Novel Amides Derivative with Antimicrobial Activity of Piper betle var. nigra Leaves from Indonesia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimicrobial Activity
2.2. Isolation of Crude Ethanol Extracf of Piper betle var. nigra
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.3.1. Piperenamide A (1)
3.3.2. Piperenamide B (2)
3.4. Antimicrobial Activity
3.4.1. Material
3.4.2. Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budiman, A.; Aulifa, D.L. A Study Comparing Antibacterial Activity of Ageratum Conyzoides, L. Extract and Piper Betle, L. Extract in Gel Dosage Forms Against Staphylococcus Aureus. Pharmacogn. J. 2020, 12, 473–477. [Google Scholar] [CrossRef]
- Choudhary, D.; Kale, R.K. Antioxidant and Non-Toxic Properties Of Piper Betle Leaf Extract:In Vitro Andin Vivo Studies. Phytother. Res. 2002, 16, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Sen, R.; Saha, P.; Ganguly, S.; Mandal, G.; Chatterjee, M. An Ethanolic Extract of Leaves of Piper Betle (Paan) Linn Mediates Its Antileishmanial Activity via Apoptosis. Parasitol. Res. 2008, 102, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Al-Adhroey, A.H.; Nor, Z.M.; Al-Mekhlafi, H.M.; Amran, A.A.; Mahmud, R. Antimalarial Activity of Methanolic Leaf Extract of Piper Betle L. Molecules 2010, 16, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In Vitro Antifungal Activity of Hydroxychavicol Isolated from Piper Betle L. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijai, H.R.; Fakhrudin, N.; Wahyuono, S. Isolation and Identification of DPPH Radical (2,2-Diphenyl-1-Pikrylhidrazyl) Scavenging Active Compound in Ethyl Acetat Fraction of Piper Acre Blume. Maj. Obat Tradis. 2019, 24, 204. [Google Scholar] [CrossRef]
- Chen, D.-Z.; Xiong, H.-B.; Tian, K.; Guo, J.-M.; Huang, X.-Z.; Jiang, Z.-Y. Two New Sphingolipids from the Leaves of Piper betle L. Molecules 2013, 18, 11241–11249. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.; Bhattacharya, T. Chemical Constituents of Piper Betle Linn. (Piperaceae) Roots. Molecules 2005, 10, 798–802. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.-H.; Chen, D.-M.; Qiu, B.-Y.; Sheng, L.; Wang, Y.-H.; Hu, G.-W.; Zhao, F.-W.; Ma, L.-J.; Wang, H.; Huang, Q.-Q.; et al. Cytotoxic Amide Alkaloids from Piper Boehmeriaefolium. J. Nat. Prod. 2011, 74, 45–49. [Google Scholar] [CrossRef]
- Shi, Y.-N.; Liu, F.-F.; Jacob, M.; Li, X.-C.; Zhu, H.-T.; Wang, D.; Cheng, R.-R.; Yang, C.-R.; Xu, M.; Zhang, Y.-J. Antifungal Amide Alkaloids from the Aerial Parts of Piper Flaviflorum and Piper Sarmentosum. Planta Med. 2016, 83, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V. Amides from Plants: Structures and Biological Importance. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 287–333. [Google Scholar]
- Ren, J.; Zeng, T.; Ali, Z.; Wang, M.; Bae, J.; Chittiboyina, A.G.; Wang, W.; Li, S.; Khan, I.A. Cyclopiperettine, A New Amide from Piper Nigrum. Nat. Prod. Commun. 2017, 12, 1934578X1701201210. [Google Scholar] [CrossRef] [Green Version]
- Azizi, A.; Aghayan, S.; Zaker, S.; Shakeri, M.; Entezari, N.; Lawaf, S. In Vitro Effect of Zingiber Officinale Extract on Growth of Streptococcus Mutans and Streptococcus Sanguinis. Int. J. Dent. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junairiah, J.; Ni’matuzahroh, N.; Zuraidassanaaz, N.I.; Sulistyorini, L. Isolation and identification of secondary metabolites of black betel (Piper betle L. var Nigra). J. Kim. Ris. 2019, 3, 131. [Google Scholar] [CrossRef] [Green Version]
- Tamhid, H.A. Chemical Compounds and Antibacterial Activity of Garcinia Dulcis (Roxb)Kurz. J. Kedokt. Dan Kesehat. Indones. 2019, 10, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Chanprapai, P.; Chavasiri, W. Antimicrobial Activity from Piper sarmentosum Roxb. against Rice Pathogenic Bacteria and Fungi. J. Integr. Agric. 2017, 16, 2513–2524. [Google Scholar] [CrossRef] [Green Version]
- Mgbeahuruike, E.E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive Compounds from Medicinal Plants: Focus on Piper Species. South Afr. J. Bot. 2017, 112, 54–69. [Google Scholar] [CrossRef]
- Nascimento, S.A.; Araújo, E.A.; Da Silva, J.M.; Ramos, C.S. Chemical study and antimicrobial activities of piper arboreum (piperaceae). J. Chil. Chem. Soc. 2015, 60, 2837–2839. [Google Scholar] [CrossRef] [Green Version]
- Sivareddy, B.; Reginald, B.; Sireesha, D.; Samatha, M.; Reddy, K.; Subrahamanyam, G. Antifungal Activity of Solvent Extracts of Piper Betle and Ocimum Sanctum Linn on Candida Albicans: An in Vitro Comparative Study. J. Oral Maxillofac. Pathol. 2019, 23, 333. [Google Scholar] [CrossRef]
- Taweechaisupapong, S.; Singhara, S.; Khunkitti, W. Antimicrobial effects of boesenbergia pandurata and piper sarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens. Pak. J. Pharm. Sci. 2010, 9, 224–231. [Google Scholar]
- Donadu, M.G.; Usai, D.; Marchetti, M.; Usai, M.; Mazzarello, V.; Molicotti, P.; Montesu, M.A.; Delogu, G.; Zanetti, S. Antifungal Activity of Oils Macerates of North Sardinia Plants against Candida Species Isolated from Clinical Patients with Candidiasis. Nat. Prod. Res. 2020, 34, 3280–3284. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-D.; Oh, J.-H.; Lim, D. A New Type of Amide Formation from Thiocarboxylic Acid and Alkyl Azide. Tetrahedron Lett. 2002, 43, 6309–6311. [Google Scholar] [CrossRef]
- Supriatno; Nurlelasari; Herlina, T.; Harneti, D.; Maharani, R.; Hidayat, A.T.; Mayanti, T.; Supratman, U.; Azmi, M.N.; Shiono, Y. A new limonoid from stem bark of Chisocheton pentandrus (Meliaceae). Nat. Prod. Res. 2018, 32, 2610–2616. [Google Scholar] [CrossRef] [PubMed]
Microbial | Inhibition Diameters ± SD (mm) | |
---|---|---|
Extract Concentration of 0.5% | Extract Concentration of 1% | |
Candida albicans | 16.7 ± 0.8 | 18.1 ± 0.7 |
Streptococcus mutans | 18.2 ± 1.8 | 19.6 ± 1.9 |
Streptococcus sanguinis | 9.9 ± 1.8 | 12.3 ± 1.1 |
Microbial | Inhibition Diameters ± SD (mm) | |
---|---|---|
Piperamide A | Piperamide B | |
Concentration of 0.02% | Concentration of 0.02% | |
Candida albicans | - | - |
Streptococcus mutans | - | - |
Streptococcus sanguinis | - | - |
Position Carbon | 1 | 2 | ||
---|---|---|---|---|
13C-NMR | 1H-NMR | 13C-NMR | 1H-NMR | |
δC (mult.) | δC [(ΣH, mult, J(Hz)] | δC (ppm) | δC [(ΣH, mult, J(Hz)] | |
1 | 169.1 (s) | - | 168.4 (s) | - |
2 | 48.0 (t) | 3.06 (2H, d, 6.7) | 47.3 (t) | 3.10 (2H, d, 6.7) |
3 | 29.7 (d) | 1.78 (1H, qt, 6.7) | 28.9 (d) | 1.82 (1H, qt, 6.7) |
4 | 20.1 (q) | 0.90 (3H, d, 6.7) | 20.1 (q) | 0.94 (3H, d, 6.7) |
5 | 20.1 (q) | 0.90 (3H, d, 6.7) | 20.1 (q) | 0.94 (3H, d, 6.7) |
1′ | 123.3 (d) | 5.92 (1H, dd, 4.6; 15.1) | 122.6(d) | 5.96 (1H, dd, 4.6; 15.1) |
2′ | 141.9 (d) | 7.02 (1H, dd, 10.6; 15.1) | 141.2 (d) | 7.12 (1H, dd, 10.6; 15.1) |
3′ | 142.8 (d) | 6.09 (1H, dd, 10.6; 15.2) | 142.0 (d) | 6.12 (1H, dd, 10.6; 15.2) |
4′ | 130.2 (d) | 6.18 (1H, dd, 7.2; 15.2) | 129.6 (d) | 6.19 (1H, dd, 7.2; 15.2) |
5′ | 36.1 (t) | 2.44 (2H, dd, 7.2; 7.5) | 35.4 (t) | 2.39 (2H, d, 7.2) |
6′ | 35.9 (t) | 2.66 (2H, t, 7.5) | - | - |
1″ | 136.5 (s) | - | 135.8 (s) | - |
2″ | 109.7 (d) | 6.69 (1H, d, 1.5) | 109.8 (d) | 6.73 (1H, d, 1.5) |
3″ | 149.0 (s) | - | 148.3 (s) | - |
4″ | 147.9 (s) | - | 146.4 (s) | - |
5″ | 108.8 (t) | 6.69 (1H, d, 7.9) | 108.2 (t) | 6.73 (1H, d, 7.9) |
6″ | 122.3 (d) | 6.63 (1H, dd, 1.5, 7.9) | 121.6 (d) | 6.68 (1H, dd, 1.5, 7.9) |
OCH2O | 102.0 (t) | 5.88 (2H, s) | 101.2 (t) | 5.91 (2H, s) |
NH | - | 4.62 (1H, br.s) | - | 4.65 (1H, br.s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasetya, F.; Salam, S.; Rahmadani, A.; Haikal, K.; Febrina, L.; Anshory, H.; Arifuddin, M.; Siregar, V.O.; Narsa, A.C.; Herman, H.; et al. Novel Amides Derivative with Antimicrobial Activity of Piper betle var. nigra Leaves from Indonesia. Molecules 2021, 26, 335. https://doi.org/10.3390/molecules26020335
Prasetya F, Salam S, Rahmadani A, Haikal K, Febrina L, Anshory H, Arifuddin M, Siregar VO, Narsa AC, Herman H, et al. Novel Amides Derivative with Antimicrobial Activity of Piper betle var. nigra Leaves from Indonesia. Molecules. 2021; 26(2):335. https://doi.org/10.3390/molecules26020335
Chicago/Turabian StylePrasetya, Fajar, Supriatno Salam, Agung Rahmadani, Kansy Haikal, Lizma Febrina, Hady Anshory, Muhammad Arifuddin, Vita Olivia Siregar, Angga Cipta Narsa, Herman Herman, and et al. 2021. "Novel Amides Derivative with Antimicrobial Activity of Piper betle var. nigra Leaves from Indonesia" Molecules 26, no. 2: 335. https://doi.org/10.3390/molecules26020335
APA StylePrasetya, F., Salam, S., Rahmadani, A., Haikal, K., Febrina, L., Anshory, H., Arifuddin, M., Siregar, V. O., Narsa, A. C., Herman, H., Ahmad, I., Indriyanti, N., Ibrahim, A., Rusli, R., Rijai, L., & Kuncoro, H. (2021). Novel Amides Derivative with Antimicrobial Activity of Piper betle var. nigra Leaves from Indonesia. Molecules, 26(2), 335. https://doi.org/10.3390/molecules26020335