Fast Assembly of Metal Organic Framework UiO-66 in Acid-Base Tunable Deep Eutectic Solvent for the Acetalization of Benzaldehyde and Methanol
Abstract
1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Synthesis, Characterization, and Calculation of DESs
2.3. Acetalization Experiments
3. Results and Discussion
3.1. Fast Assembly of UiO-66
3.2. Characterization of UiO-66
3.3. Formation Process of UiO-66
3.4. Benzaldehyde Acetalization with Methanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
DES | deep eutectic solvent |
MOF | metal–organic framework |
UiO-66 | Zr6O4(OH)4(BDC)6 |
IL | ionic liquid |
HB | hydrogen bond |
HBD | hydrogen bond donor |
HBA | hydrogen bond acceptor |
DMF | N,N-dimethylformamide |
MIm | 2-methyl imidazole |
PTSA | p-toluenesulfonic acid |
H2BDC | terephthalic acid |
BTC | 1,3,5-benzenetricarboxylate |
XRD | X-ray diffraction |
References
- Rowsell, J.L.C.; Yaghi, O.M. Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 2005, 44, 4670–4679. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xie, L.; Wang, X.; Liu, X.; Li, J.; Li, J. Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy Environ. 2018, 3, 191–228. [Google Scholar] [CrossRef]
- González-Rodríguez, G.; Taima-Mancera, I.; Lago, A.B.; Ayala, J.H.; Pasán, J.; Pino, V. Mixed functionalization of organic ligands in UiO-66: A tool to design metal-organic frameworks for tailored microextraction. Molecules 2019, 24, 3656. [Google Scholar] [CrossRef]
- Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178. [Google Scholar] [CrossRef]
- Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K. Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation. ACS Nano 2014, 8, 2812–2819. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, Z.; Huang, C.; Gao, L.; Dong, T.; Hu, J. Hollow CdS nanotubes with ZIF-8 as co-catalyst for enhanced photocatalytic activity. J. Colloid Interface Sci. 2022, 606, 1882–1889. [Google Scholar] [CrossRef]
- Vahabi, A.H.; Norouzi, F.; Sheibani, E.; Rahimi-Nasrabadi, M. Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coord. Chem. Rev. 2021, 445, 214050. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663. [Google Scholar] [CrossRef]
- Lin, J.-M.; He, C.-T.; Liu, Y.; Liao, P.-Q.; Zhou, D.-D.; Zhang, J.-P.; Chen, X.-M. A metal–organic framework with a pore size/shape suitable for strong binding and close packing of methane. Angew. Chem. Int. Ed. 2016, 55, 4674–4678. [Google Scholar] [CrossRef]
- Kang, Y.-S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang, P.; Sun, W.-Y. Metal–organic frameworks with catalytic centers: From synthesis to catalytic application. Coord. Chem. Rev. 2019, 378, 262–280. [Google Scholar] [CrossRef]
- Yuan, S.; Feng, L.; Wang, K.C.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; et al. Stable metal–organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Qu, C.; Xia, D.; Zou, R.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem. Int. Ed. 2018, 57, 9604–9633. [Google Scholar] [CrossRef] [PubMed]
- Taima-Mancera, I.; González-Rodríguez, G.; Pasán, J.; Ayala, J.H.; Ruiz-Pérez, C.; Afonso, A.M.; Lago, A.B.; Pino, V. Influence of ligand functionalization of UiO-66-based metal-organic frameworks when used as sorbents in dispersive solid-phase analytical microextraction for different aqueous organic pollutants. Molecules 2018, 23, 2869. [Google Scholar] [CrossRef]
- Zhao, Q.; Yuan, W.; Liang, J.; Li, J. Synthesis and hydrogen storage studies of metal−organic framework UiO-66. Int. J. Hydrogen. Energ. 2013, 38, 13104–13109. [Google Scholar] [CrossRef]
- Wang, X.-G.; Cheng, Q.; Yu, Y.; Zhang, X.-Z. Controlled nucleation and controlled growth for size predicable synthesis of nanoscale metal-organic frameworks (MOFs): A general and scalable approach. Angew. Chem. Int. Ed. 2018, 57, 7836–7840. [Google Scholar] [CrossRef] [PubMed]
- Decker, G.E.; Stillman, Z.; Attia, L.; Fromen, C.A.; Bloch, E.D. Controlling size, defectiveness, and fluorescence in nanoparticle UiO-66 through water and ligand modulation. Chem. Mater. 2019, 31, 4831–4839. [Google Scholar] [CrossRef]
- DeStefano, M.R.; Islamoglu, T.; Garibay, S.J.; Hupp, J.T. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chem. Mater. 2017, 29, 1357–1361. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Gao, W.; Zhang, L.; Liu, W.; Lu, J.; Wanga, Z.; Denga, Y.-J. Microwave-assisted synthesis of UIO-66 and its adsorption performance towards dyes. Cryst. Eng. Comm. 2014, 16, 7037–7042. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Lo, W.-S.; Kuo, Y.-W.; Chen, W.-J.; Lin, C.-H.; Shieh, F.-K. Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chem. Commun. 2017, 53, 5818–5821. [Google Scholar] [CrossRef]
- Zou, N.; Lin, X.; Li, M.; Li, L.; Ye, C.; Chen, J.; Qiu, T. Ionic liquid@ amphiphilic silica nanoparticles: Novel catalysts for converting waste cooking oil to biodiesel. ACS Sustain. Chem. Eng. 2020, 8, 18054–18061. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, T.; Han, B. Preparation of catalytic materials using ionic liquids as the media and functional components. Adv. Mater. 2014, 26, 6810–6827. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, T.; Chen, L.; Ye, Y.; Qi, Z.; Freund, H.; Sundmacher, K. Selective oxidation of cyclohexanol to cyclohexanone in the ionic liquid1-octyl-3-methylimidazolium chloride. Chem. Commun. 2011, 47, 9354–9356. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Wang, Z.; Chen, L.; Cheng, H.; Qi, Z. Ionic-liquid-controlled two-dimensional monolayer Bi2MoO6 and its adsorption of azo molecules. ACS Appl. Nano Mater. 2018, 1, 5083–5091. [Google Scholar] [CrossRef]
- Petkovic, M.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Ionic liquids: A pathway to environmental acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhang, J.; Li, J.; Han, B.; Xue, Z.; Yang, G. Surfactant-directed assembly of mesoporous metal–organic framework nanoplates in ionic liquids. Chem. Commun. 2012, 48, 8688–8690. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, B.; Zhang, J.; Peng, L.; Kang, X.; Han, B.; Wu, T.; Sang, X.; Ma, X. Gas promotes the crystallization of nano-sized metal–organic frameworks in ionic liquid. Chem. Commun. 2015, 51, 11445–11448. [Google Scholar] [CrossRef]
- Sang, X.; Zhang, J.; Xiang, J.; Cui, J.; Zheng, L.; Zhang, J.; Wu, Z.; Li, Z.; Mo, G.; Xu, Y.; et al. Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks. Nat. Commun. 2017, 8, 175. [Google Scholar] [CrossRef]
- Qin, L.; Li, J.; Cheng, H.; Chen, L.; Qi, Z.; Yuan, W. Association extraction for vitamin E recovery from deodorizer distillate by in situ formation of deep eutectic solvent. AIChE J. 2017, 63, 2212–2220. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, Y.; Qin, H.; Qi, Z. Advances of ionic liquids and deep eutectic solvents in green processes of biomass-derived 5-hydroxymethylfurfural. ChemSusChem 2022, 15, e202102635. [Google Scholar] [CrossRef]
- Qin, H.; Hu, X.; Wang, J.; Cheng, H.; Chen, L.; Qi, Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy Environ. 2020, 5, 8–21. [Google Scholar] [CrossRef]
- Cheng, H.; Qi, Z. Application of deep eutectic solvents for hard-to-separate liquid systems. Sep. Purif. Technol. 2021, 274, 119027. [Google Scholar] [CrossRef]
- Wagle, D.V.; Zhao, H.; Baker, G.A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res. 2014, 47, 2299–2308. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, T.; Cheng, H.; Richards, R.; Qi, Z. A microwave assisted ionic liquid route to prepare bivalent Mn5O8 nanoplates for 5-hydroxymethylfurfural oxidation. Nanoscale 2020, 12, 17902–17914. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lou, F.; Cheng, H.; Qi, Z. Uniform heterostructured MnOx/MnCO3/Fe2O3 nanocomposites assembled in an ionic liquid for highly selective oxidation of 5-hydroxymethylfurfural. New J. Chem. 2021, 45, 12050–12063. [Google Scholar] [CrossRef]
- Hu, L.; Chen, L.; Fang, Y.; Wang, A.; Chen, C.; Yan, Z. Facile synthesis of zeolitic imidazolate framework-8 (ZIF-8) by forming imidazole-based deep eutectic solvent. Micropor. Mesopor. Mater. 2018, 268, 207–215. [Google Scholar] [CrossRef]
- Qin, H.; Song, Z.; Zeng, Q.; Cheng, H.; Chen, L.; Qi, Z. Bifunctional imidazole-PTSA deep eutectic solvent for synthesizing long-chain ester IBIBE in reactive extraction. AIChE J. 2019, 65, 675–683. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, Y.; Zeng, Q.; Cheng, H.; Chen, L.; Zhang, B.; Qi, Z. Efficient Knoevenagel condensation catalyzed by imidazole-based halogen-free deep eutectic solvent at room temperature. Green Energy Environ. 2020, 5, 124–129. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Shearer, G.C.; Chavan, S.; Ethiraj, J.; Vitillo, J.G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. Tuned to perfection: Ironing out the defects in metal–organic framework UiO-66. Chem. Mater. 2014, 26, 4068–4071. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, T.; Chen, L.; Cheng, H.; Qi, Z. Self-developed fabrication of manganese oxides microtubes with efficient catalytic performance for the selective oxidation of 5-hydroxymethylfurfural. Ind. Eng. Chem. Res. 2019, 58, 13122–13132. [Google Scholar] [CrossRef]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem. Eur. J. 2011, 17, 6643–6651. [Google Scholar] [CrossRef] [PubMed]
- Taddei, M.; Dümbgen, K.C.; Bokhoven, J.A.; Ranocchiari, M. Aging of the reaction mixture as a tool to modulate the crystallite size of UiO-66 into the low nanometer range. Chem. Commun. 2016, 52, 6411–6414. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Li, X.; Hurlock, M.J.; Tu, X.; Zhang, Q. Hierarchically porous UiO-66: Facile synthesis, characterization and application. Chem. Commun. 2018, 54, 11817–11820. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Qi, Z. One-pot synthesis of gold nanoparticles embedded in silica for cyclohexane oxidation. Catal. Sci. Technol. 2013, 3, 1123–1128. [Google Scholar] [CrossRef]
- Yang, F.; Li, W.; Tang, B. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloy. Compd. 2018, 733, 8–14. [Google Scholar] [CrossRef]
- Agarwalla, H.; Jana, K.; Maity, A.; Kesharwani, M.K.; Ganguly, B.; Das, A. Hydrogen bonding interaction between active methylene hydrogen atoms and an anion as a binding motif for anion recognition: Experimental studies and theoretical rationalization. J. Phys. Chem. A. 2014, 118, 2656–2666. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Yang, W.; Chen, L.; Cheng, H.; Qi, Z. Fabrication of spinel CoMn2O4 hollow spheres for highly selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Catal. Today 2020, 347, 39–47. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food. Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Chwaleba, D.; Ilczyszyn, M.M.; Ilczyszyn, M.; Ciunik, Z. Glycine–methanesulfonic acid (1:1) and glycine–p-toluenesulfonic acid (1:1) crystals: Comparison of structures, hydrogen bonds, and vibrations. J. Mol. Struct. 2007, 831, 119–134. [Google Scholar] [CrossRef]
- Chen, L.; Mo, F.; Cheng, H.; Qi, Z. Brønsted acidic deep eutectic solvent based on imidazole and p-toluenesulfonic acid intensified Prins condensation of styrene with formaldehyde. Chem. Lett. 2021, 50, 1194–1197. [Google Scholar] [CrossRef]
- Lee, J.; Ka, D.; Jung, H.; Cho, K.; Jin, Y.; Kim, M. UiO-66-NH2 and zeolite-templated carbon composites for the degradation and adsorption of nerve agents. Molecules 2021, 26, 3837. [Google Scholar] [CrossRef] [PubMed]
- Karagiaridi, O.; Bury, W.; Mondloch, J.E.; Hupp, J.T.; Farha, O.K. Solvent-assisted linker exchange: An alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem. Int. Ed. 2014, 53, 4530–4540. [Google Scholar] [CrossRef] [PubMed]
- Arrozi, U.S.F.; Wijaya, H.W.; Patah, A.; Permana, Y. Efficient acetalization of benzaldehydes using UiO-66 and UiO-67: Substrates accessibility or Lewis acidity of zirconium. Appl. Catal. A-Gen. 2015, 506, 77–84. [Google Scholar] [CrossRef]
- Caratelli, C.; Hajek, J.; Cirujano, F.G.; Waroquier, M.; Xamena, F.X.L.; Speybroeck, V.V. Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. J. Catal. 2017, 352, 401–414. [Google Scholar] [CrossRef]
- Vermoortele, F.; Bueken, B.; Bars, G.L.; Voorde, B.V.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Speybroeck, V.V.; et al. Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: The unique case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 11465–11468. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Alvaro, M.; Garciaa, H. Metal organic frameworks as solid acid catalysts for acetalization of aldehydes with methanol. Adv. Synth. Catal. 2010, 352, 3022–3030. [Google Scholar] [CrossRef]
- Herbst, A.; Khutia, A.; Janiak, C. Brønsted instead of lewis acidity in functionalized mil-101cr mofs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorg. Chem. 2014, 53, 7319–7333. [Google Scholar] [CrossRef]
Entry | Catalysts | Time (h) | Conversion (%) | Reference |
---|---|---|---|---|
1 | none | 1 | 2 | This work |
2 | UiO-66-DES | 1 | 94 | This work |
3 | UiO-66-DMF | 1 | 93 | This work |
4 | UiO-66 | 1 | 91 | [52] |
5 | ZrOCl2 b | 1 | 29 | This work |
6 | ZrCl4 | 1 | 55 | [53] |
7 | ZnCl2 | 1; 24 | 40; 39 | [53] |
8 | H2BDC | 1 | 13 | This work |
9 | Al2(BDC)3 | 24 | 66 | [56] |
10 | Cr(BDC) | 1.5 | 73 | [57] |
11 | Cu3(BTC)2 | 2; 24 | 63; 88 | [56] |
12 | Fe(BTC) | 2; 24 | 49; 71 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Ye, X.; Zhang, T.; Qin, H.; Cheng, H.; Qi, Z. Fast Assembly of Metal Organic Framework UiO-66 in Acid-Base Tunable Deep Eutectic Solvent for the Acetalization of Benzaldehyde and Methanol. Molecules 2022, 27, 7246. https://doi.org/10.3390/molecules27217246
Chen L, Ye X, Zhang T, Qin H, Cheng H, Qi Z. Fast Assembly of Metal Organic Framework UiO-66 in Acid-Base Tunable Deep Eutectic Solvent for the Acetalization of Benzaldehyde and Methanol. Molecules. 2022; 27(21):7246. https://doi.org/10.3390/molecules27217246
Chicago/Turabian StyleChen, Lifang, Xiangzhu Ye, Ting Zhang, Hao Qin, Hongye Cheng, and Zhiwen Qi. 2022. "Fast Assembly of Metal Organic Framework UiO-66 in Acid-Base Tunable Deep Eutectic Solvent for the Acetalization of Benzaldehyde and Methanol" Molecules 27, no. 21: 7246. https://doi.org/10.3390/molecules27217246
APA StyleChen, L., Ye, X., Zhang, T., Qin, H., Cheng, H., & Qi, Z. (2022). Fast Assembly of Metal Organic Framework UiO-66 in Acid-Base Tunable Deep Eutectic Solvent for the Acetalization of Benzaldehyde and Methanol. Molecules, 27(21), 7246. https://doi.org/10.3390/molecules27217246