Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials
3.2. Synthesis of IONPs
3.3. Characterization
3.4. Adsorption Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kang, S.; Shin, W.; Kang, K.; Choi, M.-H.; Kim, Y.-J.; Kim, Y.-K.; Min, D.-H.; Jang, H. Revisiting of Pd Nanoparticles in Cancer Treatment: All-Round Excellence of Porous Pd Nanoplates in Gene-Thermo Combinational Therapy. ACS Appl. Mater. Interfaces 2018, 10, 13819–13828. [Google Scholar] [CrossRef] [PubMed]
- Dinali, R.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Iron Oxide Nanoparticles in Modern Microbiology and Biotechnology. Crit. Rev. Microbiol. 2017, 43, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Paunovic, J.; Vucevic, D.; Radosavljevic, T.; Mandić-Rajčević, S.; Pantic, I. Iron-Based Nanoparticles and Their Potential Toxicity: Focus on Oxidative Stress and Apoptosis. Chem. Biol. Interact. 2020, 316, 108935. [Google Scholar] [CrossRef] [PubMed]
- Janzen, C.; Knipping, J.; Rellinghaus, B.; Roth, P. Formation of Silica-Embedded Iron-Oxide Nanoparticles in Low-Pressure Flames. J. Nanopart. Res. 2003, 5, 589–596. [Google Scholar] [CrossRef]
- Li, P.; Miser, D.E.; Rabiei, S.; Yadav, R.T.; Hajaligol, M.R. The Removal of Carbon Monoxide by Iron Oxide Nanoparticles. Appl. Catal. B 2003, 43, 151–162. [Google Scholar] [CrossRef]
- Sharma, R.K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R.S.; Gawande, M.B. Fe3O4 (Iron Oxide)-Supported Nanocatalysts: Synthesis, Characterization and Applications in Coupling Reactions. Green Chem. 2016, 18, 3184–3209. [Google Scholar] [CrossRef]
- Slater, A.G.; Cooper, A.I. Function-Led Design of New Porous Materials. Science 2015, 348, aaa8075. [Google Scholar] [CrossRef]
- Corot, C.; Robert, P.; Idée, J.M.; Port, M. Recent Advances in Iron Oxide Nanocrystal Technology for Medical Imaging. Adv. Drug Deliv. Rev. 2006, 58, 1471–1504. [Google Scholar] [CrossRef]
- Mosayebi, J.; Kiyasatfar, M.; Laurent, S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv. Heal. Mater. 2017, 6, 1700306. [Google Scholar] [CrossRef]
- Feng, L.; Cao, M.; Ma, X.; Zhu, Y.; Hu, C. Superparamagnetic High-Surface-Area Fe3O4 Nanoparticles as Adsorbents for Arsenic Removal. J. Hazard. Mater. 2012, 217–218, 439–446. [Google Scholar] [CrossRef]
- Jian, Y.; Yu, T.; Jiang, Z.; Yu, Y.; Douthwaite, M.; Liu, J.; Albilali, R.; He, C. In-Depth Understanding of the Morphology Effect of α-Fe2O3 on Catalytic Ethane Destruction. ACS Appl. Mater. Interfaces 2019, 11, 11369–11383. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, B.K.; Ghosh, N.N. Applications of Metal Nanoparticles as Catalysts in Cleaning Dyes Containing Industrial Effluents: A Review. J. Nanosci. Nanotechnol. 2018, 18, 3735–3758. [Google Scholar] [CrossRef]
- Bhatia, P.; Nath, M. Green Synthesis of P-NiO/n-ZnO Nanocomposites: Excellent Adsorbent for Removal of Congo Red and Efficient Catalyst for Reduction of 4-Nitrophenol Present in Wastewater. J. Water Process. Eng. 2020, 33, 101017. [Google Scholar] [CrossRef]
- Dhiman, P.; Sharma, G.; Alodhayb, A.N.; Kumar, A.; Rana, G.; Sithole, T.; ALOthman, Z.A. Constructing a Visible-Active CoFe2O4@Bi2O3/NiO Nanoheterojunction as Magnetically Recoverable Photocatalyst with Boosted Ofloxacin Degradation Efficiency. Molecules 2022, 27, 8234. [Google Scholar] [CrossRef]
- Wu, W.; Quanguo, A.E.; Ae, H.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.H.; Liu, C.H.; Bastakoti, B.P.; Suzuki, N.; Chang, Y.; Yamauchi, Y.; Lin, F.H.; Wu, K.C.W. Functionalized Magnetic Iron Oxide/Alginate Core-Shell Nanoparticles for Targeting Hyperthermia. Int. J. Nanomed. 2015, 10, 3315–3328. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, M.; Sahraian, M.A.; Shokrgozar, M.A.; Laurent, S. Superparamagnetic Iron Oxide Nanoparticles: Promises for Diagnosis and Treatment of Multiple Sclerosis. ACS Chem. Neurosci. 2011, 2, 118–140. [Google Scholar] [CrossRef] [Green Version]
- Massironi, N.; Colombo, M.; Cosentino, C.; Fiandra, L.; Mauri, M.; Kayal, Y.; Testa, F.; Torri, G.; Urso, E.; Vismara, E.; et al. Heparin–Superparamagnetic Iron Oxide Nanoparticles for Theranostic Applications. Molecules 2022, 27, 7116. [Google Scholar] [CrossRef]
- Hurtado-Gallego, J.; Pulido-Reyes, G.; González-Pleiter, M.; Salas, G.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Toxicity of Superparamagnetic Iron Oxide Nanoparticles to the Microalga Chlamydomonas Reinhardtii. Chemosphere 2020, 238, 124562. [Google Scholar] [CrossRef]
- Hirthna; Sendhilnathan, S. Enhancement in Dielectric and Magnetic Properties of Mg2+ Substituted Highly Porous Super Paramagnetic Nickel Ferrite Nanoparticles with Williamson-Hall Plots Mechanistic View. Ceram. Int. 2017, 43, 15447–15453. [Google Scholar] [CrossRef]
- Tsuzuki, T.; McCormick, P.G. Mechanochemical Synthesis of Nanoparticles. J. Mater. Sci. 2004, 39, 5143–5146. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Erratum: Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2010, 110, 2574. [Google Scholar] [CrossRef]
- Moreno, E.M.; Zayat, M.; Morales, M.P.; Serna, C.J.; Roig, A.; Levy, D. Preparation of Narrow Size Distribution Superparamagnetic γ-Fe2O3 Nanoparticles in a Sol-Gel Transparent SiO2 Matrix. Langmuir 2002, 18, 4972–4978. [Google Scholar] [CrossRef]
- Xingu-Contreras, E.; García-Rosales, G.; García-Sosa, I.; Cabral-Prieto, A. Degradation of Methyl Orange Using Iron Nanoparticles with/without Support at Different Conditions. Microporous Mesoporous Mater. 2020, 292, 109782. [Google Scholar] [CrossRef]
- Tsang, S.C.; Caps, V.; Paraskevas, I.; Chadwick, D.; Thompsett, D. Magnetically Separable, Carbon-Supported Nanocatalysts for the Manufacture of Fine Chemicals. Angew. Chem. Inter. Ed. 2004, 43, 5645–5649. [Google Scholar] [CrossRef]
- Thapa, B.; Diaz-Diestra, D.; Santiago-Medina, C.; Kumar, N.; Tu, K.; Beltran-Huarac, J.; Jadwisienczak, W.M.; Weiner, B.R.; Morell, G. T1- and T2-Weighted Magnetic Resonance Dual Contrast by Single Core Truncated Cubic Iron Oxide Nanoparticles with Abrupt Cellular Internalization and Immune Evasion. ACS Appl. Bio. Mater. 2018, 1, 79–89. [Google Scholar] [CrossRef]
- Lin, C.R.; Chiang, R.K.; Wang, J.S.; Sung, T.W. Magnetic Properties of Monodisperse Iron Oxide Nanoparticles. J. Appl. Phys. 2006, 99, 2004–2007. [Google Scholar] [CrossRef]
- Kainz, Q.M.; Reiser, O. Polymer- and Dendrimer-Coated Magnetic Nanoparticles as Versatile Supports for Catalysts, Scavengers, and Reagents. Acc Chem. Res. 2014, 47, 667–677. [Google Scholar] [CrossRef]
- Bentley, J.; Bastakoti, B.P. Block Copolymer Templated Synthesis of Mesoporous WO3/Carbon Nanocomposites. J. Mater. Sci. 2022, 57, 14772–14779. [Google Scholar] [CrossRef]
- Olatidoye, O.; Thomas, D.; Bastakoti, B.P. Facile Synthesis of a Mesoporous TiO2 film Templated by a Block Copolymer for Photocatalytic Applications. N. J. Chem. 2021, 45, 15761–15766. [Google Scholar] [CrossRef]
- Bastakoti, B.P.; Sukegawa, H.; Wu, K.C.W.; Yamauchi, Y. Synthesis of Porous Iron Oxide Microspheres by a Double Hydrophilic Block Copolymer. RSC Adv. 2014, 4, 9986–9989. [Google Scholar] [CrossRef]
- Darwish, M.S.A.; Mostafa, M.H.; Al-Harbi, L.M. Polymeric Nanocomposites for Environmental and Industrial Applications. Int J. Mol. Sci. 2022, 23, 1023. [Google Scholar] [CrossRef]
- Ozcan, O.; Ruhland, M.; Stahl, W. Shear Strength of Mineral Filter Cakes. In Studies in Surface Science and Catalysis; Elsevier Inc.: Amsterdam, The Netherlands, 2000; Volume 128, pp. 573–585. [Google Scholar]
- Filippousi, M.; Angelakeris, M.; Katsikini, M.; Paloura, E.; Efthimiopoulos, I.; Wang, Y.; Zamboulis, D.; van Tendeloo, G. Surfactant Effects on the Structural and Magnetic Properties of Iron Oxide Nanoparticles. J. Phys. Chem. C 2014, 118, 16209–16217. [Google Scholar] [CrossRef]
- Bastakoti, B.P.; Huang, H.-S.; Chen, L.-C.; Wu, K.C.-W.; Yamauchi, Y. Block Copolymer Assisted Synthesis of Porous α-Ni(OH)2 Microflowers with High Surface Areas as Electrochemical Pseudocapacitor Materials. Chem. Commun. 2012, 48, 9150. [Google Scholar] [CrossRef]
- Li, Y.; Bastakoti, B.P.; Yamauchi, Y. Research Update: Triblock Copolymers as Templates to Synthesize Inorganic Nanoporous Materials. APL Mater. 2016, 4, 040703. [Google Scholar] [CrossRef] [Green Version]
- Mills, P.; Sullivan, J.L. A Study of the Core Level Electrons in Iron and Its Three Oxides by Means of X-Ray Photoelectron Spectroscopy. J. Phys. D Appl. Phys. 1983, 16, 723–732. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Wu, X.; Zhang, G. A Stable Fe2O3/Expanded Perlite Composite Catalyst for Degradation of Rhodamine B in Heterogeneous Photo-Fenton System. Water Air Soil Pollut. 2017, 228, 463. [Google Scholar] [CrossRef]
- Muhler, M. The Nature of the Iron Oxide-Based Catalyst for Dehydrogenation of Ethylbenzene to Styrene 2. Surface Chemistry of the Active Phase. J. Catal. 1992, 138, 413–444. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Rajan, A.; Sharma, M.; Sahu, N.K. Assessing Magnetic and Inductive Thermal Properties of Various Surfactants Functionalised Fe3O4 Nanoparticles for Hyperthermia. Sci. Rep. 2020, 10, 15045. [Google Scholar] [CrossRef]
- Saragi, T.; Santika, A.S.; Permana, B.; Syakir, N.; Kartawidjaja, M. Risdiana Synthesis and Properties of Iron Oxide Particles Prepared by Hydrothermal Method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 196, 012025. [Google Scholar] [CrossRef] [Green Version]
- Samrot, A.V.; Sahithya, C.S.; Selvarani, A.J.; Purayil, S.K.; Ponnaiah, P. A Review on Synthesis, Characterization and Potential Biological Applications of Superparamagnetic Iron Oxide Nanoparticles. Curr. Res. Green Sustain. Chem. 2021, 4, 100042. [Google Scholar] [CrossRef]
- Finger, L.W.; Hazen, R.M. Crystal Structure and Isothermal Compression of Fe2O3, Cr2O3, and V2O3 to 50 Kbars. J. Appl. Phys. 2008, 51, 5362. [Google Scholar] [CrossRef]
- Bhattarai, M.K.; Pavunny, S.P.; Katiyar, R.S. Effect of La and Sc Co-Doping on Dielectric and Ferroelectric Properties of PZT for Energy Storage Capacitors. J. Appl. Phys. 2021, 130, 34103. [Google Scholar] [CrossRef]
- Krispin, M.; Ullrich, A.; Horn, S. Crystal Structure of Iron-Oxide Nanoparticles Synthesized from Ferritin. J. Nanopart. Res. 2012, 14, 669. [Google Scholar] [CrossRef]
- Teja, A.S.; Koh, P.Y. Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. [Google Scholar] [CrossRef]
- Kuchma, E.; Kubrin, S.; Soldatov, A. The Local Atomic Structure of Colloidal Superparamagnetic Iron Oxide Nanoparticles for Theranostics in Oncology. Biomedicines 2018, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Toby, B.H. R Factors in Rietveld Analysis: How Good Is Good Enough? Powder Diffr. 2006, 21, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Rabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G. Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-Ray Diffraction. Nanomaterials 2020, 10, 1627. [Google Scholar] [CrossRef]
- Tadic, M.; Trpkov, D.; Kopanja, L.; Vojnovic, S.; Panjan, M. Hydrothermal Synthesis of Hematite (α-Fe2O3) Nanoparticle Forms: Synthesis Conditions, Structure, Particle Shape Analysis, Cytotoxicity and Magnetic Properties. J. Alloys Compd. 2019, 792, 599–609. [Google Scholar] [CrossRef]
- Testa-Anta, M.; Ramos-Docampo, M.A.; Comesaña-Hermo, M.; Rivas-Murias, B.; Salgueiriño, V. Raman Spectroscopy to Unravel the Magnetic Properties of Iron Oxide Nanocrystals for Bio-Related Applications. Nanoscale Adv. 2019, 1, 2086–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S. Control of the Shape and Size of Iron Oxide (α-Fe2O3) Nanoparticles Synthesized through the Chemical Precipitation Method. Results Phys. 2017, 7, 3007–3015. [Google Scholar] [CrossRef]
- Kundu, A.K.; Nordblad, P.; Rao, C.N.R. Nonequilibrium Magnetic Properties of Single-Crystalline La0.7Ca0.3CoO3. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 144423. [Google Scholar] [CrossRef] [Green Version]
- Dugu, S.; Bhattarai, M.K.; Kumari, S.; Instan, A.A.; Pradhan, D.K.; Holcomb, M.; Scott, J.F.; Katiyar, R.S. Observation of Relaxor-Ferroelectric Behavior in Gallium Ferrite Thin Films. Appl. Surf. Sci. 2020, 523, 146459. [Google Scholar] [CrossRef]
- Hu, H.; Yuan, Y.; Lim, S.; Wang, C.H. Phase Structure Dependence of Magnetic Behaviour in Iron Oxide Nanorods. Mater. Des. 2020, 185, 108241. [Google Scholar] [CrossRef]
- Guardia, P.; Batlle-Brugal, B.; Roca, A.G.; Iglesias, O.; Morales, M.P.; Serna, C.J.; Labarta, A.; Batlle, X. Surfactant Effects in Magnetite Nanoparticles of Controlled Size. J. Magn. Magn. Mater. 2007, 316, e756–e759. [Google Scholar] [CrossRef] [Green Version]
- Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Lei, C.; Zhu, X.; Le, Y.; Zhu, B.; Yu, J.; Ho, W. Hierarchically Porous NiO–Al2O3 Nanocomposite with Enhanced Congo Red Adsorption in Water. RSC Adv. 2016, 6, 10272–10279. [Google Scholar] [CrossRef]
- Peydayesh, M.; Rahbar-Kelishami, A. Adsorption of Methylene Blue onto Platanus Orientalis Leaf Powder: Kinetic, Equilibrium and Thermodynamic Studies. J. Indus. Eng. Chem. 2015, 21, 1014–1019. [Google Scholar] [CrossRef]
- Ayad, M.; Salahuddin, N.; Fayed, A.; Bastakoti, B.P.; Suzuki, N.; Yamauchi, Y. Chemical Design of a Smart Chitosan–Polypyrrole–Magnetite Nanocomposite toward Efficient Water Treatment. Phys. Chem. Chem. Phys. 2014, 16, 21812–21819. [Google Scholar] [CrossRef]
- Tsuneda, T. Fenton Reaction Mechanism Generating No OH Radicals in Nafion Membrane Decomposition. Sci. Rep. 2020, 10, 18144. [Google Scholar] [CrossRef]
- Erdemoǧlu, S.; Aksu, S.K.; Sayilkan, F.; Izgi, B.; Asiltürk, M.; Sayilkan, H.; Frimmel, F.; Güçer, Ş. Photocatalytic Degradation of Congo Red by Hydrothermally Synthesized Nanocrystalline TiO2 and Identification of Degradation Products by LC-MS. J. Hazard. Mater. 2008, 155, 469–476. [Google Scholar] [CrossRef]
Parameters | a (Å) | c (Å) | U | V | W | Rwp (%) | Rexp (%) | χ2 | α = β | γ |
---|---|---|---|---|---|---|---|---|---|---|
Values | 5.0302 | 13.7465 | 0.1806 | −0.0475 | 0.1363 | 19.9 | 9.2 | 4.69 | 90 | 120 |
Temp. (K) | 10 | 100 | 200 | 230 | 300 | 390 |
---|---|---|---|---|---|---|
MR (emu/g) | 0.0196 | 0.0248 | 0.0338 | 0.0432 | 0.0357 | 0.0243 |
HC (T) | 0.0342 | 0.0247 | 0.0481 | 0.0589 | 0.0361 | 0.0208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattarai, M.K.; Ashie, M.D.; Dugu, S.; Subedi, K.; Bastakoti, B.P.; Morell, G.; Katiyar, R.S. Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red. Molecules 2023, 28, 1914. https://doi.org/10.3390/molecules28041914
Bhattarai MK, Ashie MD, Dugu S, Subedi K, Bastakoti BP, Morell G, Katiyar RS. Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red. Molecules. 2023; 28(4):1914. https://doi.org/10.3390/molecules28041914
Chicago/Turabian StyleBhattarai, Mohan K., Moses D. Ashie, Sita Dugu, Kiran Subedi, Bishnu P. Bastakoti, Gerardo Morell, and Ram S. Katiyar. 2023. "Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red" Molecules 28, no. 4: 1914. https://doi.org/10.3390/molecules28041914
APA StyleBhattarai, M. K., Ashie, M. D., Dugu, S., Subedi, K., Bastakoti, B. P., Morell, G., & Katiyar, R. S. (2023). Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red. Molecules, 28(4), 1914. https://doi.org/10.3390/molecules28041914