Quantum Probes for Ohmic Environments at Thermal Equilibrium
Abstract
1. Introduction
2. The Model
Quantum Parameter Estimation
3. Quantum Probes for Ohmic Environments at Thermal Equlibrium
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Palma, M.G.; Suominen, K.-A.; Ekert, A.K. Quantum computers and dissipation. Proc. R. Soc. Lond. A 1996, 452, 567–584. [Google Scholar]
- Benedetti, C.; Sehdaran, F.S.; Zandi, M.H.; Paris, M.G.A. Quantum probes for the cutoff frequency of Ohmic environments. Phys. Rev. A 2018, 97, 012126. [Google Scholar] [CrossRef]
- Bina, M.; Grasselli, F.; Paris, M.G.A. Continuous-variable quantum probes for structured environments. Phys. Rev. A 2018, 97, 012125. [Google Scholar] [CrossRef]
- Elliott, T.J.; Johnson, T.H. Nondestructive probing of means, variances, and correlations of ultracold-atomic-system densities via qubit impurities. Phys. Rev. A 2016, 93, 043612. [Google Scholar] [CrossRef]
- Streif, M.; Buchleitner, A.; Jaksch, D.; Mur-Petit, J. Measuring correlations of cold-atom systems using multiple quantum probes. Phys. Rev. A 2016, 94, 053634. [Google Scholar] [CrossRef]
- Troiani, F.; Paris, M.G.A. Probing molecular spin clusters by local measurements. Phys. Rev. B 2016, 94, 115422. [Google Scholar] [CrossRef]
- Cosco, F.; Borrelli, M.; Plastina, F.; Maniscalco, S. Momentum-resolved and correlation spectroscopy using quantum probes. Phys. Rev. A 2017, 95, 053620. [Google Scholar] [CrossRef]
- Benedetti, C.; Buscemi, F.; Bordone, P.; Paris, M.G.A. Quantum probes for the spectral properties of a classical environment. Phys. Rev. A 2014, 89, 032114. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, X.; Rajendran, N.; Suter, D. Detection of Quantum Critical Points by a Probe Qubit. Phys. Rev. Lett. 2008, 100, 100501. [Google Scholar] [CrossRef] [PubMed]
- Berkley, A.J.; Przybysz, A.J.; Lanting, T.; Harris, R.; Dickson, N.; Altomare, F.; Amin, M.H.; Bunyk, P.; Enderud, C.; Hoskinson, E.; et al. Tunneling spectroscopy using a probe qubit. Phys. Rev. B 2013, 87, 020502(R). [Google Scholar] [CrossRef]
- Lolli, J.; Baksic, A.; Nagy, D.; Manucharyan, V.E.; Ciuti, C. Ancillary Qubit Spectroscopy of Vacua in Cavity and Circuit Quantum Electrodynamics. Phys. Rev. Lett. 2015, 114, 183601. [Google Scholar] [CrossRef] [PubMed]
- Paavola, J.; Piilo, J.; Suominen, K.-A.; Maniscalco, S. Environment-dependent dissipation in quantum Brownian motion. Phys. Rev. A 2009, 79, 052120. [Google Scholar] [CrossRef]
- Martinazzo, R.; Hughes, K.H.; Martelli, F.; Burghard, I. Effective spectral densities for system-environment dynamics at conical inter-sections: S2-S1 conical intersection in pyrazine. Chem. Phys. 2010, 377, 21. [Google Scholar] [CrossRef]
- Myatt, C.J.; King, B.E.; Turchette, Q.A.; Sackett, C.A.; Kielpinski, D.; Itano, W.M.; Monroe, C.; Wineland, D.J. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 2000, 403, 269. [Google Scholar] [CrossRef]
- Piilo, J.; Maniscalco, S. Driven harmonic oscillator as a quantum simulator for open systems. Phys. Rev. A 2006, 74, 032303. [Google Scholar] [CrossRef]
- Tamascelli, D.; Smirne, A.; Huelga, S.F.; Plenio, M.B. Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems. Phys. Rev. Lett. 2018, 120, 030402. [Google Scholar] [CrossRef] [PubMed]
- Lemmer, A.; Cormick, C.; Tamascelli, D.; Schaetz, T.; Huelga, S.F.; Plenio, M.B. A trapped-ion simulator for spin-boson models with structured environments. New J. Phys. 2018, 20, 073002. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzanski, R.; Jarzyna, M.; Kolodynski, J. Quantum Limits in Optical Interferometry. Progr. Opt. 2015, 60, 345. [Google Scholar]
- Cavina, V.; Mancino, L.; Pasquale, A.D.; Gianani, I.; Sbroscia, M.; Booth, R.I.; Roccia, E.; Raimondi, R.; Giovannetti, V.; Barbieri, M. Bridging thermodynamics and metrology in nonequilibrium quantum thermometry. Phys. Rev. A 2018, 98, 050101(R). [Google Scholar] [CrossRef]
- Garbe, L.; Felicetti, S.; Milman, P.; Coudreau, T.; Keller, A. Metrological advantage at finite temperature for Gaussian phase estimation. Phys. Rev. A 2019, 99, 0.43815. [Google Scholar] [CrossRef]
- Razavian, S.; Paris, M.G.A. Quantum metrology out of equilibrium. Phys. A 2019, 525, 825. [Google Scholar] [CrossRef]
- Paris, M.G.A. Quantum estimation for quantum technology. Int. J. Quant. Inf. 2009, 7, 125. [Google Scholar] [CrossRef]
- Benedetti, C.; Paris, M.G.A. Characterization of classical Gaussian processes using quantum probes. Phys. Lett. A 2014, 378, 2495. [Google Scholar] [CrossRef]
- Zwick, A.; Alvarez, G.A.; Kurizki, G. Maximizing information on the environment by dynamically controlled qubit probes. Phys. Rev. Appl. 2016, 5, 014007. [Google Scholar] [CrossRef]
- Monras, A.; Paris, M.G.A. Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 2007, 98, 160401. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, A. Quantum channel identification problem. Phys. Rev. A 2001, 63, 042304. [Google Scholar] [CrossRef]
- Fujiwara, A.; Imai, H. Quantum parameter estimation of a generalized Pauli channel. J. Phys. A 2003, 36, 8093. [Google Scholar] [CrossRef]
- Pinel, O.; Jian, P.; Treps, N.; Fabre, C.; Braun, D. Quantum parameter estimation using general single-mode Gaussian states. Phys. Rev. A 2013, 88, 040102. [Google Scholar] [CrossRef]
- Brida, G.; Degiovanni, I.P.; Florio, A.; Genovese, M.; Giorda, P.; Meda, A.; Paris, M.G.A.; Shurupov, A.P. Experimental estimation of entanglement at the quantum limit. Phys. Rev. Lett. 2010, 104, 100501. [Google Scholar] [CrossRef]
- Brida, G.; Degiovanni, I.P.; Florio, A.; Genovese, M.; Giorda, P.; Meda, A.; Paris, M.G.A.; Shurupov, A.P. Optimal estimation of entanglement in optical qubit systems. Phys. Rev. A 2011, 83, 052301. [Google Scholar] [CrossRef]
- Blandino, R.; Genoni, M.G.; Etesse, J.; Barbieri, M.; Paris, M.G.A.; Grangier, P.; Tualle-Brouri, R. Homodyne estimation of Gaussian quantum discord. Phys. Rev. Lett. 2012, 109, 180402. [Google Scholar] [CrossRef]
- Benedetti, C.; Shurupov, A.P.; Paris, M.G.A.; Brida, G.; Genovese, M. Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A 2013, 87, 052136. [Google Scholar] [CrossRef]
- Genoni, M.G.; Olivares, S.; Paris, M.G.A. Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 2011, 106, 153603. [Google Scholar] [CrossRef] [PubMed]
- Monras, A. Optimal phase measurements with pure Gaussian states. Phys. Rev. A 2006, 73, 033821. [Google Scholar] [CrossRef]
- Bina, M.; Allevi, A.; Bondani, M.; Olivares, S. Phase-reference monitoring in coherent-state discrimination assisted by a photon-number resolving detector. Sci. Rep. 2016, 6, 26025. [Google Scholar] [CrossRef]
- Kacprowicz, M.; Demkowicz-Dobrzański, R.; Wasilewski, W.; Banaszek, K.; Walmsley, I.A. Experimental quantum-enhanced estimation of a lossy phase shift. Nat. Photonics 2010, 4, 357. [Google Scholar] [CrossRef]
- Spagnolo, N.; Vitelli, C.; Lucivero, V.G.; Giovannetti, V.; Maccone, L.; Sciarrino, F. Phase estimation via quantum interferometry for noisy detectors. Phys. Rev. Lett. 2012, 108, 233602. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, M.; Olivares, S.; Paris, M.G.A. Qubit thermometry for micromechanical resonators. Phys. Rev. A 2011, 84, 032105. [Google Scholar] [CrossRef]
- Correa, L.A.; Mehboudi, M.; Adesso, G.; Sanpera, A. Individual quantum probes for optimal thermometry. Phys. Rev. Lett. 2015, 114, 220405. [Google Scholar] [CrossRef]
- Stenberg, M.P.V.; Sanders, Y.R.; Wilhelm, F.K. Efficient estimation of resonant coupling between quantum systems. Phys. Rev. Lett. 2014, 113, 210404. [Google Scholar] [CrossRef]
- Bina, M.; Amelio, I.; Paris, M.G.A. Dicke coupling by feasible local measurements at the superradiant quantum phase transition. Phys. Rev. E 2016, 93, 052118. [Google Scholar] [CrossRef]
- Rossi, M.A.C.; Bina, M.; Paris, M.G.A.; Genoni, M.G.; Adesso, G.; Tufarelli, T. Probing the diamagnetic term in light-matter interaction. Quantum Sci. Technol. 2017, 2, 01LT01. [Google Scholar] [CrossRef]
- Tamascelli, D.; Benedetti, C.; Olivares, S.; Paris, M.G.A. Characterization of qubit chains by Feynman probes. Phys. Rev. A 2016, 94, 042129. [Google Scholar] [CrossRef]
- Leggett, A.J.; Chakravarty, S.; Dorsey, A.T.; Fisher, M.P.A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 1987, 59, 1. [Google Scholar] [CrossRef]
- Shnirman, A.; Makhlin, Y.; Schön, G. Noise and decoherence in quantum two-level systems. Phys. Scr. 2002, T102, 147. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E.; Gill, R.D. Fisher information in quantum statistics. J. Phys. A 2000, 33, 4481. [Google Scholar] [CrossRef]


© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salari Sehdaran, F.; Bina, M.; Benedetti, C.; Paris, M.G.A. Quantum Probes for Ohmic Environments at Thermal Equilibrium. Entropy 2019, 21, 486. https://doi.org/10.3390/e21050486
Salari Sehdaran F, Bina M, Benedetti C, Paris MGA. Quantum Probes for Ohmic Environments at Thermal Equilibrium. Entropy. 2019; 21(5):486. https://doi.org/10.3390/e21050486
Chicago/Turabian StyleSalari Sehdaran, Fahimeh, Matteo Bina, Claudia Benedetti, and Matteo G. A. Paris. 2019. "Quantum Probes for Ohmic Environments at Thermal Equilibrium" Entropy 21, no. 5: 486. https://doi.org/10.3390/e21050486
APA StyleSalari Sehdaran, F., Bina, M., Benedetti, C., & Paris, M. G. A. (2019). Quantum Probes for Ohmic Environments at Thermal Equilibrium. Entropy, 21(5), 486. https://doi.org/10.3390/e21050486

