Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,503)

Search Parameters:
Keywords = yolo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2077 KiB  
Article
Benchmarking YOLO Models for Marine Search and Rescue in Variable Weather Conditions
by Aysha Alshibli and Qurban Memon
Automation 2025, 6(3), 35; https://doi.org/10.3390/automation6030035 (registering DOI) - 2 Aug 2025
Abstract
Deep learning with unmanned aerial vehicles (UAVs) is transforming maritime search and rescue (SAR) by enabling rapid object identification in challenging marine environments. This study benchmarks the performance of YOLO models for maritime SAR under diverse weather conditions using the SeaDronesSee and AFO [...] Read more.
Deep learning with unmanned aerial vehicles (UAVs) is transforming maritime search and rescue (SAR) by enabling rapid object identification in challenging marine environments. This study benchmarks the performance of YOLO models for maritime SAR under diverse weather conditions using the SeaDronesSee and AFO datasets. The results show that while YOLOv7 achieved the highest mAP@50, it struggled with detecting small objects. In contrast, YOLOv10 and YOLOv11 deliver faster inference speeds but compromise slightly on precision. The key challenges discussed include environmental variability, sensor limitations, and scarce annotated data, which can be addressed by such techniques as attention modules and multimodal data fusion. Overall, the research results provide practical guidance for deploying efficient deep learning models in SAR, emphasizing specialized datasets and lightweight architectures for edge devices. Full article
(This article belongs to the Section Intelligent Control and Machine Learning)
18 pages, 10604 KiB  
Article
Fast Detection of Plants in Soybean Fields Using UAVs, YOLOv8x Framework, and Image Segmentation
by Ravil I. Mukhamediev, Valentin Smurygin, Adilkhan Symagulov, Yan Kuchin, Yelena Popova, Farida Abdoldina, Laila Tabynbayeva, Viktors Gopejenko and Alexey Oxenenko
Drones 2025, 9(8), 547; https://doi.org/10.3390/drones9080547 (registering DOI) - 1 Aug 2025
Abstract
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves [...] Read more.
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves chemicals but also reduces the environmental load on cultivated fields. Machine learning algorithms are widely used for plant classification. Research on the application of the YOLO algorithm is conducted for simultaneous identification, localization, and classification of plants. However, the quality of the algorithm significantly depends on the training set. The aim of this study is not only the detection of a cultivated plant (soybean) but also weeds growing in the field. The dataset developed in the course of the research allows for solving this issue by detecting not only soybean but also seven weed species common in the fields of Kazakhstan. The article describes an approach to the preparation of a training set of images for soybean fields using preliminary thresholding and bound box (Bbox) segmentation of marked images, which allows for improving the quality of plant classification and localization. The conducted research and computational experiments determined that Bbox segmentation shows the best results. The quality of classification and localization with the application of Bbox segmentation significantly increased (f1 score increased from 0.64 to 0.959, mAP50 from 0.72 to 0.979); for a cultivated plant (soybean), the best classification results known to date were achieved with the application of YOLOv8x on images obtained from the UAV, with an f1 score = 0.984. At the same time, the plant detection rate increased by 13 times compared to the model proposed earlier in the literature. Full article
Show Figures

Figure 1

13 pages, 2421 KiB  
Article
Evaluating the Metrics of Insecticide Resistance and Efficacy: Comparison of the CDC Bottle Bioassay with Formulated and Technical-Grade Insecticide and a Sentinel Cage Field Trial
by Deborah A. Dritz, Mario Novelo and Sarah S. Wheeler
Trop. Med. Infect. Dis. 2025, 10(8), 219; https://doi.org/10.3390/tropicalmed10080219 (registering DOI) - 1 Aug 2025
Abstract
Insecticide resistance monitoring is essential for effective mosquito control. This study compared CDC Bottle Bioassays (BBAs) using technical and formulated insecticides (deltamethrin/Deltagard and malathion/Fyfanon EW) against the Culex pipiens complex (Fogg Rd) and Culex tarsalis Coquillett (Vic Fazio). BBAs indicated resistance to deltamethrin [...] Read more.
Insecticide resistance monitoring is essential for effective mosquito control. This study compared CDC Bottle Bioassays (BBAs) using technical and formulated insecticides (deltamethrin/Deltagard and malathion/Fyfanon EW) against the Culex pipiens complex (Fogg Rd) and Culex tarsalis Coquillett (Vic Fazio). BBAs indicated resistance to deltamethrin and emerging resistance to malathion in Fogg Rd, as well as resistance to both in Vic Fazio. Field trials, however, showed high efficacy: Deltagard caused 97.7% mortality in Fogg Rd and 99.4% in Vic Fazio. Fyfanon EW produced 100% mortality in Fogg Rd but only 47% in Vic Fazio. Extended BBA endpoints at 120 and 180 min aligned better with field outcomes. Deltagard achieved 100% mortality at 120 min in both populations; technical deltamethrin reached 85.7% (Fogg Rd) and 83.5% (Vic Fazio) at 180 min. Fyfanon EW and malathion showed similar performance: 100% mortality was achieved in Fogg Rd by 120 min but was lower in Vic Fazio; malathion reached 55%; and Fyfanon EW reached 58.6% by 180 min. Statistical analysis confirmed that BBAs using formulated products better reflected field performance, particularly when proprietary ingredients were involved. These findings support the use of formulated products and extended observation times in BBAs to improve operational relevance and resistance interpretation in addition to detecting levels of insecticide resistance. Full article
Show Figures

Figure 1

20 pages, 5369 KiB  
Article
Smart Postharvest Management of Strawberries: YOLOv8-Driven Detection of Defects, Diseases, and Maturity
by Luana dos Santos Cordeiro, Irenilza de Alencar Nääs and Marcelo Tsuguio Okano
AgriEngineering 2025, 7(8), 246; https://doi.org/10.3390/agriengineering7080246 - 1 Aug 2025
Abstract
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, [...] Read more.
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, covering eight quality categories, including anthracnose, gray mold, powdery mildew, uneven ripening, and physical defects. Data augmentation techniques, such as rotation and Gaussian blur, were applied to enhance model generalization and robustness. The model was trained over 100 and 200 epochs, and its performance was evaluated using standard metrics: Precision, Recall, and mean Average Precision (mAP). The 200-epoch model achieved the best results, with a mAP50 of 0.79 and an inference time of 1 ms per image, demonstrating suitability for real-time applications. Classes with distinct visual features, such as anthracnose and gray mold, were accurately classified. In contrast, visually similar categories, such as ‘Good Quality’ and ‘Unripe’ strawberries, presented classification challenges. Full article
Show Figures

Figure 1

21 pages, 4688 KiB  
Article
Nondestructive Inspection of Steel Cables Based on YOLOv9 with Magnetic Flux Leakage Images
by Min Zhao, Ning Ding, Zehao Fang, Bingchun Jiang, Jiaming Zhong and Fuqin Deng
J. Sens. Actuator Netw. 2025, 14(4), 80; https://doi.org/10.3390/jsan14040080 (registering DOI) - 1 Aug 2025
Abstract
The magnetic flux leakage (MFL) method is widely acknowledged as a highly effective non-destructive evaluation (NDE) technique for detecting local damage in ferromagnetic structures such as steel wire ropes. In this study, a multi-channel MFL sensor module was developed, incorporating a purpose-designed Hall [...] Read more.
The magnetic flux leakage (MFL) method is widely acknowledged as a highly effective non-destructive evaluation (NDE) technique for detecting local damage in ferromagnetic structures such as steel wire ropes. In this study, a multi-channel MFL sensor module was developed, incorporating a purpose-designed Hall sensor array and magnetic yokes specifically shaped for steel cables. To validate the proposed damage detection method, artificial damages of varying degrees were inflicted on wire rope specimens through experimental testing. The MFL sensor module facilitated the scanning of the damaged specimens and measurement of the corresponding MFL signals. In order to improve the signal-to-noise ratio, a comprehensive set of signal processing steps, including channel equalization and normalization, was implemented. Subsequently, the detected MFL distribution surrounding wire rope defects was transformed into MFL images. These images were then analyzed and processed utilizing an object detection method, specifically employing the YOLOv9 network, which enables accurate identification and localization of defects. Furthermore, a quantitative defect detection method based on image size was introduced, which is effective for quantifying defects using the dimensions of the anchor frame. The experimental results demonstrated the effectiveness of the proposed approach in detecting and quantifying defects in steel cables, which combines deep learning-based analysis of MFL images with the non-destructive inspection of steel cables. Full article
Show Figures

Figure 1

28 pages, 6624 KiB  
Article
YoloMal-XAI: Interpretable Android Malware Classification Using RGB Images and YOLO11
by Chaymae El Youssofi and Khalid Chougdali
J. Cybersecur. Priv. 2025, 5(3), 52; https://doi.org/10.3390/jcp5030052 (registering DOI) - 1 Aug 2025
Abstract
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB [...] Read more.
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB image representations by mapping DEX (Dalvik Executable), Manifest.xml, and Resources.arsc files to distinct color channels. Evaluated on the CICMalDroid2020 dataset using YOLO11 pretrained classification models, YoloMal-XAI achieves 99.87% accuracy in binary classification and 99.56% in multi-class classification (Adware, Banking, Riskware, SMS, and Benign). Compared to ResNet-50, GoogLeNet, and MobileNetV2, YOLO11 offers competitive accuracy with at least 7× faster training over 100 epochs. Against YOLOv8, YOLO11 achieves comparable or superior accuracy while reducing training time by up to 3.5×. Cross-corpus validation using Drebin and CICAndMal2017 further confirms the model’s generalization capability on previously unseen malware. An ablation study highlights the value of integrating DEX, Manifest, and Resources components, with the full RGB configuration consistently delivering the best performance. Explainable AI (XAI) techniques—Grad-CAM, Grad-CAM++, Eigen-CAM, and HiRes-CAM—are employed to interpret model decisions, revealing the DEX segment as the most influential component. These results establish YoloMal-XAI as a scalable, efficient, and interpretable framework for Android malware detection, with strong potential for future deployment on resource-constrained mobile devices. Full article
Show Figures

Figure 1

13 pages, 769 KiB  
Article
A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects
by Rohan Kalahasty, Gayathri Yerrapragada, Jieun Lee, Keerthy Gopalakrishnan, Avneet Kaur, Pratyusha Muddaloor, Divyanshi Sood, Charmy Parikh, Jay Gohri, Gianeshwaree Alias Rachna Panjwani, Naghmeh Asadimanesh, Rabiah Aslam Ansari, Swetha Rapolu, Poonguzhali Elangovan, Shiva Sankari Karuppiah, Vijaya M. Dasari, Scott A. Helgeson, Venkata S. Akshintala and Shivaram P. Arunachalam
Sensors 2025, 25(15), 4735; https://doi.org/10.3390/s25154735 (registering DOI) - 31 Jul 2025
Abstract
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low [...] Read more.
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO® stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software®. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model’s capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed. Full article
(This article belongs to the Special Issue Biomedical Signals, Images and Healthcare Data Analysis: 2nd Edition)
Show Figures

Figure 1

25 pages, 21958 KiB  
Article
ESL-YOLO: Edge-Aware Side-Scan Sonar Object Detection with Adaptive Quality Assessment
by Zhanshuo Zhang, Changgeng Shuai, Chengren Yuan, Buyun Li, Jianguo Ma and Xiaodong Shang
J. Mar. Sci. Eng. 2025, 13(8), 1477; https://doi.org/10.3390/jmse13081477 - 31 Jul 2025
Viewed by 12
Abstract
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge [...] Read more.
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge Fusion Module (EFM) is designed, which integrates the Sobel operator into depthwise separable convolution. Through a dual-branch structure, it realizes effective fusion of edge features and spatial features, significantly enhancing the ability to recognize targets with blurred boundaries. Secondly, a Self-Calibrated Dual Attention (SCDA) Module is constructed. By means of feature cross-calibration and multi-scale channel attention fusion mechanisms, it achieves adaptive fusion of shallow details and deep-rooted semantic content, improving the detection accuracy for small-sized targets and targets with elaborate shapes. Finally, a Location Quality Estimator (LQE) is introduced, which quantifies localization quality using the statistical characteristics of bounding box distribution, effectively reducing false detections and missed detections. Experiments on the SIMD dataset show that the mAP@0.5 of ESL-YOLO reaches 84.65%. The precision and recall rate reach 87.67% and 75.63%, respectively. Generalization experiments on additional sonar datasets further validate the effectiveness of the proposed method across different data distributions and target types, providing an effective technical solution for side-scan sonar image target detection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 74537 KiB  
Article
SDA-YOLO: Multi-Scale Dynamic Branching and Attention Fusion for Self-Explosion Defect Detection in Insulators
by Zhonghao Yang, Wangping Xu, Nanxing Chen, Yifu Chen, Kaijun Wu, Min Xie, Hong Xu and Enhui Zheng
Electronics 2025, 14(15), 3070; https://doi.org/10.3390/electronics14153070 (registering DOI) - 31 Jul 2025
Viewed by 28
Abstract
To enhance the performance of UAVs in detecting insulator self-explosion defects during power inspections, this paper proposes an insulator self-explosion defect recognition algorithm, SDA-YOLO, based on an improved YOLOv11s network. First, the SODL is added to YOLOv11 to fuse shallow features with deeper [...] Read more.
To enhance the performance of UAVs in detecting insulator self-explosion defects during power inspections, this paper proposes an insulator self-explosion defect recognition algorithm, SDA-YOLO, based on an improved YOLOv11s network. First, the SODL is added to YOLOv11 to fuse shallow features with deeper features, thereby improving the model’s focus on small-sized self-explosion defect features. The OBB is also employed to reduce interference from the complex background. Second, the DBB module is incorporated into the C3k2 module in the backbone to extract target features through a multi-branch parallel convolutional structure. Finally, the AIFI module replaces the C2PSA module, effectively directing and aggregating information between channels to improve detection accuracy and inference speed. The experimental results show that the average accuracy of SDA-YOLO reaches 96.0%, which is higher than the YOLOv11s baseline model of 6.6%. While maintaining high accuracy, the inference speed of SDA-YOLO can reach 93.6 frames/s, which achieves the purpose of the real-time detection of insulator faults. Full article
Show Figures

Figure 1

23 pages, 7166 KiB  
Article
Deriving Early Citrus Fruit Yield Estimation by Combining Multiple Growing Period Data and Improved YOLOv8 Modeling
by Menglin Zhai, Juanli Jing, Shiqing Dou, Jiancheng Du, Rongbin Wang, Jichi Yan, Yaqin Song and Zhengmin Mei
Sensors 2025, 25(15), 4718; https://doi.org/10.3390/s25154718 (registering DOI) - 31 Jul 2025
Viewed by 45
Abstract
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield [...] Read more.
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield estimation. Currently, most crop yield estimation studies based on the YOLO model are only conducted during a single stage of maturity. Combining multi-growth period data for crop analysis is of great significance for crop growth detection and early yield estimation. In this study, a new network model, YOLOv8-RL, was proposed using citrus multigrowth period characteristics as a data source. A citrus yield estimation model was constructed and validated by combining network identification counts with manual field counts. Compared with YOLOv8, the number of parameters of the improved network is reduced by 50.7%, the number of floating-point operations is decreased by 49.4%, and the size of the model is only 3.2 MB. In the test set, the average recognition rate of citrus flowers, green fruits, and orange fruits was 95.6%, the mAP@.5 was 94.6%, the FPS value was 123.1, and the inference time was only 2.3 milliseconds. This provides a reference for the design of lightweight networks and offers the possibility of deployment on embedded devices with limited computational resources. The two estimation models constructed on the basis of the new network had coefficients of determination R2 values of 0.91992 and 0.95639, respectively, with a prediction error rate of 6.96% for citrus green fruits and an average error rate of 3.71% for orange fruits. Compared with network counting, the yield estimation model had a low error rate and high accuracy, which provided a theoretical basis and technical support for the early prediction of fruit yield in complex environments. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 3130 KiB  
Article
Deep Learning-Based Instance Segmentation of Galloping High-Speed Railway Overhead Contact System Conductors in Video Images
by Xiaotong Yao, Huayu Yuan, Shanpeng Zhao, Wei Tian, Dongzhao Han, Xiaoping Li, Feng Wang and Sihua Wang
Sensors 2025, 25(15), 4714; https://doi.org/10.3390/s25154714 (registering DOI) - 30 Jul 2025
Viewed by 157
Abstract
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping [...] Read more.
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping status of conductors is crucial, and instance segmentation techniques, by delineating the pixel-level contours of each conductor, can significantly aid in the identification and study of galloping phenomena. This work expands upon the YOLO11-seg model and introduces an instance segmentation approach for galloping video and image sensor data of OCS conductors. The algorithm, designed for the stripe-like distribution of OCS conductors in the data, employs four-direction Sobel filters to extract edge features in horizontal, vertical, and diagonal orientations. These features are subsequently integrated with the original convolutional branch to form the FDSE (Four Direction Sobel Enhancement) module. It integrates the ECA (Efficient Channel Attention) mechanism for the adaptive augmentation of conductor characteristics and utilizes the FL (Focal Loss) function to mitigate the class-imbalance issue between positive and negative samples, hence enhancing the model’s sensitivity to conductors. Consequently, segmentation outcomes from neighboring frames are utilized, and mask-difference analysis is performed to autonomously detect conductor galloping locations, emphasizing their contours for the clear depiction of galloping characteristics. Experimental results demonstrate that the enhanced YOLO11-seg model achieves 85.38% precision, 77.30% recall, 84.25% AP@0.5, 81.14% F1-score, and a real-time processing speed of 44.78 FPS. When combined with the galloping visualization module, it can issue real-time alerts of conductor galloping anomalies, providing robust technical support for railway OCS safety monitoring. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

23 pages, 7739 KiB  
Article
AGS-YOLO: An Efficient Underwater Small-Object Detection Network for Low-Resource Environments
by Weikai Sun, Xiaoqun Liu, Juan Hao, Qiyou Yao, Hailin Xi, Yuwen Wu and Zhaoye Xing
J. Mar. Sci. Eng. 2025, 13(8), 1465; https://doi.org/10.3390/jmse13081465 - 30 Jul 2025
Viewed by 169
Abstract
Detecting underwater targets is crucial for ecological evaluation and the sustainable use of marine resources. To enhance environmental protection and optimize underwater resource utilization, this study proposes AGS-YOLO, an innovative underwater small-target detection model based on YOLO11. Firstly, this study proposes AMSA, a [...] Read more.
Detecting underwater targets is crucial for ecological evaluation and the sustainable use of marine resources. To enhance environmental protection and optimize underwater resource utilization, this study proposes AGS-YOLO, an innovative underwater small-target detection model based on YOLO11. Firstly, this study proposes AMSA, a multi-scale attention module, and optimizes the C3k2 structure to improve the detection and precise localization of small targets. Secondly, a streamlined GSConv convolutional module is incorporated to minimize the parameter count and computational load while effectively retaining inter-channel dependencies. Finally, a novel and efficient cross-scale connected neck network is designed to achieve information complementarity and feature fusion among different scales, efficiently capturing multi-scale semantics while decreasing the complexity of the model. In contrast with the baseline model, the method proposed in this paper demonstrates notable benefits for use in underwater devices constrained by limited computational capabilities. The results demonstrate that AGS-YOLO significantly outperforms previous methods in terms of accuracy on the DUO underwater dataset, with mAP@0.5 improving by 1.3% and mAP@0.5:0.95 improving by 2.6% relative to those of the baseline YOLO11n model. In addition, the proposed model also shows excellent performance on the RUOD dataset, demonstrating its competent detection accuracy and reliable generalization. This study proposes innovative approaches and methodologies for underwater small-target detection, which have significant practical relevance. Full article
Show Figures

Figure 1

29 pages, 3731 KiB  
Article
An Automated Method for Identifying Voids and Severe Loosening in GPR Images
by Ze Chai, Zicheng Wang, Zeshan Xu, Ziyu Feng and Yafeng Zhao
J. Imaging 2025, 11(8), 255; https://doi.org/10.3390/jimaging11080255 - 30 Jul 2025
Viewed by 150
Abstract
This paper proposes a novel automatic recognition method for distinguishing voids and severe loosening in road structures based on features of ground-penetrating radar (GPR) B-scan images. By analyzing differences in image texture, the intensity and clarity of top reflection interfaces, and the regularity [...] Read more.
This paper proposes a novel automatic recognition method for distinguishing voids and severe loosening in road structures based on features of ground-penetrating radar (GPR) B-scan images. By analyzing differences in image texture, the intensity and clarity of top reflection interfaces, and the regularity of internal waveforms, a set of discriminative features is constructed. Based on these features, we develop the FKS-GPR dataset, a high-quality, manually annotated GPR dataset collected from real road environments, covering diverse and complex background conditions. Compared to datasets based on simulations, FKS-GPR offers higher practical relevance. An improved ACF-YOLO network is then designed for automatic detection, and the experimental results show that the proposed method achieves superior accuracy and robustness, validating its effectiveness and engineering applicability. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Viewed by 96
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

20 pages, 3518 KiB  
Article
YOLO-AWK: A Model for Injurious Bird Detection in Complex Farmland Environments
by Xiang Yang, Yongliang Cheng, Minggang Dong and Xiaolan Xie
Symmetry 2025, 17(8), 1210; https://doi.org/10.3390/sym17081210 - 30 Jul 2025
Viewed by 141
Abstract
Injurious birds pose a significant threat to food production and the agricultural economy. To address the challenges posed by their small size, irregular shape, and frequent occlusion in complex farmland environments, this paper proposes YOLO-AWK, an improved bird detection model based on YOLOv11n. [...] Read more.
Injurious birds pose a significant threat to food production and the agricultural economy. To address the challenges posed by their small size, irregular shape, and frequent occlusion in complex farmland environments, this paper proposes YOLO-AWK, an improved bird detection model based on YOLOv11n. Firstly, to improve the ability of the enhanced model to recognize bird targets in complex backgrounds, we introduce the in-scale feature interaction (AIFI) module to replace the original SPPF module. Secondly, to more accurately localize and identify bird targets of different shapes and sizes, we use WIoUv3 as a new loss function. Thirdly, to remove the noise interference and improve the extraction of bird residual features, we introduce the Kolmogorov–Arnold network (KAN) module. Finally, to improve the model’s detection accuracy for small bird targets, we add a small target detection head. The experimental results show that the detection performance of YOLO-AWK on the farmland bird dataset is significantly improved, and the final precision, recall, mAP@0.5, and mAP@0.5:0.95 reach 93.9%, 91.2%, 95.8%, and 75.3%, respectively, which outperforms the original model by 2.7, 2.3, 1.6, and 3.0 percentage points, respectively. These results demonstrate that the proposed method offers a reliable and efficient technical solution for farmland injurious bird monitoring. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Image Processing)
Show Figures

Figure 1

Back to TopTop