Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania
Abstract
:1. Introduction
2. Results and Discussion
2.1. Occurrence of Fusarium Toxins in Samples
2.2. Comparison with Fusarium Mycotoxins Occurrence in Other Countries
3. Materials and Methods
3.1. Sample Collection
3.2. Standards and Chemicals
3.3. Sample Preparation
3.4. LC–MS/MS Analysis
3.5. Method Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bräse, S.; Encinas, A.; Keck, J.; Nising, C.F. Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. 2009, 109, 3903–3990. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Arce-López, B.; Lizarraga, E.; Vettorazzi, A.; González-Peñas, E. Human biomonitoring of mycotoxins in blood, plasma and serum in recent years: A review. Toxins 2020, 12, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Li, G.; Wu, D.; Liu, J.; Wu, Y. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. Food Front. 2020, 1–23. [Google Scholar] [CrossRef]
- Udovicki, B.; Audenaert, K.; De Saeger, S.; Rajkovic, A. Overview on the mycotoxins incidence in Serbia in the period 2004–2016. Toxins 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yamdeu, J.H.G.; Gong, Y.Y.; Orfila, C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1521–1560. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef] [PubMed]
- Placinta, C.M.; D’Mello, J.P.F.; Macdonald, A.M.C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 1999, 78, 21–37. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Payne, G.; Klich, M.; Leslie, J.F. Identification of toxigenic Aspergillus and Fusarium species in the maize grain chain. In Mycotoxin Reduction in Grain Chains; Leslie, J.F., Logrieco, A.F., Eds.; John Wiley & Sons: Ames, IA, USA, 2014; pp. 11–25. [Google Scholar]
- Moretti, A.; Waalwijk, C.; Geisen, R. Identification of Fusarium spp. and Penicillium verrucosum in the Wheat Grain Chain. In Mycotoxin Reduction in Grain Chains; Leslie, J.F., Logrieco, A.F., Eds.; John Wiley & Sons: Ames, IA, USA, 2014; pp. 151–168. [Google Scholar]
- Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottalico, A.; Perrone, G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 2002, 108, 611–624. [Google Scholar] [CrossRef]
- Torres, A.M.; Palacios, S.A.; Yerkovich, N.; Palzzini, J.M.; Battilani, P.; Leslie, J.F.; Logrieco, A.F.; Chulze, S.N. Fusarium head blight and mycotoxins in wheat: Prevention and control strategies across the food chain. World Mycotoxin J. 2019, 12, 333–355. [Google Scholar] [CrossRef]
- Nathanail, A.V.; Syvähuoko, J.; Malachova, A.; Jestoi, M.; Varga, E.; Michlmayr, H.; Adam, G.; Sieviläinen, E.; Berthiller, F.; Peltonen, K. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Anal. Bioanal. Chem. 2015, 407, 4745–4755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eskola, M.; Kos, G.; Elliott, C.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Griessler, K.; Rodrigues, I.; Handl, J.; Hofstetter, U. Occurrence of mycotoxins in Southern Europe. World Mycotoxin J. 2010, 3, 301–309. [Google Scholar] [CrossRef]
- Cheli, F.; Pinotti, L.; Rossi, L.; Dell’Orto, V. Effect of milling procedure on mycotoxin distribution in wheat fractions: A review. LWT Food Sci. Technol. 2013, 54, 307–314. [Google Scholar] [CrossRef]
- Tibola, C.S.; Fernandes, J.M.C.; Guarienti, E.M.; Nicolau, M. Distribution of Fusarium mycotoxins in wheat milling process. Food Control 2015, 53, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Scudamore, K.A. Fate of fusarium mycotoxins in the cereal industry: Recent UK studies. World Mycotoxin J. 2008, 1, 315–323. [Google Scholar] [CrossRef]
- Milani, J.; Maleki, G. Effects of processing on mycotoxin stability in cereals. J. Sci. Food Agric. 2014, 94, 2372–2375. [Google Scholar] [CrossRef] [PubMed]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin contamination in the EU feed supply chain: A focus on cereal byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Čolović, R.; Pezo, L.; Orčić, D.; Vukmirović, Đ.; Mastilović, J. Possibility of Alternaria toxins reduction by extrusion processing of whole wheat flour. Food Chem. 2016, 213, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off. J. Eur. Union 2007, 255, 14–17. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- European Commission. Commission Recommendation 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Off. J. Eur. Union 2013, 91, 12–15. [Google Scholar]
- Cendoya, E.; Chiotta, M.L.; Zachetti, V.; Chulze, S.N.; Ramirez, M.L. Fumonisins and fumonisin-producing Fusarium occurrence in wheat and wheat by-products: A review. J. Cereal Sci. 2018, 80, 158–166. [Google Scholar] [CrossRef]
- Manova, R.; Mladenova, R. Incidence of zearalenone and fumonisins in Bulgarian cereal production. Food Control 2009, 20, 362–365. [Google Scholar] [CrossRef]
- Jakovac-Strajn, B.; Pavšič-Vrtač, K.; Ujčič-Vrhovnik, I.; Vengušt, A.; Tavčar-Kalcher, G. Microbiological and mycotoxicological contamination in Slovenian primary grain production. Toxicol. Environ. Chem. 2010, 92, 1551–1563. [Google Scholar] [CrossRef]
- Cano-Sancho, G.; Valle-Algarra, F.M.; Jiménez, M.; Burdaspal, P.; Legarda, T.M.; Ramos, A.J.; Sanchis, V.; Marín, S. Presence of trichothecenes and co-occurrence in cereal-based food from Catalonia (Spain). Food Control 2011, 22, 490–495. [Google Scholar] [CrossRef]
- EFSA, European Food Safety Authority. Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- Škrbić, B.; Malachova, A.; Živančev, J.; Veprikova, Z.; Hajšlová, J. Fusarium mycotoxins in wheat samples harvested in Serbia: A preliminary survey. Food Control 2011, 22, 1261–1267. [Google Scholar] [CrossRef]
- Ibáñez-Vea, M.; Lizarraga, E.; Gonzáles-Peñas, E.; López de Cerain, A. Co-occurrence of type-A and type-B trichothecenes in barley from a northern region of Spain. Food Control 2012, 25, 81–88. [Google Scholar] [CrossRef]
- Serrano, A.B.; Font, G.; Ruiz, M.J.; Ferrer, E. Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chem. 2012, 135, 423–429. [Google Scholar] [CrossRef]
- Stanković, S.; Lević, J.; Ivanović, D.; Krnjaja, V.; Stanković, G.; Tančić, S. Fumonisin B1 and its co-occurrence with other fusariotoxins in naturally-contaminated wheat grain. Food Control 2012, 23, 384–388. [Google Scholar] [CrossRef]
- Van Der Fels-Klerx, H.J.; Klemsdal, S.; Hietaniemi, V.; Lindblad, M.; Ioannou-Kakouri, E.; Van Asselt, E.D. Mycotoxin contamination of cereal grain commodities in relation to climate in North West Europe. Food Addit. Contam. Part A 2012, 29, 1581–1592. [Google Scholar] [CrossRef]
- Alexa, E.; Dehelean, C.A.; Poiana, M.-A.; Radulov, I.; Cimpean, A.-M.; Bordean, D.-M.; Tulcan, C.; Pop, G. The occurrence of mycotoxins in wheat from western Romania and histopatological impact as effect of feed intake. Chem. Cent. J. 2013, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Juan, C.; Ritieni, A.; Mañes, J. Occurrence of Fusarium mycotoxins in Italian cereal and cereal products from organic farming. Food Chem. 2013, 141, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Pleadin, J.; Vahčić, N.; Perši, N.; Ševelj, D.; Markov, K.; Frece, J. Fusarium mycotoxins’ occurrence in cereals harvested from Croatian fields. Food Control 2013, 32, 49–54. [Google Scholar] [CrossRef]
- Uhlig, S.; Sundstøl Eriksen, G.; Skow Hofgaard, I.; Krska, R.; Beltrán, E.; Sulyok, M. Faces of a changing climate: Semi-quantitative multi-mycotoxin analysis of grain grown in exceptional climatic conditions in Norway. Toxins 2013, 5, 1682–1697. [Google Scholar] [CrossRef] [PubMed]
- Alkadri, D.; Rubert, J.; Prodi, A.; Pisi, A.; Manes, J.; Soler, C. Natural co-occurrence of mycotoxins in wheat grains from Italy and Syria. Food Chem. 2014, 157, 111–118. [Google Scholar] [CrossRef]
- Kirinčič, S.; Škrjanc, B.; Kos, N.; Kozolc, B.; Pirnat, N.; Tavčar-Kalcher, G. Mycotoxins in cereals and cereal products in Slovenia—Official control of foods in the years 2008−2012. Food Control 2015, 50, 157–165. [Google Scholar] [CrossRef]
- Bryła, M.; Waśkiewicz, A.; Podolask, G.; Szymczyk, K.; Jędrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagiu, V.; Mateescu, E.; Armeanu, I.; Dobre, A.A.; Smeu, I.; Cucu, M.E.; Oprea, O.A.; Iorga, E.; Belc, N. Post-harvest contamination with mycotoxins in the context of the geographic and agroclimatic conditions in Romania. Toxins 2018, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Udovicki, B.; Djekic, I.; Stankovic, S.; Obradovic, A.; Rajkovic, A. Impact of climatic conditions on fumonisins in maize grown in Serbia. World Mycotoxin J. 2019, 12, 183–190. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Data. Crops. Production. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 28 November 2020).
- Battilani, P.; Logrieco, A.F. Global Risk Maps of Mycotoxins in wheat and Maize. In Mycotoxin Reduction in Grain Chains; Leslie, J.F., Logrieco, A.F., Eds.; John Wiley & Sons: Ames, IA, USA, 2014; pp. 309–326. [Google Scholar]
- European Commission. Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, 70, 12–34. [Google Scholar]
- Topi, D.; Tavčar-Kalcher, G.; Pavšič-Vrtač, K.; Babič, J.; Jakovac-Strajn, B. Alternaria mycotoxins in grains from Albania: Alternariol, alternariol monomethyl ether, tenuazonic acid and tentoxin. World Mycotoxin J. 2019, 12, 89–99. [Google Scholar] [CrossRef]
- Rasmussen, R.R.; Storm, I.M.L.D.; Rasmussen, P.H.; Smedsgaard, J.; Nielsen, K.F. Multi-mycotoxin analysis of maize silage by LC-MS/MS. Anal. Bioanal. Chem. 2010, 397, 765–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lattanzio, V.M.T.; Della Gatta, S.; Suman, M.; Visconti, A. Development and in-house validation of a robust and sensitive solid-phase extraction liquid chromatography/tandem mass spectrometry method for the quantitative determination of aflatoxins B1, B2, G1, G2, ochratoxin A, deoxynivalenol, zearalenone, T-2 and HT-2 toxins in cereal-based foods. Rapid Commun. Mass Spectrom. 2011, 25, 1869–1880. [Google Scholar] [PubMed]
- Schenzel, J.; Forrer, H.R.; Vogelgsang, S.; Bucheli, T.D. Development, validation and application of a multi-mycotoxin method for the analysis of whole wheat plants. Mycotoxin Res. 2012, 28, 135–147. [Google Scholar] [CrossRef] [PubMed]
2014 | 2015 | 2014–2015 | |
---|---|---|---|
No. of samples | 35 | 36 | 71 |
No. of positive samples | 12 | 4 | 16 |
Incidence of positive samples (%) | 34 | 11 | 23 |
Mean (μg/kg) | 540 | 657 | 569 |
Median (μg/kg) | 512 | 257 | 477 |
Minimum (μg/kg) | 112 | 198 | 112 |
Maximum (μg/kg) | 919 | 1916 | 1916 |
DON | ZEA | FB1 | FB2 | FB1+FB2 | T-2 | Total | |
---|---|---|---|---|---|---|---|
2014 | |||||||
No. of samples | 31 | 31 | 31 | 31 | 31 | 31 | 31 |
No. of positive samples | 11 | 2 | 25 | 22 | 25 | 1 | 26 |
Incidence of positive samples (%) | 35 | 6.5 | 81 | 71 | 81 | 3.2 | 84 |
Mean (μg/kg) | 264 | 240 | 3460 | 2285 | 5470 | 106 | |
Median (μg/kg) | 165 | 240 | 2694 | 1886 | 3669 | 106 | |
Minimum (μg/kg) | 110 | 218 | 68.7 | 105 | 68.7 | 106 | |
Maximum (μg/kg) | 799 | 263 | 9873 | 9218 | 16,970 | 106 | |
Toxin rate in positive samples (%) | 42 | 7.7 | 96 | 85 | 96.3 | 3.8 | |
2015 | |||||||
No. of samples | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
No. of positive samples | 0 | 0 | 8 | 5 | 8 | 0 | 8 |
Incidence of positive samples (%) | 0.0 | 0.0 | 57 | 36 | 57 | 0.0 | 57 |
Mean (μg/kg) | - | - | 816 | 1573 | 1799 | - | |
Median (μg/kg) | - | - | 308 | 479 | 389 | - | |
Minimum (μg/kg) | - | - | 59.9 | 169 | 59.9 | - | |
Maximum (μg/kg) | - | - | 3611 | 3836 | 6757 | - | |
Toxin rate in positive samples (%) | 0.0 | 0.0 | 100 | 63 | 100 | 0.0 | |
2014–2015 | |||||||
No. of samples | 45 | 45 | 45 | 45 | 45 | 45 | 45 |
No. of positive samples | 11 | 2 | 34 | 27 | 34 | 1 | 35 |
Incidence of positive samples (%) | 24 | 4.4 | 76 | 60 | 76 | 2.2 | 78 |
Mean (μg/kg) | 264 | 240 | 2819 | 2153 | 4445 | 106 | |
Median (μg/kg) | 165 | 240 | 790 | 1564 | 1162 | 106 | |
Minimum (μg/kg) | 110 | 218 | 59.9 | 105 | 59.9 | 106 | |
Maximum (μg/kg) | 799 | 263 | 9873 | 9218 | 16,970 | 106 | |
Toxin rate in positive samples (%) | 32 | 5.9 | 97 | 79 | 97 | 2.9 |
Fieri | Lushnja | Elbasan | Korça | |
---|---|---|---|---|
No. of samples | 11 | 22 | 10 | 28 |
No. positive samples | 4 | 7 | 4 | 1 |
Incidence of positive samples (%) | 36 | 32 | 40 | 3.6 |
Mean (μg/kg) | 756 | 320 | 853 | 427 |
Median (μg/kg) | 804 | 279 | 684 | 427 |
Minimum (μg/kg) | 518 | 112 | 128 | 427 |
Maximum (μg/kg) | 898 | 548 | 1916 | 427 |
Fieri | Lushnja | Kruja | Elbasan | Korça | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DON | FBs | Total | DON | FBs | Total | DON | FBs | Total | DON | FBs | Total | DON | FBs | Total | |
No. of samples | 7 | 7 | 7 | 10 | 10 | 10 | 11 | 11 | 11 | 6 | 6 | 6 | 11 | 11 | 11 |
No. positive samples | 0 | 4 | 4 | 0 | 7 | 7 | 7 | 10 | 10 | 3 | 5 | 6 | 1 | 7 | 7 |
Incidence of positive samples (%) | 0.0 | 57 | 57 | 0.0 | 70 | 70 | 64 | 91 | 91 | 50 | 83 | 100 | 9.1 | 64 | 64 |
Mean (μg/kg) | - | 6511 | - | - | 5959 | - | 237 | 4894 | - | 361 | 1837 | - | 167 | 3813 | - |
Median (μg/kg) | - | 6615 | - | - | 6205 | - | 149 | 3288 | - | 343 | 903 | - | 167 | 874 | - |
Minimum (μg/kg) | - | 255 | - | - | 389 | - | 110 | 83.8 | - | 160 | 594 | - | 167 | 60 | - |
Maximum (μg/kg) | - | 12,559 | - | - | 14,566 | - | 799 | 13,906 | - | 579 | 6117 | - | 167 | 16,967 | - |
No. of samples above EU max level | 0 | 2 | - | 0 | 5 | - | 0 | 4 | - | 0 | 1 | - | 0 | 2 | - |
Samples above EU max level (%) | 0 | 29 | - | 0 | 50 | - | 0 | 36 | - | 0 | 17 | - | 0 | 18 | - |
Country | Year of Sampling | Method of Analysis | LOD/LOQ (μg/kg) | Number of Samples | Positive Sample Rate (%) | Mean (μg/kg) | Median (μg/kg) | Max (μg/kg) | Reference |
---|---|---|---|---|---|---|---|---|---|
Albania | 2014–2015 | LC–MS/MS | 15/50 | 71 | 23 | 569 a | 477 a | 1916 | This study |
Finland | 2000–2009 | - | 100/- | 338 | 29.9 | - | 0 | 5865 | [41] |
Netherlands | 1989–2009 | - | 100/- | 940 | 71.4 | - | 220 | 10,000 | |
Norway | 1990–2009 | - | 100/- | 832 | 29.4 | - | 0 | 1552 | |
Sweden | 1999–2009 | - | 100/- | 554 | 20.6 | - | 0 | 890 | |
Norway | 2011 | LC–MS/MS | - | 28 | 100 | - | 383 | 1400 | [45] |
Finland | 2013 | LC–MS/MS | 1.3/3.9 | 30 | 96.7 | 866 | - | 5510 | [18] |
Poland | 2014 | UHPLC–HRMS | -/25 | 99 | 46.5 | 25–960 a | 25–694 a | 2975 | [48] |
Southern Europe | 2005–2009 | ELISA | -/250 | 29 | 27.6 | 275 | 602 a | 2232 | [20] |
Italy | 2009–2010 | HPLC–MS/MS | 5/15 | 47 | 59.6 | 172 a | - | 1230 | [46] |
Italy | 2012 | LC–MS/MS | 5/10 | 57 | 28.1 | 10.96 a | - | 99.6 | [43] |
Spain (Catalonia) | 2008 | GC–MS | -/41 | 27 b | 74.1 | 190 a | 157 a | 437 | [35] |
Spain (Navarra) | 2007–2008 | GC–MS | -/10 | 123 | 95 | 59.6 a | 21.4 a | 1111.3 | [38] |
Slovenia | 2007–2008 | GC–MS | 50/100 | 20 | 75 | 849 a | 420 a | 3700 | [34] |
Slovenia | 2008–2012 | HPLC–UV | -/50 | 80 c | 68.8 | 477 a | - | 3070 | [47] |
Croatia | 2011 | ELISA | 20.5/- | 51 | 65 | 223 a | - | 278 | [44] |
Serbia | 2005, 2007 | ELISA | -/- | 103 | 85.7–93.3 | 283–606 a | - | 1090–3306 | [40] |
Serbia | 2007 | LC–MS/MS | 0.3/1 | 54 | 27.8 | 33 | - | 309 | [37] |
Western Romania | 2010–2011 | ELISA | 110/220 | 52 | 19.2–73.1 | 763.6–2263 a | - | 1440–3390 | [42] |
Country | Year of Sampling | Method of Analysis | LOD/LOQ (μg/kg) | Toxin | Number of Samples | Positive Sample Rate (%) | Mean (μg/kg) | Median (μg/kg) | Max (μg/kg) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Albania | 2014–2015 | LC–MS/MS | 15/50 | DON | 45 | 24 | 264 a | 165 a | 799 | This study |
ZEA | 45 | 4.4 | 240 a | 240 a | 263 | |||||
T-2 | 45 | 2.2 | 106 a | 106 a | 106 | |||||
FB1+FB2 | 45 | 76 | 4445 a | 1162 a | 16,970 | |||||
Netherlands | 1989–2009 | - | 100/- | DON | 142 | 84.5 | - | 500 | 5000 | [41] |
50/- | ZEA | 147 | 37.4 | - | 0 | 1000 | ||||
Sweden | 1999–2009 | - | 100/- | DON | 5 | 40.0 | - | 187.5 | 420.0 | |
Spain (Catalonia) | 2008 | GC–MS | -/45 | DON | 65 | 75.4 | 109 a | 93 a | 580 | [35] |
-/57 | T-2 | 65 | 0 | - | - | - | ||||
-/30 | HT-2 | 65 | 6.2 | 41 a | 34 a | 65 | ||||
Slovenia | 2007–2008 | GC–MS | 50/100 | DON | 58 | 87.9 | 1355 a | 480 a | 14,420 | [34] |
20/50 | ZEA | 58 | 50.0 | 199 a | 180 a | 640 | ||||
60/200 | FB1+FB2 | 58 | 39.7 | 1336 a | 468 a | 6489 | ||||
50/100 | T-2 | 58 | 1.7 | 290 a | 290 a | 290 | ||||
50/100 | HT-2 | 58 | 1.7 | 2300 a | 2300 a | 2300 | ||||
Slovenia | 2008–2012 | HPLC–UV | -/50 | DON | 34 b | 35.3 | 1328 a | - | 11,800 | [47] |
-/5 | ZEA | 34 b | 17.6 | 823 a | - | 4578 | ||||
-/200 | FB1+FB2 | 34 b | 23.5 | 4092 a | - | 27,483 | ||||
Croatia | 2011 | ELISA | 20.5/- | DON | 63 | 71 | 1565 a | - | 2942 | [44] |
2.1/- | ZEA | 63 | 78 | 187 a | - | 611 | ||||
24.5/- | FB | 63 | 90 | 1756 a | - | 4438 | ||||
4.1/- | T-2 | 63 | 57 | 24 a | - | 42 | ||||
Serbia | 2008–2015 | ELISA | 75/- | FB1+FB2 | 614 | 34.4–100 | 580–4310 | <75–2590 | 41,440 | [50] |
Bulgaria | 2007 | HPLC | 17.7/58.8 | ZEA | 19 | 21.1 | 80.6 a | - | 148.0 | [33] |
LC–MS/MS | 27.3/90.8 | FB1+FB2 | 19 | 94.7 | 1150 | - | 4050 | |||
Romania | 2012–2015 | ELISA | 18.5 | DON | 91 c | 42.9 | 82.39 | <18.5 | 1269.94 | [49] |
1.75 | ZEA | 84 c | 7.1 | 1.92 a | - | 7.05 |
Analyte | Ionization Mode | Retention Time (min) | Precursor Ion (m/z) | Quantifier Ion (m/z) | Qualifier Ion (m/z) |
---|---|---|---|---|---|
DON | ESI+ | 3.14 | 297.3 | 203.1 | 249.1 |
NEO | ESI+ | 4.10 | 400.3 | 185.1 | 305.2 |
3-AcDON | ESI+ | 5.00 | 339.1 | 203.1 | 137.0 |
15-AcDON | ESI+ | 5.00 | 339.1 | 136.9 | 261.1 |
DAS | ESI+ | 7.06 | 384.3 | 307.2 | 247.2 |
HT-2 | ESI+ | 8.91 | 442.4 | 215.1 | 263.2 |
T-2 | ESI+ | 10.27 | 484.4 | 185.1 | 215.2 |
ZEA | ESI- | 11.30 | 317.2 | 131.0 | 174.9 |
FB1 | ESI+ | 10.20 | 722.4 | 334.2 | 352.2 |
FB2 | ESI+ | 12.70 | 706.4 | 318.2 | 336.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topi, D.; Babič, J.; Pavšič-Vrtač, K.; Tavčar-Kalcher, G.; Jakovac-Strajn, B. Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania. Molecules 2021, 26, 172. https://doi.org/10.3390/molecules26010172
Topi D, Babič J, Pavšič-Vrtač K, Tavčar-Kalcher G, Jakovac-Strajn B. Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania. Molecules. 2021; 26(1):172. https://doi.org/10.3390/molecules26010172
Chicago/Turabian StyleTopi, Dritan, Janja Babič, Katarina Pavšič-Vrtač, Gabrijela Tavčar-Kalcher, and Breda Jakovac-Strajn. 2021. "Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania" Molecules 26, no. 1: 172. https://doi.org/10.3390/molecules26010172
APA StyleTopi, D., Babič, J., Pavšič-Vrtač, K., Tavčar-Kalcher, G., & Jakovac-Strajn, B. (2021). Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania. Molecules, 26(1), 172. https://doi.org/10.3390/molecules26010172