Open AccessArticle
Entropy and Divergence Associated with Power Function and the Statistical Application
Cited by 20 | Viewed by 5621
Abstract
In statistical physics, Boltzmann-Shannon entropy provides good understanding for the equilibrium states of a number of phenomena. In statistics, the entropy corresponds to the maximum likelihood method, in which Kullback-Leibler divergence connects Boltzmann-Shannon entropy and the expected log-likelihood function. The maximum likelihood estimation
[...] Read more.
In statistical physics, Boltzmann-Shannon entropy provides good understanding for the equilibrium states of a number of phenomena. In statistics, the entropy corresponds to the maximum likelihood method, in which Kullback-Leibler divergence connects Boltzmann-Shannon entropy and the expected log-likelihood function. The maximum likelihood estimation has been supported for the optimal performance, which is known to be easily broken down in the presence of a small degree of model uncertainty. To deal with this problem, a new statistical method, closely related to Tsallis entropy, is proposed and shown to be robust for outliers, and we discuss a local learning property associated with the method.
Full article