Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,150)

Search Parameters:
Keywords = zinc-lead ores

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 3909 KiB  
Article
Development of Technology for Processing Pyrite–Cobalt Concentrates to Obtain Pigments of the Composition Fe2O3 and Fe3O4
by Tatyana Chepushtanova, Aliya Altmyshbayeva, Yerik Merkibayev, Kulzira Mamyrbayeva, Zhanat Yespenova and Brajendra Mishra
Metals 2025, 15(8), 886; https://doi.org/10.3390/met15080886 (registering DOI) - 7 Aug 2025
Abstract
This paper presents the results of a study on the development of a processing technology for pyrite–cobalt concentrates to obtain iron oxide pigments (Fe2O3 and Fe3O4) via high-temperature hydrolysis. It was found that, in a single [...] Read more.
This paper presents the results of a study on the development of a processing technology for pyrite–cobalt concentrates to obtain iron oxide pigments (Fe2O3 and Fe3O4) via high-temperature hydrolysis. It was found that, in a single operation, the concentrate can be effectively purified from lead, zinc, and copper, yielding an iron–nickel–cobalt product suitable for further processing by standard technologies, such as smelting into ferronickel. The scientific originality of research concludes in a mechanism of stepwise selective chloride volatilization, which was established as follows: stage I (500–650 °C)—removal of lead; stage II (700–750 °C)—chlorination of copper and iron; stage III (850–900 °C)—volatilization of nickel and cobalt. Microprobe analysis of the powders obtained from high-temperature hydrolysis of FeCl2·4H2O and FeCl3·6H2O revealed the resulting Fe3O4 and Fe2O3 powders with particle sizes 50 μm and 100 μm. A visual color palette was created, corresponding to different Fe3O4/Fe2O3 ratios in the pigment composition—ranging from black (magnetite) to red (hematite)—and potential application areas. For the first time, the new technological scheme was proposed of pigments Fe2O3 and Fe3O4 production from pyrite–cobalt concentrates via combination of oxidized roasting with subsequent chlorination and high-temperature hydrolysis of the products. Full article
26 pages, 1407 KiB  
Review
ZnO Nanoparticles: Advancing Agricultural Sustainability
by Lekkala Venkata Ravishankar, Nidhi Puranik, VijayaDurga V. V. Lekkala, Dakshayani Lomada, Madhava C. Reddy and Amit Kumar Maurya
Plants 2025, 14(15), 2430; https://doi.org/10.3390/plants14152430 - 5 Aug 2025
Abstract
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. [...] Read more.
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. Zinc deficiency in plants leads to various physiological abnormalities, ultimately affecting nutritional quality and posing challenges to food security. Biofortification methods have been adopted by agronomists to increase Zn concentrations in crops through optimal foliar and soil applications. Changing climatic conditions and conventional agricultural practices alter edaphic factors, reducing zinc bioavailability in soils due to abrupt weather changes. Precision agriculture emphasizes need-based and site-specific technologies to address these nutritional deficiencies. Nanoscience, a multidimensional approach, reduces particle size to the nanometer (nm) scale to enhance their efficiency in precise amounts. Nanoscale forms of Zn+2 and their broad applications across crops are gaining attention in agriculture under varied application methods. This review focuses on the significance of Zn oxide (ZnO) nanoparticles (ZnONPs) and their extensive application in crop production. We also discuss optimum dosage levels, ZnONPs synthesis, application methods, toxicity, and promising future strategies in this field. Full article
(This article belongs to the Special Issue Nanotechnology in Crop Physiology and Sustainable Agriculture)
Show Figures

Figure 1

20 pages, 4576 KiB  
Article
Physical, Chemical, Mineralogical, and Toxicological Characterization of Active and Inactive Tailings in the Arequipa Region, Peru
by Dery Castillo, Karol Palma, Lizbeth Santander, Héctor Bolaños, Gregorio Palma and Patricio Navarro
Minerals 2025, 15(8), 830; https://doi.org/10.3390/min15080830 - 5 Aug 2025
Viewed by 95
Abstract
Mining activity in Peru generates environmental liabilities with the potential to release toxic metals into the environment. This study conducted a comprehensive physical, chemical, mineralogical, and toxicological characterization of ten active and inactive tailings samples from the Arequipa region in southern Peru. Particle [...] Read more.
Mining activity in Peru generates environmental liabilities with the potential to release toxic metals into the environment. This study conducted a comprehensive physical, chemical, mineralogical, and toxicological characterization of ten active and inactive tailings samples from the Arequipa region in southern Peru. Particle size distribution analysis, inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and the Toxicity Characteristic Leaching Procedure (TCLP) followed by ICP-MS were employed. The results revealed variable particle size distributions, with the sample of Secocha exhibiting the finest granulometry. Chemically, 8 out of 10 samples exhibited concentrations of at least two metals surpassing the Peruvian Environmental Quality Standards (EQS) for soils with values reaching >6000 mg/kg of arsenic (Paraiso), 193.1 mg/kg of mercury (Mollehuaca), and 2309 mg/kg of zinc (Paraiso). Mineralogical analysis revealed the presence of sulfides such as arsenopyrite, cinnabar, galena, and sphalerite, along with uraninite in the Otapara sample. In the TCLP tests, 5 out of 10 samples released at least two metals exceeding the environmental standards on water quality, with concentrations up to 0.401 mg/L for mercury (Paraiso), 0.590 mg/L for lead (Paraiso), and 9.286 mg/L for zinc (Kiowa Cobre). These results demonstrate elevated levels of Potentially Toxic Elements (PTEs) in both solid and dissolved states, reflecting a critical geochemical risk in the evaluated areas. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

23 pages, 5970 KiB  
Review
Practical Review on Aetio-Pathogenesis and Symptoms in Pigs Affected by Clinical and Subclinical Oedema Disease and the Use of Commercial Vaccines Under Field Conditions
by Juan Hernandez-Garcia, Isaac Ballarà Rodriguez, Ramon Jordà Casadevall, Sergi Bruguera, David Llopart and Emili Barba-Vidal
Animals 2025, 15(15), 2275; https://doi.org/10.3390/ani15152275 - 4 Aug 2025
Viewed by 195
Abstract
The impact of Oedema Disease produced by Shiga toxigenic Escherichia coli (STEC) in swine is increasing in some production countries due to increasing limitations on treatment with antimicrobials and zinc oxide, either because of the increased prevalence of multi-resistant strains or because of [...] Read more.
The impact of Oedema Disease produced by Shiga toxigenic Escherichia coli (STEC) in swine is increasing in some production countries due to increasing limitations on treatment with antimicrobials and zinc oxide, either because of the increased prevalence of multi-resistant strains or because of legal restrictions. The main pathological effect of Shiga toxin 2e is represented by damage to the endothelial cells of the blood vessel walls, leading to liquid extravasation and oedema formation in multiple tissues. These oedemas are generally easily identifiable in acute clinical cases. However, disease caused by Shiga toxin can occur without any externally visible oedema in the pigs, as observed in the subclinical presentation of Oedema Disease. It also causes productive losses, so it is important to identify and/or diagnose cases to set up control measures in order to optimize production and health. This article includes a comprehensive review of lesions and signs caused by Shiga toxin toxicosis in pigs, as well as other insights about the aetiology and epidemiology of STEC in pigs, and the effect of Shiga toxin recombinant toxoid vaccines in reducing these clinical and subclinical signs under field conditions. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

14 pages, 2852 KiB  
Review
Review of Quasi-Solid Aqueous Zinc Batteries: A Bibliometric Analysis
by Zhongxiu Liu, Xiaoou Zhou, Tongyuan Shen, Miaomiao Yu, Liping Zhu, Guiyin Xu and Meifang Zhu
Batteries 2025, 11(8), 293; https://doi.org/10.3390/batteries11080293 - 3 Aug 2025
Viewed by 197
Abstract
Quasi-solid aqueous zinc batteries (QSAZBs) have wide applications in the energy storage field due to their advantages of high safety, cost-effectiveness, and eco-friendliness. Despite prolific research output in the field of QSAZBs, existing reviews predominantly focus on experimental advancements, with limited synthesis of [...] Read more.
Quasi-solid aqueous zinc batteries (QSAZBs) have wide applications in the energy storage field due to their advantages of high safety, cost-effectiveness, and eco-friendliness. Despite prolific research output in the field of QSAZBs, existing reviews predominantly focus on experimental advancements, with limited synthesis of global research trends, interdisciplinary connections, or knowledge gaps. Herein, we review the research on QSAZBs via bibliometric analysis using the VOSviewer software (version 1.6.20). First, the data from qualitatively evaluated publications on QSAZBs from 2016 and 2024 are integrated. In addition, the annual trends, leading countries/regions and their international collaborations, institutional research and patent distribution, and important keyword cluster analyses in QSAZB research are evaluated. The results reveal that China dominates in terms of publication output (71.16% of total papers), and Singapore exhibits the highest citation impact (103.2 citations/paper). International collaboration networks indicate the central role of China, with strong ties to Singapore, the USA, and Australia. Keyword clustering indicates core research priorities: cathode materials (MnO2 and V2O5), quasi-solid electrolyte optimization (hydrogels and graphene composites), and interfacial stability mechanisms. By mapping global trends and interdisciplinary linkages, this work provides insights to accelerate QSAZBs’ transition from laboratory breakthroughs to grid-scale and wearable applications. Full article
(This article belongs to the Special Issue Battery Interface: Analysis & Design)
Show Figures

Graphical abstract

56 pages, 1035 KiB  
Review
Trace Elements—Role in Joint Function and Impact on Joint Diseases
by Łukasz Bryliński, Katarzyna Brylińska, Filip Woliński, Jolanta Sado, Miłosz Smyk, Olga Komar, Robert Karpiński, Marcin Prządka and Jacek Baj
Int. J. Mol. Sci. 2025, 26(15), 7493; https://doi.org/10.3390/ijms26157493 - 2 Aug 2025
Viewed by 446
Abstract
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a [...] Read more.
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a serious social problem. Risk factors for the development of these diseases include overweight and obesity, gender, and intestinal microbiome disorders. Another factor that is considered to influence joint diseases is trace elements. Under normal conditions, elements such as iron (Fe), copper (Cu), cobalt (Co), iodine (I), manganese (Mn), zinc (Zn), silver (Ag), cadmium (Cd), mercury (Hg), lead (Pb), nickel (Ni) selenium (Se), boron (B), and silicon (Si) are part of enzymes involved in reactions that determine the proper functioning of cells, regulate redox metabolism, and determine the maturation of cells that build joint components. However, when the normal concentration of the above-mentioned elements is disturbed and toxic elements are present, dangerous joint diseases can develop. In this article, we focus on the role of trace elements in joint function. We describe the molecular mechanisms that explain their interaction with chondrocytes, osteocytes, osteoblasts, osteoclasts, and synoviocytes, as well as their proliferation, apoptosis, and extracellular matrix synthesis. We also focus on the role of these trace elements in the pathogenesis of joint diseases: rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), and systemic lupus erythematosus (SLE). We describe the roles of increased or decreased concentrations of individual elements in the pathogenesis and development of joint diseases and their impact on inflammation and disease progression, referring to molecular mechanisms. We also discuss their potential application in the treatment of joint diseases. Full article
Show Figures

Figure 1

18 pages, 4994 KiB  
Article
Plant Growth-Promoting Serratia and Erwinia Strains Enhance Tea Plant Tolerance and Rhizosphere Microbial Diversity Under Heavy Metal Stress
by Mengjiao Wang and Zhimin Xu
Agronomy 2025, 15(8), 1876; https://doi.org/10.3390/agronomy15081876 - 2 Aug 2025
Viewed by 255
Abstract
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates [...] Read more.
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates (over 60%) and chlorophyll content of tea plants, and by reducing the accumulation of these metals in tea plants’ tissues (by 19–37%). The PGPRs elevated key soil nutrients organic carbon (OC), total nitrogen (TH), hydrolysable nitrogen (HN), and available potassium (APO) and phosphorus (APH) contents. Compared to non-PGPR controls, both strains consistently increased microbial α-diversity (Chao1 index: +28–42% in Zn/Pb soils; Shannon index: +19–33%) across all contamination regimes. PCoA/UniFrac analyses confirmed distinct clustering of PGPR-treated communities, with strain-specific enrichment of metal-adapted taxa, including Pseudomonas (LDA = 6) and Bacillus (LDA = 4) under Zn stress; Rhodanobacter (LDA = 4) under Pb stress; and Lysobacter (LDA = 5) in Zn + Pb co-contamination. Fungal restructuring featured elevated Mortierella (LDA = 6) in Zn soils and stress-tolerant Ascomycota dominance in co-contaminated soils. Multivariate correlations revealed that the PGPR-produced auxin was positively correlated with soil carbon dynamics and Mortierellomycota abundance (r = 0.729), while the chlorophyll content in leaves was closely associated with Cyanobacteria and reduced by Pb accumulation. These findings highlighted that PGPR could mediate and improve in tea plant physiology, soil fertility, and stress-adapted microbiome recruitment under heavy metal contaminated soil and stress. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

48 pages, 3314 KiB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 - 1 Aug 2025
Viewed by 114
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
Show Figures

Figure 1

18 pages, 3111 KiB  
Article
Ectopic Recruitment of the CTCF N-Terminal Domain with Two Proximal Zinc-Finger Domains as a Tool for 3D Genome Engineering
by Eugenia A. Tiukacheva, Artem V. Luzhin, Natalia Kruglova, Anastasia S. Shtompel, Grigorii Antonov, Anna Tvorogova, Yegor Vassetzky, Sergey V. Ulianov and Sergey V. Razin
Int. J. Mol. Sci. 2025, 26(15), 7446; https://doi.org/10.3390/ijms26157446 - 1 Aug 2025
Viewed by 206
Abstract
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated [...] Read more.
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated CTCF fused with programmable DNA-binding module dCas9 and fluorescent tracker EGFP. We found that the recruitment of a chimeric protein based on the CTCF N-terminal domain and two zinc-finger domains to the human HOXD locus leads to the de novo formation of a spatial contact with a nearby cohesin/CTCF-bound region, anchoring several chromatin loops. This chimeric protein did not show binding to CTCF motifs and did not affect the epigenetic and transcription profile of the locus. Recruitment of this chimeric protein is also able to restore chromatin loops, lost after deletion of an endogenous CTCF-binding site. Together, our data indicate that the ectopic recruitment of the CTCF N-terminal part could be an appropriate tool for 3D genome engineering. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 254
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

21 pages, 7973 KiB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 340
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

78 pages, 2585 KiB  
Review
Engineered Metal Nanoparticles: A Possible Small Solution to Big Problems Associated with Toxigenic Fungi and Mycotoxins
by Eva María Mateo, Fernando Mateo, Andrea Tarazona and Misericordia Jiménez
Toxins 2025, 17(8), 378; https://doi.org/10.3390/toxins17080378 - 30 Jul 2025
Viewed by 545
Abstract
Mycotoxins are secondary metabolites produced primarily by certain species of the genera Aspergillus, Fusarium, Penicillium, Alternaria, and Claviceps. Toxigenic fungi and mycotoxins are prevalent in staple foods, resulting in significant economic losses and detrimental impacts on public health [...] Read more.
Mycotoxins are secondary metabolites produced primarily by certain species of the genera Aspergillus, Fusarium, Penicillium, Alternaria, and Claviceps. Toxigenic fungi and mycotoxins are prevalent in staple foods, resulting in significant economic losses and detrimental impacts on public health and food safety. These fungi demonstrate remarkable adaptation to water and heat stress conditions associated with climate change, and the use of synthetic antifungals can lead to the selection of resistant strains. In this context, the development of novel strategies for their prevention and control of food is a priority objective. This review synthesizes the extant knowledge concerning the antifungal and anti-mycotoxin potential of the primary metal nanoparticles (silver, copper) and metal oxide nanoparticles (copper oxide and zinc oxide) studied in the literature. It also considers synthesis methods and the lack of consensus on technical definitions and regulations. Despite methodological gaps and the scarcity of publications analyzing the effect of these NPs on fungal growth and mycotoxin production simultaneously, it can be concluded that these NPs present high reactivity, stability, and the ability to combat these food risks. However, aspects related to their biosafety and consumer acceptance remain major challenges that must be addressed for their implementation in the food industry. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

21 pages, 3812 KiB  
Article
Recovery of Iron, Silver and Lead from Zinc Ferrite Residue
by Peter Iliev, Biserka Lucheva, Nadezhda Kazakova and Vladislava Stefanova
Materials 2025, 18(15), 3522; https://doi.org/10.3390/ma18153522 - 27 Jul 2025
Viewed by 344
Abstract
The present article aims to develop a technological scheme for processing zinc ferrite residue, which typically forms during the leaching of zinc calcine. This semi-product is currently processed through the Waelz process, the main disadvantage of which is the loss of precious metals [...] Read more.
The present article aims to develop a technological scheme for processing zinc ferrite residue, which typically forms during the leaching of zinc calcine. This semi-product is currently processed through the Waelz process, the main disadvantage of which is the loss of precious metals with the Waelz clinker. The experimental results of numerous experiments and analyses have verified a technological scheme including the following operations: sulfuric acid leaching of zinc ferrite residue under atmospheric conditions; autoclave purification of the resulting productive solution to obtain hematite; chloride leaching of lead and silver from the insoluble residue, which was produced in the initial operation; and cementation with zinc powder of lead and silver from the chloride solution. Utilizing such an advanced methodology, the degree of zinc leaching is 98.30% at a sulfuric acid concentration of 200 g/L, with a solid-to-liquid ratio of 1:10 and a temperature of 90 °C. Under these conditions, 96.40% Cu and 92.72% Fe form a solution. Trivalent iron in the presence of seeds at a temperature of 200 °C precipitates as hematite. In chloride extraction with 250 g/L NaCl, 1 M HCl, and a temperature of 60 °C, the leaching degree of lead is 96.79%, while that of silver is 84.55%. In the process of cementation with zinc powder, the degree of extraction of lead and silver in the cement precipitate is 98.72% and 97.27%, respectively. When implementing this scheme, approximately 15% of the insoluble residue remains, containing 1.6% Pb and 0.016% Ag. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

16 pages, 3829 KiB  
Article
Process Development for Concentrating Valuable Metals Present in the Non-Valorized Solid Fractions from Urban Mining
by Nour-Eddine Menad and Alassane Traoré
Metals 2025, 15(8), 834; https://doi.org/10.3390/met15080834 - 26 Jul 2025
Viewed by 245
Abstract
Global resource consumption continues to grow each year, exerting increasing pressure on their availability. This trend could lead to a shortage of raw materials in the coming years. Aware of the risks associated with this situation, the European Union has implemented policies and [...] Read more.
Global resource consumption continues to grow each year, exerting increasing pressure on their availability. This trend could lead to a shortage of raw materials in the coming years. Aware of the risks associated with this situation, the European Union has implemented policies and strategies aimed at diversifying its supply sources, including waste recycling. In this context, the present study was conducted with the objective of developing innovative processes to concentrate valuable metals present in the non-recovered fractions of waste electrical and electronic equipment (WEEE). Three types of samples were studied: washing table residues (WTRs), printed circuit boards (PCBs), and powders from cathode-ray tube screens (CRT powders). Several separation techniques, based on the physical properties of the elements, were implemented, including electrostatic separation, magnetic separation, and density and gravity-based separations. The results obtained are promising. For WTRs and PCBs, the recovery rates of targeted metals (Cu, Al, Pb, Zn, Sn) reached approximately 91% and 80%, respectively. In addition to these metals, other valuable metals, present in significant quantities, deserve further exploration. Regarding CRT powders, the performances are also encouraging, with recovery rates of 54.7% for zinc, 57.1% for yttrium, and approximately 71% for europium. Although these results are satisfactory, optimizations are possible to maximize the recovery of these critical elements. The techniques implemented have demonstrated their effectiveness in concentrating target metals in the treated fractions. These results confirm that recycling constitutes a viable alternative to address resource shortages and secure part of the supplies needed for the European Union’s industry. Full article
Show Figures

Figure 1

13 pages, 5204 KiB  
Article
Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes
by Neng Yu, Qingpu Zeng, Yiming Fu, Hanbin Li, Jiating Li, Rui Wang, Longlong Meng, Hao Wu, Zhuyao Li, Kai Guo and Lei Wang
Batteries 2025, 11(8), 284; https://doi.org/10.3390/batteries11080284 - 24 Jul 2025
Viewed by 340
Abstract
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy [...] Read more.
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy has been proposed, involving the addition of a minute quantity of AgNO3 to the electrolyte to stabilize zinc anodes. This additive spontaneously forms a hierarchically porous Ag interphase on the zinc anodes, which is characterized by its zinc-affinitive nature. The interphase offers abundant zinc nucleation sites and accommodation space, leading to uniform zinc plating/stripping and enhanced kinetics of zinc deposition/dissolution. Moreover, the chemically inert Ag interphase effectively curtails side reactions by isolating water molecules. Consequently, the incorporation of AgNO3 enables zinc anodes to undergo cycling for extended periods, such as over 4000 h at a current density of 0.5 mA/cm2 with a capacity of 0.5 mAh/cm2, and for 450 h at 2 mA/cm2 with a capacity of 2 mAh/cm2. Full zinc-ion cells equipped with this additive not only demonstrate increased specific capacities but also exhibit significantly improved cycle stability. This research presents a cost-effective and practical approach for the development of reliable zinc anodes for ZIBs. Full article
(This article belongs to the Special Issue Flexible and Wearable Energy Storage Devices)
Show Figures

Graphical abstract

Back to TopTop