Scaling Effects of Elevation Data on Urban Nonpoint Source Pollution Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Model Setup
2.2.1. Model Description
2.2.2. Setup of DEM Inputs
2.2.3. Scaling Effect Evaluation Method
3. Results and Discussion
3.1. Scale Effects on Model Performance
3.2. Scale Effects on the Total Discharge Results
3.3. Scale Effects on the Overland Routing Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xiang, C.; Wang, Y.; Liu, H. A scientometrics review on nonpoint source pollution research. Ecol. Eng. 2017, 99, 400–408. [Google Scholar] [CrossRef]
- Randhir, T.O.; Tsvetkova, O. Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems. J. Hydrol. 2011, 404, 1–12. [Google Scholar] [CrossRef]
- He, Z.; Weng, H.; Ho, H.-C.; Ran, Q.; Mao, M. Soil erosion and pollutant transport during rainfall-runoff processes. Water Resour. 2014, 41, 604–611. [Google Scholar] [CrossRef]
- Fatichi, S.; Vivoni, E.R.; Ogden, F.L.; Ivanov, V.Y.; Mirus, B.; Gochis, D.; Downer, C.W.; Camporese, M.; Davison, J.H.; Ebel, B.A.; et al. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J. Hydrol. 2016, 537, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Krebs, G.; Kokkonen, T.; Valtanen, M.; Setala, H.; Koivusalo, H. Spatial resolution considerations for urban hydrological modelling. J. Hydrol. 2014, 512, 482–497. [Google Scholar] [CrossRef]
- Morgan, A.; Olivier, D.; Nathalie, B.; Claire-Marie, D.; Philippe, G. High-resolution modelling with bi-dimensional shallow water equations based codes-High-resolution topographic data use for flood hazard assessment over urban and industrial environments. In Proceedings of the 12th International Conference on Hydroinformatics (Hic 2016)—Smart Water for the Future, Incheon, Korea, 21–26 August 2016; Volume 154, pp. 853–860. [Google Scholar]
- Shen, Z.Y.; Chen, L.; Liao, Q.; Liu, R.M.; Huang, Q. A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling. Agric. Water Manag. 2013, 118, 93–102. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, L.; Hou, X.; Shen, Z. Effects of the spatial resolution of urban drainage data on nonpoint source pollution prediction. Environ. Sci. Pollut. Res. 2018, 25, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-H.; Chang, T.-H.; Chen, W.-B. Effect of inlet modelling on surface drainage in coupled urban flood simulation. J. Hydrol. 2018, 562, 168–180. [Google Scholar] [CrossRef]
- Shin, H.S.; Jang, J.K.; Jang, Y.S.; Kim, M.E. Quantification of nonpoint source pollutants discharged from the combined sewer system in the Nakdong River Basin, Korea, using SWMM. Desalin. Water Treat. 2017, 70, 86–94. [Google Scholar] [CrossRef]
- Chang, C.L.; Li, M.Y. Predictions of diffuse pollution by the HSPF model and the back-propagation neural network model. Water Environ. Res. 2017, 89, 732–738. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Hu, C. A comprehensive study of the effect of input data on hydrology and non-point source pollution modeling. Water Resour. Manag. 2015, 29, 1505–1521. [Google Scholar] [CrossRef]
- Chen, L.; Dai, Y.; Zhi, X.; Xie, H.; Shen, Z. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment. J. Hydrol. 2018, 559, 110–121. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, R.; Bao, Y.; Wang, J.; Yu, W.; Shen, Z. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Res. 2014, 53, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Dong, G.; Wang, Q.; Liu, L.; Yu, W.; Men, C.; Liu, R. Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model. J. Hydrol. 2016, 540, 355–367. [Google Scholar] [CrossRef]
- Thomas, I.A.; Jordan, P.; Shine, O.; Fenton, O.; Mellander, P.E.; Dunlop, P.; Murphy, P.N.C. Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography. Int. J. Appl. Earth Obs. 2017, 54, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.-T.; Guan, J.-Y.; Fei, C.-W.; Tian, J.; Zhang, F.-L. Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance. Mech. Syst. Signal Process. 2017, 88, 123–136. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communications. Bell Labs Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Jha, R.; Singh, V.P.; Vatsa, V. Analysis of urban development of Haridwar, India, using entropy approach. KSCE J. Civ. Eng. 2008, 12, 281–288. [Google Scholar] [CrossRef]
- Mogheir, Y.; Lima, J.L.M.P.D.; Singh, V.P. Characterizing the spatial variability of groundwater quality using the entropy theory: II. Case study from Gaza Strip. Hydrol. Process. 2010, 18, 2579–2590. [Google Scholar] [CrossRef]
- Singh, V.P. The entropy theory as a tool for modelling and decision-making in environmental and water resources. Water 2000, 26, 1–10. [Google Scholar]
- Dai, Y.; Chen, L.; Zhang, P.; Xiao, Y.; Hou, X.; Shen, Z. Construction of a cellular automata-based model for rainfall-runoff and NPS pollution simulation in an urban catchment. J. Hydrol. 2018. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, X.; Li, W.; Aini, G.; Chen, L.; Gong, Y. Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China. Ecol. Indic. 2015, 48, 417–427. [Google Scholar] [CrossRef]
- Ercan, M.B.; Goodall, J.L. Design and implementation of a general software library for using NSGA-II with SWAT for multi-objective model calibration. Environ. Modell. Softw. 2016, 84, 112–120. [Google Scholar] [CrossRef]
- Singh, K.R.; Dutta, R.; Kalamdhad, A.S.; Kumar, B. An investigation on water quality variability and identification of ideal monitoring locations by using entropy based disorder indices. Sci. Total Environ. 2019, 647, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sun, C.; Wang, G.; Xie, H.; Shen, Z. Modeling multi-event non-point source pollution in a data-scarce catchment using ANN and entropy analysis. Entropy 2017, 19, 265. [Google Scholar] [CrossRef]
- Leipnik, R. Direction of change with refinement for unweighted and weighted information-entropy functionals. IRE Trans. Inform. Theory 1959, 5, 184–185. [Google Scholar] [CrossRef]
- Wang, L.; Wei, J.; Huang, Y.; Wang, G.; Maqsood, I. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County. Environ. Pollut. 2011, 159, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
Rainfall Event ID | Rainfall Date | Total Rainfall (mm) | Duration (min) | Peak Intensity (mm/h) | Rain Type |
---|---|---|---|---|---|
1 | 29 July 2014 | 35.7 | 400 | 43.28 | Heavy rain |
2 | 30 August 2014 | 29 | 105 | 69.6 | Heavy rain |
3 | 31 August 2014 | 70.76 | 165 | 86.2 | Torrential rain |
4 | 26 September 2014 | 7.8 | 20 | 50.4 | Light rain |
Event ID | Flow | COD | NH4-N | TP | |||||
---|---|---|---|---|---|---|---|---|---|
NSE | R2 | NSE | R2 | NSE | R2 | NSE | R2 | ||
Calibration | 1 | 0.83 | 0.89 | 0.72 | 0.88 | 0.51 | 0.78 | 0.81 | 0.90 |
2 | 0.77 | 0.85 | 0.62 | 0.85 | −1.59 | 0.52 | 0.53 | 0.69 | |
Validation | 3 | 0.044 | 0.87 | 0.62 | 0.78 | 0.4 | 0.71 | 0.023 | 0.76 |
4 | 0.95 | 0.98 | 0.45 | 0.58 | 0.22 | 0.55 | 0.42 | 0.74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Chen, L.; Zhang, P.; Xiao, Y.; Shen, Z. Scaling Effects of Elevation Data on Urban Nonpoint Source Pollution Simulations. Entropy 2019, 21, 53. https://doi.org/10.3390/e21010053
Dai Y, Chen L, Zhang P, Xiao Y, Shen Z. Scaling Effects of Elevation Data on Urban Nonpoint Source Pollution Simulations. Entropy. 2019; 21(1):53. https://doi.org/10.3390/e21010053
Chicago/Turabian StyleDai, Ying, Lei Chen, Pu Zhang, Yuechen Xiao, and Zhenyao Shen. 2019. "Scaling Effects of Elevation Data on Urban Nonpoint Source Pollution Simulations" Entropy 21, no. 1: 53. https://doi.org/10.3390/e21010053
APA StyleDai, Y., Chen, L., Zhang, P., Xiao, Y., & Shen, Z. (2019). Scaling Effects of Elevation Data on Urban Nonpoint Source Pollution Simulations. Entropy, 21(1), 53. https://doi.org/10.3390/e21010053