google Scholar] [CrossRef]
- Fontana, J.E.; Wang, G.; Sun, R.; Xue, H.; Li, Q.; Liu, J.; Davis, K.E.; Thornburg, T.E.; Zhang, B.; Zhang, Z.; et al. Impact of Potassium Deficiency on Cotton Growth, Development and Potential microRNA-Mediated Mechanism. Plant Physiol. Biochem. 2020, 153, 72–80. [Google Scholar] [CrossRef]
Parameter | 24 Day | 38 Day | ||||
---|---|---|---|---|---|---|
H2O | CH * | NC ** | H2O | CH * | NC ** | |
Shoot length, mm | 119 ± 15 | 140 ± 15 a | 124 ± 14 | 125 ± 10 | 131 ± 10 | 122 ± 19 |
Shoot FW, g | 0.85 ± 0.29 | 1.13 ± 0.27 a | 0.78 ± 0.28 | 1.90 ± 0.60 | 1.97 ± 0.49 | 1.73 ± 0.69 |
Total leaf area, cm2 | 59 ± 13 | 83 ± 9 a | 60 ± 12 | 157 ± 41 | 161 ± 31 | 141 ± 52 |
Root length, mm | 133 ± 27 | 144 ± 20 | 149 ± 41 | 127 ± 50 | 162 ± 23 | 156 ± 25 |
Root FW, g | 0.075 ± 0.054 | 0.194 ± 0.002 a,b | 0.09 ± 0.01 | 1.047 ± 0.540 | 1.753 ± 0.051 a | 1.357 ± 0.426 |
Group | Concentration, mg/mL or Dilution Ratio | 10 DAS | 24 DAS | 38 DAS |
---|---|---|---|---|
H2O | 0.28 ± 0.09 | 0.44 ± 0.08 | 0.22 ± 0.07 | |
CH | 1 (1:25) | 0.36 ± 0.01 a | - | - |
0.1 (1:250) | 0.33 ± 0.04 | 0.43 ± 0.04 | 0.20 ± 0.02 | |
0.01 (1:2500) | 0.30 ± 0.06 | - | - | |
NC | 1:25 | 0.46 ± 0.02 a | - | - |
1:250 | 0.41 ± 0.01 a | 0.49 ± 0.07 | 0.20 ± 0.05 | |
1:2500 | 0.28 ± 0.08 | - | - |
Group | Concentration, mg/mL or Dilution Ratio | Total Chl, μg/g FW | Chl a, μg/g FW | Chl b, μg/g FW | Chl a/b | Car, μg/g FW | Chl/Car Ratio |
---|---|---|---|---|---|---|---|
H2O | - | 265 ± 10 | 175 ± 20 | 82 ± 13 | 2.1 ± 0.1 | 43 ± 2 | 6.1 ± 0.1 |
CH | 1 (1:25) | 371 ± 16 a | 242 ± 30 a | 110 ± 14 a | 2.2 ± 0.1 | 66 ± 6 a | 5.3 ± 0.3 |
0.1 (1:250) | 345 ± 25 a | 228 ± 36 a | 107 ± 12 | 2.2 ± 0.1 | 56 ± 13 a | 5.9 ± 0.4 | |
0.01 (1:2500) | 283 ± 45 | 190 ± 34 | 105 ± 25 | 2.0 ± 0.1 | 47 ± 15 | 5.3 ± 0.1 | |
NC | 1:25 | 321 ± 58 | 227 ± 38 | 94 ± 17 | 2.4 ± 0.1 a | 60 ± 11 a | 5.4 ± 0.4 |
1:250 | 273 ± 65 | 179 ± 39 | 84 ± 18 | 2.3 ± 0.1 a | 50 ± 14 | 5.4 ± 0.1 | |
1:2500 | 265 ± 76 | 199 ± 33 | 85 ± 18 | 2.3 ± 0.1 a | 47 ± 17 | 5.5 ± 0.1 |
Day | Group | Total Chl, μg/g FW | Chl a, μg/g FW | Chl b, μg/g FW | Chl a/b ratio | Car, μg/g FW | Chl/Car Ratio |
---|---|---|---|---|---|---|---|
10 | H2O | 265 ± 10 | 175 ± 20 | 82 ± 13 | 2.1 ± 0.1 | 43 ± 2 | 6.1 ± 0.1 |
CH | 345 ± 25 a | 228 ± 36 a | 107 ± 12 a | 2.2 ± 0.1 | 56 ± 13 | 5.9 ± 0.4 | |
NC | 273 ± 65 | 179 ± 39 | 84 ± 18 | 2.3 ± 0.1 | 50 ± 14 | 5.3 ± 0.1 | |
24 | H2O | 432 ± 38 | 299 ± 35 | 130 ± 12 | 2.3 ± 0.2 | 72 ± 9 | 6.1 ± 0.4 |
CH | 405 ± 37 | 275 ± 33 | 122 ± 18 | 2.3 ± 0.1 | 67 ± 13 | 6.0 ± 0.4 | |
NC | 522 ± 30 | 369 ± 27 a | 161 ± 12 a | 2.3 ± 0.1 | 82 ± 6 | 6.3 ± 0.3 | |
38 | H2O l | 186 ± 11 | 111 ± 10 | 75 ± 7 | 1.5 ± 0.3 | 22 ± 5 | 8.2 ± 1.9 |
CH | 255 ± 45 | 148 ± 27 | 103 ± 11 | 1.5 ± 0.3 | 30 ± 11 | 9.1 ± 2.2 | |
NC | 222 ± 25 | 152 ± 21 | 91 ± 10 | 1.5 ± 0.2 | 25 ± 6 | 9.1 ± 1.7 |
Parameter | 24 Day | 38 Day | ||||
---|---|---|---|---|---|---|
H2O | CH | NC | H2O | CH | NC | |
Total protein, μg/g FW | 839 ± 76 | 958 ± 89 a | 472 ± 48 | 679 ± 66 | 678 ± 136 | 554 ± 154 |
Total phenolics, mg/g FW | 4.1 ± 1.3 | 3.2 ± 0.9 | 3.5 ± 1.4 | 5.7 ± 1.1 | 8.8 ± 1.4 a | 7.6 ± 1.1 |
PAL activity, μg cinnamic acid/g FW | 38.8 ± 9.4 | 34.0 ± 6.9 | 24.3 ± 7.7 | 127.3 ± 9.9 | 124.7 ± 23.0 | 117.8 ± 15.3 |
PPO activity, OD units/g FW | 0.19 ± 0.04 | 0.21 ± 0.04 | 0.25 ± 0.10 | 0.74 ± 0.09 | 0.75 ± 0.05 | 0.6 ± 0.12 |
β-1,3-glucanase activity, μg glucose/g FW/min | 0.88 ± 0.08 | 1.08 ± 0.14 | 1.34 ± 0.09 | 1.68 ± 0.12 | 1.72 ± 0.19 | 1.57 ± 0.10 |
Chitinase activity, μg glucosamine/g FW/min | 0.53 ± 0.19 | 0.66 ± 0.17 | 0.76 ± 0.13 | 1.42 ± 0.06 | 1.27 ± 0.11 | 1.16 ± 0.06 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyalina, T.; Shagdarova, B.; Zhuikova, Y.; Il’ina, A.; Lunkov, A.; Varlamov, V. Effect of Seed Priming with Chitosan Hydrolysate on Lettuce (Lactuca sativa) Growth Parameters. Molecules 2023, 28, 1915. https://doi.org/10.3390/molecules28041915
Lyalina T, Shagdarova B, Zhuikova Y, Il’ina A, Lunkov A, Varlamov V. Effect of Seed Priming with Chitosan Hydrolysate on Lettuce (Lactuca sativa) Growth Parameters. Molecules. 2023; 28(4):1915. https://doi.org/10.3390/molecules28041915
Chicago/Turabian StyleLyalina, Tatiana, Balzhima Shagdarova, Yuliya Zhuikova, Alla Il’ina, Alexey Lunkov, and Valery Varlamov. 2023. "Effect of Seed Priming with Chitosan Hydrolysate on Lettuce (Lactuca sativa) Growth Parameters" Molecules 28, no. 4: 1915. https://doi.org/10.3390/molecules28041915
APA StyleLyalina, T., Shagdarova, B., Zhuikova, Y., Il’ina, A., Lunkov, A., & Varlamov, V. (2023). Effect of Seed Priming with Chitosan Hydrolysate on Lettuce (Lactuca sativa) Growth Parameters. Molecules, 28(4), 1915. https://doi.org/10.3390/molecules28041915