The Potential of Magnolia spp. in the Production of Alternative Pest Control Substances
Abstract
:1. Introduction
2. The Magnoliaceae Family
3. Magnolia in Traditional Medicine
4. Magnolia and Sustainable Agriculture
5. Botanical Extracts and Essential Oils with Insecticidal Properties
6. Secondary Metabolites in Magnolia
6.1. Fruit with Seed
6.2. Seedless Fruit (Peel)
6.3. Seed
6.4. Sarcotesta (Aril)
7. Terpenoids
8. Phenols
9. Alkaloids
10. Magnolia: Between Bioprospection and Conservation
11. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- FAO. Plant Health and Food Security. Food and Agriculture Organization. 2020. Available online: http://www.fao.org/3/i7829en/I7829EN.pdf (accessed on 21 April 2021).
- Altieri, M.A.; Nicholls, C.I. Biodiversidad y Manejo de Plagas en Agroecosistemas; Icaria Editorial: Capellades, Barcelona, 2007; Volume 2. [Google Scholar]
- Selfa, J. Plagas agrícolas y forestales. Artrópodos Hombre 1997, 20, 75–91. [Google Scholar]
- FAO. Codex Pesticides Residues in Food Online Database. Food and Agriculture Organization of the United Nations. 2019. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/en/ (accessed on 25 February 2021).
- FAO. Terms and Definitions. Pesticide Registration Toolkit. Food and Agriculture Organization. 2021. Available online: http://www.fao.org/pesticide-registration-toolkit/information-sources/terms-and-definitions/terms-and-definitions-p/en/ (accessed on 25 February 2021).
- Gilden, R.C.; Huffling, K.; Sattler, B. Pesticides and health risks. J. Obstet. Gynecol. Neonatal Nurs. 2010, 39, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Coats, J.R. Risks from natural versus synthetic insecticides. Annu. Rev. Entomol. 1994, 39, 489–515. [Google Scholar] [CrossRef]
- FAO. Quinua Manejo Integrado de Plagas. Estrategias en el Cultivo de la Quinua Para Fortalecer el Sistema Agroalimentario en la Zona Andina. Organización de Las Naciones Unidas Para La Alimentación y La Agricultura. 2016. Available online: http://www.fao.org/3/i6038s/i6038s.pdf (accessed on 2 May 2021).
- Grdiša, M.; Gršić, K. Botanical insecticides in plant protection. Agric. Conspec. Sci. Cus. 2013, 78, 85–93. [Google Scholar]
- Singh, D. Advances in Plant. In Biopesticides; Singh, D., Ed.; Springer India: Uttar Pradesh, India, 2014. [Google Scholar] [CrossRef]
- Táborsky, V. Small-Scale Processing of Microbial Pesticides; FAO Agricultural Services Bulletin No. 96. Food and Agriculture Organization of the United Nations Rome: Prague, Czech Republic, 1992. [Google Scholar]
- Riyaz, M.; Mathew, P.; Zuber, S.M.; Rather, G.A. Botanical pesticides for an eco-friendly and sustainable agriculture: New challenges and prospects. In Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2022; pp. 69–96. [Google Scholar] [CrossRef]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Q.; Jiang, T.; Xu, H. Degradation dynamics of azadirachtin in cabbage and soil. J. South China Agric. Univ. 2007, 38, 37–40. [Google Scholar]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Swain, S.P.; Gupta, S.; Das, N.; Costa-Franca, T.C.; da Silva-Goncalves, A.; Castro-Ramalho, T.; Subrahmanya, S.; Narsaria, U.; Deb, D.; Mishra, N. Flavanones: A potential natural inhibitor of the ATP binding site of PknG of Mycobacterium tuberculosis. J. Biomol. Struct. Dyn. 2022, 40, 11885–11899. [Google Scholar] [CrossRef]
- Santos, J.A.N.; Kondo, M.Y.; Freitas, R.F.; dos Santos, M.H.; Ramalho, T.C.; Assis, D.M.; Juliano, L.; Juliano, A.M.; Puzer, L. The natural flavone fukugetin as a mixed-type inhibitor for human tissue kallikreins. Bioorganic Med. Chem. Lett. 2016, 26, 1485–1489. [Google Scholar] [CrossRef]
- Nelson, G. America’s magnolias. The American Gardener. Am. Hortic. Soc. Alex. 2008, 87, 38–43. [Google Scholar]
- Romanov, M.S.; Dilcher, D.L. Fruit structure in Magnoliaceae s.l. and Archaeanthus and their relationships. Am. J. Bot. 2013, 100, 1494–1508. [Google Scholar] [CrossRef] [PubMed]
- Rivers, M.; Beech, E.; Murphy, L.; Oldfield, S. The Red List of Magnoliaceae—Revised and Extended; Botanic Gardens Conservation International: Richmond, UK, 2016. [Google Scholar]
- Sarker, S.D.; Maruyama, Y. Magnolia: The Genus Magnolia; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Vázquez-García, J.; Muñiz-Castro, M.A.; Arroyo, F.; Pérez, Á.; Serna González, M.; Cuevas Guzmán, R.; Domínguez-Yescas, R.; de Castro-Arce, E.; Gurrola-Díaz, C. Novelties in Neotropical Magnolia and an Addendum Proposal to the IUCN Red List of Magnoliaceae; University of Guadalajara: Jalisco, Mexico, 2013; pp. 461–496. [Google Scholar]
- Boesewinkel, F.D.; Bouman, F. The seed: Structure. In Embryology of Angiosperms; Springer: Berlin/Heidelberg, Germany, 1984; pp. 567–610. [Google Scholar] [CrossRef]
- Bauman, A.J.; Yokoyama, H. Magnolia seed carotenoid pigments: Typical evolutionarily-static relicts? J. Theor. Biol. 1975, 53, 277–284. [Google Scholar]
- Cazetta, E.; Rubim, P.; de Oliveira, V.; Roberto-Francisco, M.; Galetti, M. Frugivoria e dispersão de sementes de Talauma ovata (Magnoliaceae) no sudeste brasileiro. Ararajuba 2002, 10, 199–206. [Google Scholar]
- Lee, Y.D. Use of Magnolia (Magnolia grandiflora) seeds in medicine, and possible mechanisms of action. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 727–732. [Google Scholar] [CrossRef]
- Patočka, J.; Jakl, J.; Strunecká, A. Expectations of biologically active compounds of the genus Magnolia in biomedicine. J. Appl. Biomed. 2006, 4, 171–178. [Google Scholar] [CrossRef]
- Li, J.; Copmans, D.; Partoens, M.; Hunyadi, B.; Luyten, W.; de Witte, P. Zebrafish-based screening of antiseizure plants used in Traditional Chinese Medicine: Magnolia officinalis extract and its constituents magnolol and honokiol exhibit potent anticonvulsant activity in a therapy-resistant epilepsy model. ACS Chem. Neurosci. 2020, 11, 730–742. [Google Scholar] [CrossRef]
- Ramyashree, C.; Hemalatha, K. Ethnomedicinal profile on Magnolia species (Magnoliaceae): A review. Int. J. Herb. Med. 2020, 8, 39–46. Available online: https://www.florajournal.com/archives/2020/vol8issue3/PartA/7-5-101-194.pdf (accessed on 2 July 2021).
- Schühly, W.; Khan, I.; Fischer, N.H. The ethnomedicinal uses of Magnoliaceae from the southeastern United States as leads in drug discovery. Pharm. Biol. 2001, 39, 63–69. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, Y.M.; Lee, C.K.; Jung, J.K.; Han, S.B.; Hong, J.T. Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther. 2011, 130, 157–176. [Google Scholar] [CrossRef]
- Domínguez-Yescas, R.; Vázquez-García, J.A. Flower of the heart, Magnolia yajlachhi (subsect. Talauma, Magnoliaceae), a new species of ceremonial, medicinal, conservation and nurse tree relevance in the Zapotec culture, Sierra Norte de Oaxaca, Mexico. Phytotaxa 2019, 393, 21. [Google Scholar] [CrossRef]
- Martínez, A.L.; Domínguez, F.; Orozco, S.; Chávez, M.; Salgado, H.; González, M.; González-Trujano, M.E. Neuropharmacological effects of an ethanol extract of the Magnolia dealbata Zucc. leaves in mice. J. Ethnopharmacol. 2006, 106, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.X.; Lu, X.X.; Du, Y.S.; Zheng, Y.; Zeng, D.; Du, S.S. Sesquiterpenoid-rich essential oils from two Magnolia plants: Contact and Repellent Activity to three stored-product insects. J. Oleo Sci. 2022, 71, ess21241. [Google Scholar] [CrossRef]
- Luu-Dam, N.A.; Tabanca, N.; Estep, A.S.; Nguyen, D.H.; Kendra, P.E. Insecticidal and attractant activities of Magnolia citrata leaf essential oil against two major pests from Diptera: Aedes aegypti (Culicidae) and Ceratitis capitata (Tephritidae). Molecules 2021, 26, 2311. [Google Scholar] [CrossRef] [PubMed]
- Flores-Estévez, N.; Vasquez-Morales, S.G.; Cano-Medina, T.; Sánchez-Velásquez, L.R.; Noa-Carrazana, J.C.; Díaz-Fleischer, F. Insecticidal activity of raw ethanolic extracts from Magnolia dealbata Zucc on a tephritid pest. J. Environ. Sci. Health Part B 2013, 48, 582–586. [Google Scholar] [CrossRef]
- Vásquez-Morales, S.; Norma, F.E.; Sánchez-Velásquez, L.R.; María del Rosario, P.L.; Viveros-Viveros, H.; Díaz-Fleischer, F. Bioprospecting of botanical insecticides: The case of ethanol extracts of Magnolia schiedeana Schltl. applied to a Tephritid, fruit fly Anastrepha ludens Loew. J. Entomol. Zool. Stud. 2015, 3, 1–5. [Google Scholar]
- Zheng, Y.F.; Liu, X.M.; Zhang, Q.; Lai, F.; Ma, L. Constituents of the essential oil and fatty acid from rare and endangered plant Magnolia kwangsiensis Figlar & Noot. J. Essent. Oil Bear. Plants 2019, 22, 141–150. [Google Scholar] [CrossRef]
- Song, Q.; Fischer, N.H. Biologically active lignans and neolignans from Magnolia species. Rev. Soc. Química México 1999, 43, 211–218. [Google Scholar]
- Damalas, C.A.; Koutroubas, S.D. Botanical pesticides for eco-friendly pest management. In Pesticides in Crop Production; Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 181–193. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Athanassiou, C.G. Natural insecticides from native plants of the Mediterranean basin and their activity for the control of major insect pests in vegetable crops: Shifting from the past to the future. J. Pest Sci. 2021, 94, 187–202. [Google Scholar] [CrossRef]
- Vázquez-García, J.A.; Muñiz-Castro, M.A.; Dahua-Machoa, A.; Osorio-Muñoz, E.A.; Hernández-Vera, G.; Ortega-Peña, A.S.; Romo-Campos, R.L.; Jacobo-Pereira, C. How to save endangered magnolias? From population biology to conservation action: The case of allopatric radiation in western Mexico. In Endangered Plants; Kumar, S., Ed.; IntechOpen: London, UK, 2021; pp. 13–56. [Google Scholar]
- Poivre, M.; Duez, P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J. Zhejiang Univ. Sci. B 2017, 18, 194–214. [Google Scholar] [CrossRef]
- Kelm, M.A.; Nair, M.G.; Schutzki, R.A. Mosquitocidal Compounds from Magnolia salicifolia. Int. J. Pharmacogn. 1997, 35, 84–90. [Google Scholar] [CrossRef]
- Ali, A.; Tabanca, N.; Demirci, B.; Raman, V.; Budel, J.M.; Baser, K.H.C.; Khan, I.A. Insecticidal and biting deterrent activities of Magnolia grandiflora essential oils and selected pure compounds against Aedes aegypti. Molecules 2020, 25, 1359. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Perumalsamy, H.; Wang, M.; Shu, S.; Ahn, Y.J. Larvicidal activity of Magnolia denudata seed hydrodistillate constituents and related compounds and liquid formulations towards two susceptible and two wild mosquito species. Pest Manag. Sci. 2016, 72, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Chen, J.; Khan, I.A. Toxicity and repellency of Magnolia grandiflora seed essential oil and selected pure compounds against the workers of hybrid imported fire ants (Hymenoptera: Formicidae). J. Econ. Entomol. 2022, 115, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Vásquez Morales, S.G.; Alvarez Vega, E.A.; Infante Rodríguez, D.A.; Huchin Mian, J.P.; Pedraza Reyes, M. Evaluación de extractos de árboles endemicos (Magnolia spp.) de México contra la plaga de la mosca de la fruta y estudio fitoquímico preliminar. Polibotánica 2022, 53, 168–182. [Google Scholar] [CrossRef]
- Chadwick, D.J.; Whelan, J. Secondary Metabolites: Their Function and Evolution; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Barros, L.F.L.; Ehrenfried, C.A.; Riva, D.; Barison, A.; de Mello-Silva, R.; Stefanello, M.E.A. Essential oil and other constituents from Magnolia ovata fruit. Nat. Prod. Commun. 2012, 7, 1934578X1200701. [Google Scholar] [CrossRef]
- Garza, B.; Echeverria, A.; Gonzalez, F.; Castillo, O.; Eubanks, T.; Bandyopadhyay, D. Phytochemical investigation of Magnolia grandiflora green seed cones: Analytical and phytoceutical studies. Food Sci. Nutr. 2019, 7, 1761–1767. [Google Scholar] [CrossRef]
- Scotti, C.; Barlow, J.W. Natural products containing the Nitrile functional group and their biological activities. Nat. Prod. Commun. 2022, 17, 1–24. [Google Scholar] [CrossRef]
- Nie, W.; Ding, L.F.; Lei, T.; Liu, Z.X.; Li, J.D.; Song, L.D.; Wu, X.D. Biphenyl-type neolignans with NO inhibitory activity from the fruits of Magnolia tripetala. Phytochem. Lett. 2021, 44, 222–226. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Cho, H.; Yu, B.; Kim, S. Comparison of essential oil compositions of fresh and dried fruits of Magnolia kobus DC. J. Appl. Pharm. Sci. 2016, 6, 146–149. [Google Scholar] [CrossRef]
- Pyo, M.K.; Lee, Y.; Yun-Choi, H.S. Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Arch. Pharmacal Res. 2002, 25, 325–328. [Google Scholar] [CrossRef]
- Seo, K.H.; Lee, D.Y.; Lee, D.S.; Park, J.H.; Jeong, R.H.; Jung, Y.J.; Shrestha, S.; Chung, I.S.; Kim, G.S.; Kim, Y.C.; et al. Neolignans from the fruits of Magnolia obovata and their inhibition effect on NO production in LPS-induced RAW 264.7 cells. Planta Med. 2013, 79, 1335–1340. [Google Scholar] [CrossRef]
- Seo, K.H.; Lee, D.Y.; Jung, J.W.; Lee, D.S.; Kim, Y.C.; Lee, Y.H.; Baek, N.I. Neolignans from the fruits of Magnolia obovata inhibit NO production and have neuroprotective effects. Helv. Chim. Acta 2016, 99, 411–415. [Google Scholar] [CrossRef]
- Seo, K.H.; Lee, D.Y.; Lee, Y.G.; Baek, N.I. Dineolignans of 3-O-4′ diphenyl ether-type from fruits of Magnolia obovata. Phytochemistry 2017, 136, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.H.; Lee, D.Y.; In, S.J.; Lee, D.G.; Kang, H.C.; Song, M.C.; Baek, N.I. Phenylethanoid glycosides from the fruits of Magnolia obovata. Chem. Nat. Compd. 2015, 51, 660–665. [Google Scholar] [CrossRef]
- Seo, K.H.; Nam, Y.H.; Lee, D.Y.; Ahn, E.M.; Kang, T.H.; Baek, N.I. Recovery effect of phenylpropanoid glycosides from Magnolia obovata fruit on alloxan-induced pancreatic islet damage in zebrafish (Danio rerio). Carbohydr. Res. 2015, 416, 70–74. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, W.; Zhou, G.; Ma, B.; Mo, Q.; Chen, Y.; Wang, Y. Nine phenylethanoid glycosides from Magnolia officinalis var biloba fruits and their protective effects against free radical-induced oxidative damage. Sci. Rep. 2017, 7, 45342. [Google Scholar] [CrossRef] [PubMed]
- Schühly, W.; Ross, S.A.; Mehmedic, Z.; Fischer, N.H. Essential oil analysis of the follicles of four North American Magnolia species. Nat. Prod. Commun. 2008, 3, 1934578X0800300. [Google Scholar] [CrossRef]
- Ramírez-Reyes, T.; Monribot-Villanueva, J.L.; Jiménez-Martínez, O.D.; Aguilar-Colorado, Á.S.; Bonilla-Landa, I.; Flores-Estévez, N.; Luna-Rodríguez, M.; Guerrero-Analco, J.A. Sesquiterpene lactones and phenols from polyfollicles of Magnolia vovidesii and their antimicrobial activity. Nat. Prod. Commun. 2018, 13, 1934578X1801300. [Google Scholar] [CrossRef]
- Schühly, W.; Khan, S.I.; Fischer, N.H. Neolignans from north American Magnolia species with cyclooxygenase 2 inhibitory Activity. Inflammopharmacology 2009, 17, 106–110. [Google Scholar] [CrossRef]
- Luo, M.; Sun, J.; Zhang, B.; Jiang, L. Chemical composition and antioxidant activity of essential oil from Magnolia grandiflora L. seed. Wuhan Univ. J. Nat. Sci. 2012, 17, 249–254. [Google Scholar] [CrossRef]
- Li, H.M.; Zhao, S.R.; Huo, Q.; Ma, T.; Liu, H.; Lee, J.K.; Hong, Y.S.; Wu, C.Z. A new dimeric neolignan from Magnolia grandiflora L. seeds. Arch. Pharmacal Res. 2015, 38, 1066–1071. [Google Scholar] [CrossRef]
- Osorio-Muñoz, E.A. Identificación Química y Perspectiva Medicinal de los aceites esenciales de hojas, semillas y flores de Magnolia pugana. Tesis de Maestría en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas. Master’s Thesis, Universidad de Guadalajara, Guadalajara, México, 2020. [Google Scholar]
- Boulogne, I.; Petit, P.; Ozier-Lafontaine, H.; Desfontaines, L.; Loranger-Merciris, G. Insecticidal and antifungal chemicals produced by plants: A review. Environ. Chem. Lett. 2012, 10, 325–347. [Google Scholar] [CrossRef]
- Merillon, J.M.; Ramawat, K.G. Co-evolution of Secondary Metabolites; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Karunanithi, P.S.; Zerbe, P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front. Plant Sci. 2019, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–266. [Google Scholar] [CrossRef]
- Langenheim, J.H. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 1994, 20, 1223–1280. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.X.; Lou, Y.G.; Mao, Y.B.; Lu, S.; Wang, L.J.; Chen, X.Y. Plant terpenoids: Biosynthesis and ecological functions. J. Integr. Plant Biol. 2007, 49, 179–186. [Google Scholar] [CrossRef]
- Mumm, R.; Posthumus, M.A.; Dicke, M. Significance of terpenoids in induced indirect plant defense against herbivorous arthropods. Plant Cell Environ. 2008, 31, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.F.; Rossa, G.E.; Cassel, E.; Vargas, R.M.F.; Santana, O.; Díaz, C.E.; González-Coloma, A. Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food Chem. Toxicol. 2017, 109, 1086–1092. [Google Scholar] [CrossRef]
- Mesbah, H.A.; Saad, A.S.A.; Mourad, A.K.; Taman, F.A.; Mohamed, I.B. Joint action of quercetin with four insecticides on the cotton leaf-worm larvae, Spodoptera littoralis Boisd. (Lep.: Noctuidae) in Egypt. Commun. Agric. Appl. Biol. Sci. 2007, 72, 445–457. [Google Scholar]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; Rajeswary, M.; Vaseeharan, B.; Alyahya, S.A.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Maggi, F. Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera. Ecotoxicol. Environ. Saf. 2018, 148, 781–786. [Google Scholar] [CrossRef]
- de Oliveira, B.M.S.; Melo, C.R.; Santos, A.C.C.; Nascimento, L.F.A.; Nízio, D.A.C.; Cristaldo, P.F.; Blank, A.F.; Bacci, L. Essential oils from Varronia curassavica (Cordiaceae) accessions and their compounds (E)-caryophyllene and α-humulene as an alternative to control Dorymyrmex thoracius (Formicidae: Dolichoderinae). Environ. Sci. Pollut. Res. 2019, 26, 6602–6612. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Du, S.S. Fumigant components from the essential oil of Evodia rutaecarpa hort unripe fruits. E-J. Chem. 2011, 8, 1937–1943. [Google Scholar] [CrossRef]
- Choi, W.S.; Park, B.S.; Lee, Y.H.; Jang, D.Y.; Yoon, H.Y.; Lee, S.E. Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. Crop Prot. 2006, 25, 398–401. [Google Scholar] [CrossRef]
- Cao, J.; Pang, X.; Guo, S.; Wang, Y.; Geng, Z.; Sang, Y.; Guo, P.; Du, S. Pinene-rich essential oils from Haplophyllum dauricum (L.) G. Don display anti-insect activity on two stored-product insects. Int. Biodeterior. Biodegrad. 2019, 140, 1–8. [Google Scholar] [CrossRef]
- Saad, M.M.G.; El-Deeb, D.A.; Abdelgaleil, S.A.M. Insecticidal potential and repellent and biochemical effects of phenylpropenes and monoterpenes on the red flour beetle, Tribolium castaneum Herbst. Environ. Sci. Pollut. Res. 2019, 26, 6801–6810. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Y.; Wang, Y.; Lin, Z.; Wang, L.; Li, G. Toxicities of monoterpenes against housefly, Musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut. Res. 2017, 24, 24708–24713. [Google Scholar] [CrossRef] [PubMed]
- AlShebly, M.M.; AlQahtani, F.S.; Govindarajan, M.; Gopinath, K.; Vijayan, P.; Benelli, G. Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2017, 137, 149–157. [Google Scholar] [CrossRef]
- Pang, X.; Almaz, B.; Qi, X.J.; Wang, Y.; Feng, Y.X.; Geng, Z.F.; Xi, C.; Du, S.S. Bioactivity of essential oil from Atalantia buxifolia leaves and its major sesquiterpenes against three stored-product insects. J. Essent. Oil Bear. Plants 2020, 23, 38–50. [Google Scholar] [CrossRef]
- Feng, Y.X.; Wang, Y.; Chen, Z.Y.; Guo, S.S.; You, C.X.; Du, S.S. Efficacy of bornyl acetate and camphene from Valeriana officinalis essential oil against two storage insects. Environ. Sci. Pollut. Res. 2019, 26, 16157–16165. [Google Scholar] [CrossRef]
- Chu, S.S.; Jiang, G.H.; Liu, Z.L. Insecticidal compounds from the essential oil of Chinese medicinal herb Atractylodes chinensis. Pest Manag. Sci. 2011, 67, 1253–1257. [Google Scholar] [CrossRef]
- Zhu, L.; Tian, Y. Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol. Res. 2013, 112, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Yoon, J.S.; Jung, J.W.; Hong, K.B.; Ahn, Y.J.; Kwon, H.W. Toxicity and repellency of origanum essential oil and its components against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. J. Asia-Pac. Entomol. 2010, 13, 369–373. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Benelli, G. δ-Cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb. Chem. High Throughput Screen. 2016, 19, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Drenaggi, E.; Desneux, N.; Maggi, F. Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind. Crops Prod. 2020, 155, 112844. [Google Scholar] [CrossRef]
- Wu, M.; Xiong, Y.; Han, R.; Dong, W.; Xiao, C. Fumigant toxicity and oviposition deterrent activity of volatile constituents from Asari Radix et Rhizoma against Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Insect Sci. 2020, 20, 32. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.J.; Xie, H.Q.; Mu, Q. Guaiol-a naturally occurring insecticidal sesquiterpene. Nat. Prod. Commun. 2013, 8, 1353–1354. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zhao, N.; Du, S.; Yang, K.; Wang, C.F.; Liu, Z.L.; Qiao, Y.J. Insecticidal activity of the essential oil of Lonicera japonica flower buds and its main constituent compounds against two grain storage insects. J. Med. Plants Res. 2012, 6, 912–917. [Google Scholar] [CrossRef]
- Traboulsi, A.F.; Taoubi, K.; El-Haj, S.; Bessiere, J.; Rammal, S. Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag. Sci. 2002, 58, 491–495. [Google Scholar] [CrossRef]
- Crozier, A.; Clifford, M.N.; Ashihara, H. Phenols, Polyphenols, and Tannins: An Overview. Plant Secondary Metabolites: Occurrence, Structure, and role in the Human Diet. Blackwell Publishing: Tokio, Japan, 2006; Volume 1. [Google Scholar]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 253–271. [Google Scholar] [CrossRef]
- Azcón-Bieto, J.; Talón, M. Introducción al metabolismo secundario. In Fundamentos de Fisiología Vegetal, 2nd ed.; McGRAW-HILL—Interamericana De España: Madrid, España, 2013; pp. 326–340. [Google Scholar]
- Lattanzio, V. Phenolic compounds: Introduction. In Natural Products; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1543–1580. [Google Scholar] [CrossRef]
- McClure, J.W. The physiology of phenolic compounds in plants. In Biochemistry of Plant Phenolics; Springer: Boston, MA, USA, 1979; pp. 525–556. [Google Scholar]
- Chen, Y.; Bertrand, C.; Dai, G.; Yuan, J. Biochemical mechanisms of acaricidal activity of 2,4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus. J. Pest Sci. 2018, 91, 405–419. [Google Scholar] [CrossRef]
- de Menezes, C.W.G.; Carvalho, G.A.; Alves, D.S.; de Carvalho, A.A.; Aazza, S.; de Oliveira Ramos, V.; Pinto, J.E.B.P.; Bertolucci, S.K.V. Biocontrol potential of methyl chavicol for managing Spodoptera frugiperda (Lepidoptera: Noctuidae), an important corn pest. Environ. Sci. Pollut. Res. 2020, 27, 5030–5041. [Google Scholar] [CrossRef]
- Obeng-Ofori, D.; Reichmuth, C.H. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. Int. J. Pest Manag. 1997, 43, 89–94. [Google Scholar] [CrossRef]
- González Armijos, M.J.; Viteri Jumbo, L.; Faroni, L.R.; Oliveira, E.E.; Flores, A.F.; Heleno, F.; Haddi, K. Fumigant toxicity of eugenol and its negative effects on biological development of Callosobruchus maculatus L. Rev. Cienc. Agrícolas 2019, 36, 5–15. [Google Scholar] [CrossRef]
- Wang, Z.; Perumalsamy, H.; Wang, X.; Ahn, Y.J. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Sci. Rep. 2019, 9, 411. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.H.; Li, C.; Yang, J.; Ma, L.; Xiao, Y.; Hu, J.; Rajput, N.A.; Gao, C.F.; Zhang, Y.Y.; Wang, M.H. Construction of an immobilised acetylcholinesterase column and its application in screening insecticidal constituents from Magnolia officinalis. Pest Manag. Sci. 2015, 71, 607–615. [Google Scholar] [CrossRef] [PubMed]
- González-Coloma, A.; Escoubas, P.; Mizutani, J.; Lajide, L. Insect growth inhibitors from Machilus japonica. Phytochemistry 1994, 35, 607–610. [Google Scholar] [CrossRef]
- Amin, E.M.; Radwan, M.; El-Hawary, S.S.; Fathy, M.M.; Mohammed, R.J.; Becnel, J.; Khan, I. Potent insecticidal secondary metabolites from the medicinal plant Acanthus montanus. Rec. Nat. Prod. 2012, 6, 301–306. [Google Scholar]
- Selin-Rani, S.; Senthil-Nathan, S.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Edwin, E.S.; Ponsankar, A.; Lija-Escaline, J.; Kalaivani, K.; Abdel-Megeed, A.; Hunter, W.B.; et al. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere 2016, 165, 257–267. [Google Scholar] [CrossRef]
- Shaver, T.N.; Lukefahr, M.J. Effect of flavonoid pigments and gossypol on growth and development of the Bollworm, tobacco budworm, and pink bollworm 123. J. Econ. Entomol. 1969, 62, 643–646. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Chang, B.H.; Zhang, Z. The survival, growth, and detoxifying enzyme activities of grasshoppers Oedaleus asiaticus (Orthoptera: Acrididae) exposed to toxic rutin. Appl. Entomol. Zool. 2020, 55, 385–393. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Bhakuni, R.S.; Upadhyay, S.; Gaur, R. Insect feeding deterrent and growth inhibitory activities of scopoletin isolated from Artemisia annua against Spilarctia obliqua (Lepidoptera: Noctuidae). Insect Sci. 2011, 18, 189–194. [Google Scholar] [CrossRef]
- Cis, J.; Nowak, G.; Kisiel, W. Antifeedant properties and chemotaxonomic implications of sesquiterpene lactones and syringin from Rhaponticum pulchrum. Biochem. Syst. Ecol. 2006, 34, 862–867. [Google Scholar] [CrossRef]
- Hesse, M. Alkaloids: Nature’s Curse or Blessing? 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Shamma, M. The Isoquinoline Alkaloids Chemistry and Pharmacology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 25. [Google Scholar]
- Morris, J.S.; Facchini, P.J. Isolation and characterization of reticuline N-methyltransferase involved in biosynthesis of the aporphine alkaloid magnoflorine in opium poppy. J. Biol. Chem. 2016, 291, 23416–23427. [Google Scholar] [CrossRef] [PubMed]
- Facchini, P.J. Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 29–66. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Ecological roles of alkaloids. In Modern Alkaloids; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; pp. 1–24. [Google Scholar] [CrossRef]
- Figlar, R.B.; Nooteboom, H.P. Notes on Magnoliaceae IV. Blumea Biodivers. Evol. Biogeogr. Plants 2004, 49, 87–100. [Google Scholar] [CrossRef]
- Serna, L.M.; Tuberquia, D.; Velásquez, C.; Rincón, H.; Cogollo, Á. Implementación de Una Estrategia de Conservación Para las Especies de Magnoliaceae en la Jurisdicción de Corantioquia. 2002. Available online: https://www.corantioquia.gov.co/ciadoc/FLORA/AIRNR_CN_3009_2001.pdf (accessed on 10 March 2022).
- Wang, G.; Yang, Z.; Chen, P.; Tan, W.; Lu, C. Seed Dispersal of an Endangered Kmeria septentrionalis by Frugivorous Birds in a Karst Habitat. Pak. J. Zool. 2019, 51, 1195–1198. [Google Scholar] [CrossRef]
- Sánchez-Velásquez, L.; Pineda-López, M.R.; Vásquez-Morales, S.; Avendaño-Yáñez, M. Ecology and conservation of endangered species: The case of Magnolias. In Endangered Species: Threats, Conservation and Future Research; Nova Sciences Publishers Inc.: Hauppauge, NY, USA, 2016; pp. 63–84. [Google Scholar]
- Vásquez-Morales, S.G.; Sánchez-Velásquez, L.R.; Pineda-López, M.R.; Díaz-Fleischer, F.; Flores-Estévez, N.; Viveros-Viveros, H. Moderate anthropogenic disturbance does not affect the Magnolia schiedeana Schltl. Demography: An endangered species from Mexico. Flora 2017, 234, 77–83. [Google Scholar] [CrossRef]
- Tiwari, S.; Chauhan, P.S. Ecological restoration and plant biodiversity. In Bioprospecting of Plant Biodiversity for Industrial Molecules; Wiley: West Sussex, UK, 2021; pp. 91–97. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides in the twenty-first century—Fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef]
- Vásquez-Morales, G.S.; Sánchez-Velásquez, L. Seed ecology and pre-germinative treatments in Magnolia schiedeana Schlecht, an endangered species from Mexico. J. Food Agric. Environ. 2011, 99, 604–608. [Google Scholar]
- Zhao, W.; Zhao, Y.; Li, J.; Zhao, L. Preliminary study of volatile components and function of sarcotesta in Magnolia denudata Desr. Acta Bot. Boreali-Occident. Sin. 2015, 35, 1254–1261. [Google Scholar]
- Fontana, R.; Mattioli, L.B.; Biotti, G.; Budriesi, R.; Gotti, R.; Micucci, M.; Corazza, I.; Marconi, P.; Frosini, M.; Manfredini, S.; et al. Magnolia officinalis L. bark extract and respiratory diseases: From traditional Chinese medicine to western medicine via network target. Phytother. Res. 2023, 1–24. [Google Scholar] [CrossRef]
- Cardullo, N.; Barresi, V.; Muccilli, V.; Spampinato, G.; D’Amico, M.; Filippo-Condorelli, D.; Tringali, C. Synthesis of bisphenol neolignans inspired by Honokiol as antiproliferative agents. Molecules 2020, 25, 733. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, S.; Chen, K.; Ji, L.; Cui, S. Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting P13K/AKT/mTOR and EMT pathways. Chin. Herb. Med. 2023. [Google Scholar] [CrossRef]
- Sciazza, C.; Cardullo, N.; Pulvirenti, L.; Di Francesco, A.; Muccilli, V. Evaluation of honokiol, magnolol and of a library of new nitrogenated neolignans as pancreatic lipase inhibitors. Bioorganic Chem. 2023, 134, 106455. [Google Scholar] [CrossRef]
Compound | Activity | Species | Orden | Stages | LD50 | Time | Exposition | References |
---|---|---|---|---|---|---|---|---|
α-caryophyllene | Insecticide | Helicoverpa armigera | Lepidoptero | L3 | 20.86 µg/mL | 24 h | Intake | [79] |
α-humulene | Insecticide | Dorymyrmex thoracicus | Hymenoptera | A | 75 μL/L | 48 h | Spraying | [80] |
α-phellandrene | Insecticide | Sitophilus zemais | Coleoptera | A | 15.61 mg/L | 24 h | Spraying | [81] |
α-pinene | Insecticide | Lycoriella mali | Diptera | A | 9.85 µL/L air | 24 h | Spraying | [82] |
Insecticide | Tribolium castaneum | Coleoptera | A | 14.08 mg/L air | 24 h | Spraying | [83] | |
α-terpinene | Insecticide | T. castaneum | Coleoptera | A | 23.70 μL/L air | 24 h | Spraying | [84] |
Insecticide | Musca domestica | Diptera | A | 2.41 μL/L | 24 h | Spraying | [85] | |
α-terpineol | Larvicide | Culex pipiens molestus | Diptera | L4 | 194 mg/L | 24 h | Contact | [81] |
Insecticide | M. domestica | Diptera | A | 3.74 μL/L | 24 h | Spraying | [85] | |
Ar-curcumene | Larvicide | An. stephensi | Diptera | L3 | 10.45 µg/mL | 24 h | Contact | [86] |
Larvicide | Cx. quinquefasciatus | Diptera | L3 | 12.24 µg/mL | 24 h | Contact | [86] | |
β-caryophyllene | Insecticide | D. thoracicus | Hymenoptera | A | 1.49 μL/L | 48 h | Spraying | [80] |
Insecticide | T. castaneum | Coleoptera | A | 36.0 μg/adult | 24 h | Contact | [87] | |
β-myrcene | Insecticide | M. domestica | Diptera | A | 4.95 μL/L | 24 h | Spraying | [85] |
β-phellandrene | Insecticide | T. castaneum | Coleoptera | A | 22.56 mg/L | 24 h | Spraying | [83] |
β-pinene | Insecticide | Lasioderma serricorne | Coleoptera | A | 14.66 mg/L | 24 h | Spraying | [83] |
Insecticide | L. mali | Diptera | A | 11.85 µL/l air | 24 h | Spraying | [82] | |
Bornyl acetate | Insecticide | Liposcelis bostrychophila | Psocoptera | A | 1.1 mg/L air | 24 h | Spraying | [88] |
Insecticide | M. domestica | Diptera | A | 4.24 μL/L | 24 h | Spraying | [85] | |
β-selinene | Insecticide | Drosophila melanogaster | Diptera | A | 0.55 µg/adult | 3 h | Topical application | [89] |
Caryophyllene oxide | Larvicide | An. anthropophagus | Diptera | L4 | 49.46 mg/L | 24 h | Contact | [90] |
Insecticide | T. castaneum | Coleoptera | A | 0.00018 mg/cm3 | 24 h | Spraying | [91] | |
δ-cadinene | Larvicide | Anopheles stephensi | Diptera | L3 | 8.23 µg/mL | 24 h | Contact | [92] |
Larvicide | Aedes aegypti | Diptera | L3 | 9.03 µg/mL | 24 h | Contact | [92] | |
E-nerolidol | Insecticide | Metopolophium dirhodum | Hemiptera | A | 3.5 mL/L | 48 h | Contact | [93] |
γ-terpinene | Insecticide | Phthorimaea operculella | Lepidoptera | A | 5.98 mg/L air | 24 h | Spraying | [94] |
Guaiol | Insecticide | M. domestica | Diptera | A | 16.9 µL/L | 48 h | Spraying | [95] |
Larvicide | Plutella xylostella | Lepidoptera | L3 | 8.9 mg/larva | 12 h | Contact | [95] | |
Limonene | Insecticide | T. castaneum | Coleoptera | A | 6.79 mg/L | 24 h | Spraying | [83] |
Insecticide | M. domestica | Diptera | A | 3.22 μL/L | 24 h | Spraying | [85] | |
Linalool | Insecticide | Sitophilus zeamais | Coleoptera | A | 10.46 mg/L | 24 h | Spraying | [96] |
Larvicide | Cx. pipiens molestus | Diptera | L4 | 193 mg/L | 24 h | Contact | [97] | |
p-cymene | Insecticide | T. castaneum | Coleoptera | A | 27.01 μL/l air | 24 h | Contact | [84] |
Insecticide | M. domestica | Diptera | A | 0.77 μL/L | 24 h | Spraying | [85] |
Compound | Activity | Species | Orden | Stages | LD50 | Time | Exposition | References |
---|---|---|---|---|---|---|---|---|
2,4-di-tert-butylphenol | Acaricide | Tetranychus cinnabarinus | Trombidiformes | A | 7.61 µM | 24 h | Spraying | [103] |
Estragol | Larvicide | Spodoptera frugiperda | Lepidoptera | A | 0.92 mg mL | 24 h | Intake | [104] |
Insecticide | Sitophilus zeamais | Coleoptera | A | 14.10 mg/L | 24 h | Spraying | [87] | |
Eugenol | Insecticide | Tribolium castaneum | Coleoptera | A | 1 μg/kg | 24 h | Contact | [105] |
Insecticide | Callosobruchus maculatus | Coleoptera | A | 24.8 μL/L | 24 h | Spraying | [106] | |
Honokiol | Larvicide | Aedes albopictus | Diptera | L3 | 6.13 mg/L | 24 h | Contact | [107] |
Larvicide | Anopheles sinensis | Diptera | L3 | 7.37 mg/L | 24 h | Contact | [107] | |
Insecticide | Nilaparvata lugens | Hemiptera | A | 0.324 mM | 48 h | Topical application | [108] | |
Licarin A | Larvicide | S. litura | Lepidoptera | L | 0.20% m/m | 7 d | Intake | [109] |
Magnolol | Insecticide | N. lugens | Hemiptera | A | 0.137 mM | 48 h | Topical application | [108] |
Larvicide | Culex pipiens pallens | Diptera | L3 | 26 mg/L | 24 h | Contact | [107] | |
Protochatecuic acid | Insecticide | Ae. aegypti | Diptera | A | 1.25 µg/mg | 24 h | Contact | [110] |
Quercetin | Larvicide | S. litura | Lepidoptera | L4 | 10.88 ppm | 24 h | Intake | [111] |
Larvicide | Pectinophora gossypiella | Lepidoptera | L | 0.2% | Until pupae maturation | Intake | [112] | |
Rutin | Insecticide | Oedaleus asiaticus | Orthoptera | A | 763.7 mg/L | 7 days | Intake | [113] |
Scopoletin | Larvicide | Spilarctia obliqua | Lepidoptera | L4 | 20.9 μg/g | 24 h | Intake | [114] |
Syringin | Anti-nutrients | S. granarius | Coleoptera | A | 134.4 μL/L | 5 d | Intake | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Rocha, J.V.; Vásquez-Morales, S.G. The Potential of Magnolia spp. in the Production of Alternative Pest Control Substances. Molecules 2023, 28, 4681. https://doi.org/10.3390/molecules28124681
Hernandez-Rocha JV, Vásquez-Morales SG. The Potential of Magnolia spp. in the Production of Alternative Pest Control Substances. Molecules. 2023; 28(12):4681. https://doi.org/10.3390/molecules28124681
Chicago/Turabian StyleHernandez-Rocha, Juana Valeria, and Suria Gisela Vásquez-Morales. 2023. "The Potential of Magnolia spp. in the Production of Alternative Pest Control Substances" Molecules 28, no. 12: 4681. https://doi.org/10.3390/molecules28124681
APA StyleHernandez-Rocha, J. V., & Vásquez-Morales, S. G. (2023). The Potential of Magnolia spp. in the Production of Alternative Pest Control Substances. Molecules, 28(12), 4681. https://doi.org/10.3390/molecules28124681