Profiles of Volatile Compounds from Seven New Hybrid Families Obtained by Crossings on Noir de Bourgogne Cultivar and Other Blackcurrant Varieties
Abstract
:1. Introduction
- −
- Tolerance to diseases such as powdery mildew
- −
- Tolerance to White Peach Scale (WPS)
- −
- Satisfying strength and growth
- −
- Allowed auto-pollination with flowers with stamens above the pistil
- −
- Satisfying yield with many berries, proving the satisfying fertility
- −
- Late blossoming to avoid frost risk.
2. Results and Discussion
2.1. Profiles in Volatile Compounds for the Selected Cultivars
2.2. Dispersion of Profiles in Volatile Compounds for Different Hybrids of the Same Crossing
2.3. Comparison of Volatile Compounds between Cultivars and Hybrids
2.4. Discussion
3. Materials and Methods
3.1. Cultivars, Hybrids, and Cultivation
- −
- Fungal diseases: 0 = no trace to 5 = highly sensitive
- −
- White Peach Scale: 0 = no trace to 4 = whole plant infected (on old wood, i.e., more than 2 years old)
- −
- Flowering precocity: 1 = flowering in early April to 7 = late flowering in mid-May.
- −
- Synchronizing of flowering: 1 = synchronous to 6 = not synchronous (meaning that different stages of flower organs were present at the same time on the plant. For the same plant, it may vary depending on the considered year. Flowering was scored weekly from April to the end of May).
3.2. Berry Harvesting and Storage
3.3. Analysis of the Volatile Fraction of Berries
3.3.1. HS-SPME-GC-MS
3.3.2. Identification of Compounds
3.3.3. Selection of Representative Volatile Compounds
3.4. Chemometric Analyses
3.5. Genotyping
3.5.1. DNA Extraction
3.5.2. PCR Assay and Capillary Electrophoresis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
CAS | Molecules | RT | RI | MA | SD |
---|---|---|---|---|---|
80-56-8 | α-Pinene | 3.9 | 991 | 1.29 × 106 | 1.10 × 106 |
3779-61-1 | Trans-β-Ocimen | 14.9 | 1219 | 1.28 × 107 | 1.30 × 107 |
99-85-4 | γ-Terpinene | 15.0 | 1206 | 1.94 × 106 | 4.23 × 106 |
150-84-5 | Citronellyl acetate | 42.3 | 1655 * | 8.84 × 105 | 1.23 × 106 |
13466-78-9 | 3-Carene | 8.4 | 1135 * | 3.26 × 107 | 2.54 × 107 |
99-87-6 | P-Cymene | 16.5 | 1228 | 1.08 × 106 | 6.59 × 105 |
1195-32-0 | Dehydro-p-Cymene | 27.8 | 1461 ** | 5.14 × 105 | 3.89 × 105 |
138-86-3 | Limonene | 11.6 | 1157 | 6.19 × 106 | 6.91 × 106 |
6753-98-6 | α-Caryophyllene | 41.3 | 1687 ** | 5.57 × 106 | 7.44 × 106 |
502-99-8 | Ocimene | 15.9 | 1240 ** | 7.23 × 106 | 5.60 × 106 |
586-62-9 | Terpinolene | 17.1 | 1242 | 2.84 × 107 | 2.22 × 107 |
112421-19-9 | 4-Aromadendrene | 33.0 | 1513 *** | 1.65 × 105 | 3.02 × 105 |
78-70-6 | Linalool | 36.3 | 1514 | 1.37 × 105 | 1.36 × 105 |
87-44-5 | Caryophyllene | 37.0 | 1543 | 2.59 × 107 | 1.82 × 107 |
489-39-4 | Aromadendrene | 37.4 | 1556 | 1.52 × 106 | 2.80 × 106 |
30021-74-0 | g-Muurolene | 42.7 | 1638 | 3.49 × 105 | 6.47 × 105 |
37839-63-7 | Germacrene D | 43.7 | 1652 | 1.74 × 106 | 3.71 × 106 |
24703-35-3 | Bicyclogermacrene | 45.7 | 1675 | 1.91 × 106 | 4.20 × 106 |
106-22-9 | Citronellol | 50.4 | 1728 | 9.05 × 105 | 1.34 × 106 |
6750-60-3 | Spatulenol | 57.4 | 2057 | 1.58 × 105 | 2.18 × 105 |
References
- Cortez, R.E.; Gonzalez de Mejia, E. Blackcurrants (Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J. Food Sci. 2019, 84, 2387–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerbaka, S. Le Cassis (Ribes nigrum L.): Études Botanique, Chimique et Effets Thérapeutiques. Ph.D. Thesis, Joseph Fourier University, Grenoble, France, 2013. [Google Scholar]
- Karjalainen, R.; Anttonen, M.; Saviranta, N.; Stewart, D.; McDougall, G.; Hilz, H.; Mattila, P.; Törrönen, R. A review on bioactive compounds in black currants (Ribes nigrum L.) and their potential health-promoting properties. In Proceedings of the I International Symposium on Biotechnology of Fruit Species: BIOTECHFRUIT2008, Pillnitz, Germany, 1–5 September 2008; Volume 839, pp. 301–307. [Google Scholar]
- Hummer, K.E.; Danny, L.B. Currants. HortTechnology 2002, 12, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Kaldmaee, H.; Kikas, A.; Arus, L.; Libek, A.V. Genotype and microclimate conditions influence ripening pattern and quality of blackcurrant (Ribes nigrum L.) fruit. Zemdirb. Agric. 2013, 100, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Seguin, B.; Domergue, M.; García de Cortázar-Atauri, I.; Brisson, N.; Ripoche, D. Le réchauffement climatique récent en France: Impact et conséquence sur la culture des arbres fruitiers et de la vigne. Lett. PIGB-PMRC Fr. 2004, 16, 50–54. [Google Scholar]
- Bahr, C.; Schmidt, D.; Kahlen, K. Missing Links in Predicting Berry Sunburn in Future Vineyards. Front. Plant Sci. 2021, 12, 2178. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, R.; Anstett, M.-C.; Louapre, P. White Peach Scale, Pseudaulacaspis pentagona (Targ.) (Hemiptera: Diaspididae), is affected by host plant variety in a blackcurrant orchard. Entomol. Gen. 2020, 40, 377–383. [Google Scholar] [CrossRef]
- Pages-Helary, S.; Dujourdy, L.; Cayot, N. Identification of Volatile Compounds in Blackcurrant Berries: Differences among Cultivars. Molecules 2021, 26, 6254. [Google Scholar] [CrossRef] [PubMed]
- Pages-Helary, S.; Dujourdy, L.; Cayot, N. Flavor compounds in blackcurrant berries: Multivariate analysis of datasets obtained with natural variability and various experimental parameters. LWT-Food Sci. Technol. 2022, 153, 112425. [Google Scholar] [CrossRef]
- Hiirsalmi, H. Small fruit breeding in Finland. Agric. Food Sci. 1988, 60, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Olbricht, K.; Grafe, C.; Weiss, K.; Ulrich, D. Inheritance of aroma compounds in a model population of Fragaria × ananassa Duch. Plant Breed. 2008, 127, 87–93. [Google Scholar]
- Brereton, R.G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Cordella, C.B. PCA: The Basic Building Block of Chemometrics. In Analytical Chemistry; Krull, I.S., Ed.; IntechOpen: London, UK, 2012; Available online: https://www.intechopen.com/chapters/40715 (accessed on 25 July 2022).
- RStudio_Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
- R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 25 July 2022).
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. (Version 0.88). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 25 July 2022).
- Thioulouse, J.; Dray, S.; Dufour, A.-B.; Siberchicot, A.; Jombart, T.; Pavoine, S. Multivariate Analysis of Ecological Data with Ade4; Springer: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Brennan, R.; Jorgensen, L.; Hackett, C.; Woodhead, M.; Gordon, S.; Russell, J. The development of a genetic linkage map of blackcurrant (Ribes nigrum L.) and the identification of regions associated with key fruit quality and agronomic traits. Euphytica 2008, 161, 19–34. [Google Scholar] [CrossRef]
- Fanciullino, A.-L.; Gancel, A.-L.; Froelicher, Y.; Luro, F.; Ollitrault, P.; Brillouet, J.-M. Effects of Nucleo-cytoplasmic Interactions on Leaf Volatile Compounds from Citrus Somatic Diploid Hybrids. J. Agric. Food Chem. 2005, 53, 4517–4523. [Google Scholar] [CrossRef] [PubMed]
- Linstrom, P.J.; Mallard, W.G. (Eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022; p. 20899. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
Crossing | Hybrid Plants Close to the Cultivar Crossed with Noir de Bourgogne | Hybrid Plants Different from the Two Cultivars Used for the Crossing |
---|---|---|
Noir de Bourgogne × OJ-5-3 | H_OJ_F1, H_OJ_F3, H_OJ_F16 | H_OJ_F18 |
Noir de Bourgogne × Tiben | H_TIB_F12, H_TIB_F16, H_TIB_F22, H_TIB_F27, H_TIB_F28 | H_TIB_F2, H_TIB_F17, H_TIB_F24, H_TIB_F25, H_TIB_F29 |
Noir de Bourgogne × Andega | H_AND_F38, H_AND_F48 | H_AND_F7, H_AND_F10, H_AND_F16, H_AND_F18, H_AND_F20, H_AND_F22, H_AND_F23, H_AND_F24, H_AND_F29, H_AND_F30, H_AND_F31, H_AND_F32, H_AND_F34, H_AND_F35, H_AND_F39, H_AND_F45, H_AND_F46 |
Noir de Bourgogne × PC110 | H_PC_F1, H_PC_F6, H_PC_F9 | |
Noir de Bourgogne × Ben Tiran | H_BTI_F5, H_BTI_F6, H_BTI_F11 | |
Noir de Bourgogne × 88-04-181 | H_88_F16, H_88_F18 | H_88_F2, H_88_F4, H_88_F6, H_88_F9 H_88_F12, H_88_F22, H_88_F27 |
Noir de Bourgogne × Rosenthal | H_ROS_F4 |
Cultivar | Country of Origin | Presence of Rust | Presence of Powdery Mildew | Presence Antracnose | Presence of White Peach Scales (WPS) Pseudaulacaspis Pentagona | Flowering Precocity | Synchronizing of Flowering | Weight of Berries for 3 Plants (Grams) | Date of Harvest | Weight of 100 Berries (Grams) |
---|---|---|---|---|---|---|---|---|---|---|
Noir de Bourgogne | France | 1 | 1.5 | 3 | 2.5 | 5 | 6 | 848 | 24 June | 38 |
Andega | France | 1 | 0 | 1.5 | 0.5 | 4 | 3 | 1956 | 23 June | 70 |
Tiben | Poland | 0 | 0 | 2 | 0.5 | 4 | 5 | 5144 | 29 June | 78 |
Oj 5-3 | France | 0 | 0 | 1.5 | 0 | 5 | 6 | 2353 | 30 June | 70 |
Ben Tiran | Scotland | 2 | 0 | 0 | 0 | 7 | 5 | 1888 | 16 July | 76 |
Rosenthal | Germany | 0 | 0 | 0 | 1 | 5 | 4 | 488 | 25 June | 31 |
PC 110 | Poland | 0 | 0.5 | 1 | 0.5 | 4 | 3 | 3188 | 22 June | 96 |
88-04-181 | France | 2.5 | 0 | 2 | 0 | 3 | 3 | 3113 | 25 June | 58 |
Crossings | Number of Harvested Hybrid Plants * among the Total Number of Grown Plants Resulting from Crossing | Labels of Harvested Hybrids |
---|---|---|
Noir de Bourgogne × OJ-5-3 | 4 among 32 | H_OJ_F1, H_OJ_F3, H_OJ _F16, H_OJ_F18 |
Noir de Bourgogne × Tiben | 13 among 37 | H_TIB_F2, H_TIB_F6, H_TIB_F9, H_TIB_F10, H_TIB_F12, H_TIB_F16, H_TIB_F17, H_TIB_F22, H_TIB_F24, H_TIB_F25, H_TIB_F27, H_TIB_F28, H_TIB_F29 |
Noir de Bourgogne × Andega | 19 among 37 | H_AND_F7, H_AND_F10, H_AND_F16, H_AND_F18, H_AND_F20, H_AND_F22, H_AND_F23, H_AND_F24, H_AND_F29, H_AND_F30, H_AND_F31, H_AND_F32, H_AND_F34, H_AND_F35, H_AND_F38, H_AND_F39, H_AND_F45, H_AND_F46, H_AND_F48 |
Noir de Bourgogne × PC110 | 3 among 34 | H_PC_F1, H_PC_F6, H_PC_F9 |
Noir de Bourgogne × Ben Tirran | 3 among 26 | H_BTI_F5, H_BTI_F6, H_BTI_F11 |
Noir de Bourgogne × 88-04-181 | 9 among 35 | H_88_F2, H_88_F4, H_88_F6, H_88_F9, H_88_F12, H_88_F16, H_88_F18, H_88_F22, H_88_F27 |
Noir de Bourgogne × Rosenthal | 1 among 20 | H_ROS_F4 |
CAS Number | Molecules | Codes | Odor Descriptor |
---|---|---|---|
80-56-8 | α-Pinene | aPin | WOODY, PINE, CAMPHOREOUS, HERBAL, TERPENIC, earthy, tropical |
3779-61-1 | Trans-β-Ocimen | tbOcim | Sweet, herbal |
99-85-4 | γ-Terpinene | gTerp | TERPENIC, TROPICAL, CITRUS, LIME, OILY, green, fruity, woody, sweet |
150-84-5 | Citronellyl acetate | CitroAc | Citrus, lime, dirty, aldehydic |
13466-78-9 | 3-Carene | 3Car | CITRUS, TERPENIC, PINE, HERBAL, RESINOUS, phenolic, medicinal, spicy |
99-87-6 | P-Cymene | pCym | TERPENIC, WOODY, CITRUS, SPICY, ORIGANUM, rancid, pepper bell, pepper, fresh, cumin, oregano, cilantro |
1195-32-0 | Dehydro-p-Cymene | dpCym | SPICY, MUSTY, CLOVE, GUAIACOL, NUTTY, balsamic, phenolic, styrene, coffee |
138-86-3 | Limonene | Lim | CITRUS, HERBAL, TERPENIC, pine, minty, woody, camphorated |
6753-98-6 | α-Caryophyllene | aCar | woody |
502-99-8 | Ocimene | Ocim | GREEN, WOODY, TROPICAL, terpenic, vegetable |
586-62-9 | Terpinolene | Terpo | Fresh, terpenic, herbal, floral, WOODY, sweet, pine, CITRUS |
112421-19-9 | 4-Aromadendrene | Arom4 | not determined |
78-70-6 | Linalool | Lin | FLORAL, CITRUS, WOODY, WAXY, blueberry, terpenic, aldehydic |
87-44-5 | Caryophyllene | Cary | SPICY, WOODY, CLOVE, dry, nutty, powdery, peppery, skin |
489-39-4 | Aromadendrene | Aromad | Woody |
30021-74-0 | g-Muurolene | gMuu | Herbal, woody, spice |
37839-63-7 | Germacrene D | Germ | Woody, spicy |
24703-35-3 | Bicyclogermacrene | Bicy | Green, woody, weedy |
106-22-9 | Citronellol | Citro | FLORAL, citrus, green, waxy, terpenic |
6750-60-3 | Spatulenol | Spat | Earthy herbal fruity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagès-Hélary, S.; Nars-Chasseray, M.; Dujourdy, L.; Cayot, N. Profiles of Volatile Compounds from Seven New Hybrid Families Obtained by Crossings on Noir de Bourgogne Cultivar and Other Blackcurrant Varieties. Molecules 2023, 28, 1916. https://doi.org/10.3390/molecules28041916
Pagès-Hélary S, Nars-Chasseray M, Dujourdy L, Cayot N. Profiles of Volatile Compounds from Seven New Hybrid Families Obtained by Crossings on Noir de Bourgogne Cultivar and Other Blackcurrant Varieties. Molecules. 2023; 28(4):1916. https://doi.org/10.3390/molecules28041916
Chicago/Turabian StylePagès-Hélary, Sandy, Marine Nars-Chasseray, Laurence Dujourdy, and Nathalie Cayot. 2023. "Profiles of Volatile Compounds from Seven New Hybrid Families Obtained by Crossings on Noir de Bourgogne Cultivar and Other Blackcurrant Varieties" Molecules 28, no. 4: 1916. https://doi.org/10.3390/molecules28041916
APA StylePagès-Hélary, S., Nars-Chasseray, M., Dujourdy, L., & Cayot, N. (2023). Profiles of Volatile Compounds from Seven New Hybrid Families Obtained by Crossings on Noir de Bourgogne Cultivar and Other Blackcurrant Varieties. Molecules, 28(4), 1916. https://doi.org/10.3390/molecules28041916