Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (297)

Search Parameters:
Keywords = yeast model organism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1791 KiB  
Review
Regulation of Bombyx mori–BmNPV Protein Interactions: Study Strategies and Molecular Mechanisms
by Dan Guo, Bowen Liu, Mingxing Cui, Heying Qian and Gang Li
Viruses 2025, 17(7), 1017; https://doi.org/10.3390/v17071017 - 20 Jul 2025
Viewed by 489
Abstract
As a pivotal model organism in Lepidoptera research, the silkworm (Bombyx mori) holds significant importance in life science due to its economic value and biotechnological applications. Advancements in proteomics and bioinformatics have enabled substantial progress in characterizing the B. mori proteome. [...] Read more.
As a pivotal model organism in Lepidoptera research, the silkworm (Bombyx mori) holds significant importance in life science due to its economic value and biotechnological applications. Advancements in proteomics and bioinformatics have enabled substantial progress in characterizing the B. mori proteome. Systematic screening and identification of protein–protein interactions (PPIs) have progressively elucidated the molecular mechanisms governing key biological processes, including viral infection, immune regulation, and growth development. This review comprehensively summarizes traditional PPI detection techniques, such as yeast two-hybrid (Y2H) and immunoprecipitation (IP), alongside emerging methodologies such as mass spectrometry-based interactomics and artificial intelligence (AI)-driven PPI prediction. We critically analyze the strengths, limitations, and technological integration strategies for each approach, highlighting current field challenges. Furthermore, we elaborate on the molecular regulatory networks of Bombyx mori nucleopolyhedrovirus (BmNPV) from multiple perspectives: apoptosis and cell cycle regulation; viral protein invasion and trafficking; non-coding RNA-mediated modulation; metabolic reprogramming; and host immune evasion. These insights reveal the dynamic interplay between viral replication and host defense mechanisms. Collectively, this synthesis aims to provide a robust theoretical foundation and technical guidance for silkworm genetic improvement, infectious disease management, and the advancement of related biotechnological applications. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

24 pages, 3328 KiB  
Article
Biocontrol of Cheese Spoilage Moulds Using Native Yeasts
by Catalina M. Cabañas, Alejandro Hernández León, Santiago Ruiz-Moyano, Almudena V. Merchán, José Manuel Martínez Torres and Alberto Martín
Foods 2025, 14(14), 2446; https://doi.org/10.3390/foods14142446 - 11 Jul 2025
Viewed by 414
Abstract
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, [...] Read more.
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, Fusarium verticillioides, and Mucor plumbeus/racemosus via confrontation using a milk-based culture medium. Fifteen strains from the species Pichia jadinii, Kluyveromyces lactis, Kluyveromyces marxianus, and Geotrichum candidum exhibited significant antagonistic activity (inhibition zone > 2 mm) against M. plumbeus/racemosus and F. verticillioides. The modelling of the impact of ripening conditions revealed that temperature was the primary factor influencing yeast antagonism. In addition, notable variability at both species and strain levels was found. The antagonist activity was associated with different mechanisms depending on the species and strains. K. lactis stood out for its proteolytic activity and competition for iron and manganese. Additionally, two strains of this species (KL890 and KL904) were found to produce volatile organic compounds with antifungal properties (phenylethyl alcohol and 1-butanol-3-methyl propionate). G. candidum GC663 exhibited strong competition for space, as well as the ability to parasitise hyphae linked to its pectinase and β-glucanase activity. The latter enzymatic activity was detected in all P. jadinii strains, with P. jadinii PJ433 standing out due to its proteolytic activity. In a cheese matrix, the efficacy of eight yeast strains against three target moulds was assessed, highlighting the potential of G. candidum GC663 and P. jadinii PJ433 as biocontrol agents, exhibiting high and moderate efficacy, respectively, in controlling the growth of F. verticillioides and M. plumbeus/racemosus. Nonetheless, further research is necessary to elucidate their full spectrum of antifungal mechanisms and to validate their performance under industrial-scale conditions, including their impact on cheese quality. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 4667 KiB  
Article
Mechanism of Ginsenoside Rg1 in Regulating the Metabolic Function of Intestinal Flora for the Treatment of High-Purine Dietary Hyperuricemia
by Qiang Sun, Zhiman Li, Yang Yu and Yinshi Sun
Nutrients 2025, 17(11), 1844; https://doi.org/10.3390/nu17111844 - 28 May 2025
Viewed by 567
Abstract
Objective: Study the mechanism of ginsenoside Rg1 in ameliorating hyperuricemia (HUA) induced by high-purine diet. Methods: Rats were randomly divided into groups, and the HUA model was established by administering a high-purine diet containing potassium oxonate combined with yeast. After the [...] Read more.
Objective: Study the mechanism of ginsenoside Rg1 in ameliorating hyperuricemia (HUA) induced by high-purine diet. Methods: Rats were randomly divided into groups, and the HUA model was established by administering a high-purine diet containing potassium oxonate combined with yeast. After the experiment, blood was collected via cardiac puncture, and the organ indices of the rats were calculated. Serum biochemical markers including aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), xanthine oxidase (XOD), creatinine (CREA), uric acid (UA), and blood urea nitrogen (BUN) were measured. Histopathological sections of the kidney and intestine were prepared. Western blot was used to assess the expression levels of intestinal occludin and zonula occludens-1 barrier proteins and key proteins in IL-17/NF-κB inflammatory pathways. After the experiment, fecal samples were collected from the rats. The gut microbiota of HUA-induced rats was analyzed via 16S rRNA sequencing, and the levels of short-chain fatty acids in the fecal samples were quantified using gas chromatography–mass spectrometry. Results: Ginsenoside Rg1 significantly increased body weight and organ indexes as well as reduced serum levels of BUN, CREA, ALT, AST, XOD, and UA. Pathologic analysis showed that ginsenoside Rg1 improved renal cell injury, glomerulosclerosis, and renal interstitial fibrosis while restoring intestinal barrier function. Ginsenoside Rg1 down-regulated the expression of inflammatory proteins and up-regulated the levels of intestinal barrier proteins. The results of 16S rRNA sequencing showed that ginsenoside Rg1 significantly increased the diversity index of gut microbiota and enhanced the number of beneficial bacteria in HUA rats. Short-chain fatty acids analysis demonstrated that ginsenoside Rg1 markedly elevated the levels of acetate, propionate, butyrate, and valerate in HUA rats. Conclusions: Ginsenoside Rg1 ameliorates and treats HUA by improving the composition of intestinal flora and inhibiting the IL-17/NF-κB signaling pathway to reduce inflammatory factors in the intestinal tract in HUA rats. Full article
(This article belongs to the Special Issue Dietary Patterns and Gut Microbiota)
Show Figures

Figure 1

18 pages, 8466 KiB  
Article
Unveiling the Anti-Aging Potential of 3HB: Lifespan Extension and Cellular Senescence Delay
by Yongpan An, Qian Wang, Panshuang Qiao, Jihan Liu, Ang Ma, Yutong Chen, Daqian Yang, Yi Ying, Nannan Li, Feng Lu, Hang Zhang, Guoqiang Chen, Yinhua Zhu, Baoxue Yang and Zhengwei Xie
Nutrients 2025, 17(10), 1647; https://doi.org/10.3390/nu17101647 - 12 May 2025
Viewed by 1330
Abstract
Background/Objective: Aging is a significant risk factor for chronic diseases and disability, yet effective anti-aging interventions remain elusive. We explored the potential of 3-hydroxybutyrate (3HB), an endogenous metabolite with established safety, to modulate longevity in mice. Methods: In this study, we employed 2BS [...] Read more.
Background/Objective: Aging is a significant risk factor for chronic diseases and disability, yet effective anti-aging interventions remain elusive. We explored the potential of 3-hydroxybutyrate (3HB), an endogenous metabolite with established safety, to modulate longevity in mice. Methods: In this study, we employed 2BS and WI-38 cell models, a yeast model, and naturally aging mouse models to investigate the effects of 3HB on aging in various systems. Additionally, we utilized RNA sequencing and metabolomics technologies to explore the potential mechanisms underlying the action of 3HB. Results: Our findings demonstrate that 3HB supplementation effectively delays cellular senescence, extending yeast lifespan by 51.3% and the median lifespan of naturally senescent mice by 21.0%. Notably, 3HB prolonged healthy lifespan in mice while mitigating age-related tissue morphology changes and organ senescence. Mechanistically, we identified that 3HB’s anti-aging properties are mediated through its ability to delay cellular senescence and metabolic reprogramming, while promoting the production of beneficial metabolites like trigoneline and isoguvacine. Conclusions: These findings highlight the promising therapeutic potential of 3HB as an anti-aging intervention and provide novel insights into its underlying mechanisms. Full article
(This article belongs to the Special Issue Metabolic Features and Nutritional Interventions in Chronic Diseases)
Show Figures

Figure 1

26 pages, 1958 KiB  
Review
Molecular and Biophysical Perspectives on Dormancy Breaking: Lessons from Yeast Spore
by Keiichiro Sakai, Yohei Kondo, Kazuhiro Aoki and Yuhei Goto
Biomolecules 2025, 15(5), 701; https://doi.org/10.3390/biom15050701 - 11 May 2025
Cited by 1 | Viewed by 1221
Abstract
Dormancy is a physiological state that enables cells to survive under adverse conditions by halting their proliferation while retaining the capacity to resume growth when conditions become favorable. This remarkable transition between dormant and proliferative states occurs across a wide range of species, [...] Read more.
Dormancy is a physiological state that enables cells to survive under adverse conditions by halting their proliferation while retaining the capacity to resume growth when conditions become favorable. This remarkable transition between dormant and proliferative states occurs across a wide range of species, including bacteria, fungi, plants, and tardigrades. Among these organisms, yeast cells have emerged as powerful model systems for elucidating the molecular and biophysical principles governing dormancy and dormancy breaking. In this review, we provide a comprehensive summary of current knowledge on the molecular mechanisms underlying cellular dormancy, with particular focus on the two major model yeasts: Saccharomyces cerevisiae and Schizosaccharomyces pombe. Recent advances in multifaceted approaches—such as single-cell RNA-seq, proteomic analysis, and live-cell imaging—have revealed dynamic changes in gene expression, proteome composition, and viability. Furthermore, insights into the biophysical properties of the cytoplasm have offered new understanding of dormant cell regulation through changes in cytoplasmic fluidity. These properties contribute to both the remarkable stability of dormant cells and their capacity to exit dormancy upon environmental cues, deepening our understanding of fundamental cellular survival strategies across diverse species. Full article
(This article belongs to the Special Issue Cellular Quiescence and Dormancy)
Show Figures

Figure 1

20 pages, 2890 KiB  
Review
Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae
by Óscar Barbero-Úriz, Marta Valenti, María Molina, Teresa Fernández-Acero and Víctor J. Cid
Biomolecules 2025, 15(4), 530; https://doi.org/10.3390/biom15040530 - 4 Apr 2025
Viewed by 951
Abstract
The yeast Saccharomyces cerevisiae is the paradigm of a eukaryotic model organism. In virtue of a substantial degree of functional conservation, it has been extensively exploited to understand multiple aspects of the genetic, molecular, and cellular biology of human disease. Many aspects of [...] Read more.
The yeast Saccharomyces cerevisiae is the paradigm of a eukaryotic model organism. In virtue of a substantial degree of functional conservation, it has been extensively exploited to understand multiple aspects of the genetic, molecular, and cellular biology of human disease. Many aspects of cell signaling in cancer, aging, or metabolic diseases have been tackled in yeast. Here, we review the strategies undertaken throughout the years for the development of humanized yeast models to study regulated cell death (RCD) pathways in general, and specifically, those related to innate immunity and inflammation, with an emphasis on pyroptosis and necroptosis. Such pathways involve the assembly of distinct modular signaling complexes such as the inflammasome and the necrosome. Like other supramolecular organizing centers (SMOCs), such intricate molecular arrangements trigger the activity of enzymes, like caspases or protein kinases, culminating in the activation of lytic pore-forming final effectors, respectively, Gasdermin D (GSDMD) in pyroptosis and MLKL in necroptosis. Even though pathways related to those governing innate immunity and inflammation in mammals are missing in fungi, the heterologous expression of their components in the S. cerevisiae model provides a “cellular test tube” to readily study their properties and interactions, thus constituting a valuable tool for finding novel therapies. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

16 pages, 1370 KiB  
Review
Regulation of Yeast Cytokinesis by Calcium
by Qian Chen
J. Fungi 2025, 11(4), 278; https://doi.org/10.3390/jof11040278 - 2 Apr 2025
Viewed by 807
Abstract
The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of [...] Read more.
The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

24 pages, 7946 KiB  
Article
Heterologous Expression of Either Human or Soya Bean Ferritins in Budding Yeast Reveals Common Functions Protecting Against Oxidative Agents and Counteracting Double-Strand Break Accumulation
by Nuria Pujol Carrión and Maria Ángeles de la Torre-Ruiz
Biomolecules 2025, 15(3), 447; https://doi.org/10.3390/biom15030447 - 20 Mar 2025
Viewed by 483
Abstract
Ferritins are globular proteins that, upon self-assembly in nanocages, are capable of bio-safely storing huge concentrations of bioavailable iron. They are present in most cell types and organisms; one of the exceptions is yeast. Heterologous expression of either human or vegetal ferritins in [...] Read more.
Ferritins are globular proteins that, upon self-assembly in nanocages, are capable of bio-safely storing huge concentrations of bioavailable iron. They are present in most cell types and organisms; one of the exceptions is yeast. Heterologous expression of either human or vegetal ferritins in Saccharomyces cerevisiae revealed new and unknown functions for soya bean ferritins; validated this model by confirming previously characterized functions in human ferritins and also demonstrated that, like human H chain, vegetal H1, and H2 chains also shown a tendency to localize in the nucleus when expressed in an eukaryotic cell model lacking plastids and chloroplasts. Furthermore, when expressed in the system budding yeast, the four ferritins (human H and L and soya bean H1 and H2 chains) present equivalent and relevant functions as protectors against oxidative damage and against the accumulation of double-strand breaks in the DNA. We present evidence demonstrating that these effects are exclusively observed with oxidative agents that operate through the Fenton reaction, such as H2O2. Here, we also discuss the ferritin requirement for N-glycosylation to exert these functions. We believe that our approach might contribute to extending the knowledge around ferritin function and its consequent relevance to human health. Full article
(This article belongs to the Special Issue Recent Insights into Metal Binding Proteins)
Show Figures

Figure 1

18 pages, 1296 KiB  
Review
A Twist in Yeast: New Perspectives for Studying TDP-43 Proteinopathies in S. cerevisiae
by Roberto Stella, Alessandro Bertoli, Raffaele Lopreiato and Caterina Peggion
J. Fungi 2025, 11(3), 188; https://doi.org/10.3390/jof11030188 - 28 Feb 2025
Viewed by 1057
Abstract
TAR DNA-binding protein 43 kDa (TDP-43) proteinopathies are a group of neurodegenerative diseases (NDs) characterized by the abnormal accumulation of the TDP-43 protein in neurons and glial cells. These proteinopathies are associated with several NDs, including amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and [...] Read more.
TAR DNA-binding protein 43 kDa (TDP-43) proteinopathies are a group of neurodegenerative diseases (NDs) characterized by the abnormal accumulation of the TDP-43 protein in neurons and glial cells. These proteinopathies are associated with several NDs, including amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and some forms of Alzheimer’s disease. Yeast models have proven valuable in ND research due to their simplicity, genetic tractability, and the conservation of many cellular processes shared with higher eukaryotes. For several decades, Saccharomyces cerevisiae has been used as a model organism to study the behavior and toxicity of TDP-43, facilitating the identification of genes and pathways that either exacerbate or mitigate its toxic effects. This review will discuss evidence showing that yeast models of TDP-43 exhibit defects in proteostasis, mitochondrial function, autophagy, and RNA metabolism, which are key features of TDP-43-related NDs. Additionally, we will explore how modulating proteins involved in these processes reduce TDP-43 toxicity, aiding in restoring normal TDP-43 function or preventing its pathological aggregation. These findings highlight potential therapeutic targets for the treatment of TDP-43-related diseases. Full article
Show Figures

Figure 1

22 pages, 1534 KiB  
Review
Shape Matters: The Utility and Analysis of Altered Yeast Mitochondrial Morphology in Health, Disease, and Biotechnology
by Therese Kichuk and José L. Avalos
Int. J. Mol. Sci. 2025, 26(5), 2152; https://doi.org/10.3390/ijms26052152 - 27 Feb 2025
Cited by 1 | Viewed by 1497
Abstract
Mitochondria are involved in a wide array of critical cellular processes from energy production to cell death. The morphology (size and shape) of mitochondrial compartments is highly responsive to both intracellular and extracellular conditions, making these organelles highly dynamic. Nutrient levels and stressors [...] Read more.
Mitochondria are involved in a wide array of critical cellular processes from energy production to cell death. The morphology (size and shape) of mitochondrial compartments is highly responsive to both intracellular and extracellular conditions, making these organelles highly dynamic. Nutrient levels and stressors both inside and outside the cell inform the balance of mitochondrial fission and fusion and the recycling of mitochondrial components known as mitophagy. The study of mitochondrial morphology and its implications in human disease and microbial engineering have gained significant attention over the past decade. The yeast Saccharomyces cerevisiae offers a valuable model system for studying mitochondria due to its ability to survive without respiring, its genetic tractability, and the high degree of mitochondrial similarity across eukaryotic species. Here, we review how the interplay between mitochondrial fission, fusion, biogenesis, and mitophagy regulates the dynamic nature of mitochondrial networks in both yeast and mammalian systems with an emphasis on yeast as a model organism. Additionally, we examine the crucial role of inter-organelle interactions, particularly between mitochondria and the endoplasmic reticulum, in regulating mitochondrial dynamics. The dysregulation of any of these processes gives rise to abnormal mitochondrial morphologies, which serve as the distinguishing features of numerous diseases, including Parkinson’s disease, Alzheimer’s disease, and cancer. Notably, yeast models have contributed to revealing the underlying mechanisms driving these human disease states. In addition to furthering our understanding of pathologic processes, aberrant yeast mitochondrial morphologies are of increasing interest to the seemingly distant field of metabolic engineering, following the discovery that compartmentalization of certain biosynthetic pathways within mitochondria can significantly improve chemical production. In this review, we examine the utility of yeast as a model organism to study mitochondrial morphology in both healthy and pathologic states, explore the nascent field of mitochondrial morphology engineering, and discuss the methods available for the quantification and classification of these key mitochondrial morphologies. Full article
(This article belongs to the Special Issue Yeast as a Model System to Study Human Diseases)
Show Figures

Figure 1

24 pages, 1369 KiB  
Review
Synthesis, Bioproduction and Bioactivity of Perillic Acid—A Review
by Thaís de Souza Rolim, André Luiz Franco Sampaio, José Luiz Mazzei, Davyson Lima Moreira and Antonio Carlos Siani
Molecules 2025, 30(3), 528; https://doi.org/10.3390/molecules30030528 - 24 Jan 2025
Cited by 1 | Viewed by 1560
Abstract
Perillic acid (PA) is a limonene derivative in which the exocyclic methyl is oxidized to a carboxyl group. Although endowed with potential anticancer activity, PA has been much less explored regarding its biological properties than analogous compounds such as perillyl alcohol, perillaldehyde, or [...] Read more.
Perillic acid (PA) is a limonene derivative in which the exocyclic methyl is oxidized to a carboxyl group. Although endowed with potential anticancer activity, PA has been much less explored regarding its biological properties than analogous compounds such as perillyl alcohol, perillaldehyde, or limonene itself. PA is usually described in mixture with alcohols and ketones produced in the oxidation of monoterpenes, with relatively few existing reports focusing on the PA molecule. This study provides a comprehensive review of PA, addressing its origin, the processes of obtaining it through organic synthesis and biotransformation, and the pharmacological tests in which it is either the lead compound or reference for in vitro efficacy in experimental models. Although feasible and generally poorly yielded, the synthesis of PA from limonene requires multiple steps and the use of unusual catalysts. The most economical process involves using (−)-β-pinene epoxide as the starting material, ending up with (−)-PA. On the other hand, some bacteria and yeasts are successful in producing, exclusively or at satisfactory purity level, PA from limonene or a few other monoterpenes, through environmentally friendly approaches. The compiled data revealed that, with few exceptions, most reports on PA bioactivity are related to its ability to interfere with the prenylation process of oncogenic proteins, an essential step for the growth and dissemination of cancer cells. The present survey reveals that there is still a vast field to disclose regarding the obtaining and scaling of PA via the fermentative route, as well as extending prospective studies on its properties and possible pharmacological applications, especially in the preclinical oncology field. Full article
Show Figures

Graphical abstract

29 pages, 1904 KiB  
Review
CUL4-Based Ubiquitin Ligases in Chromatin Regulation: An Evolutionary Perspective
by Makiko Nakagawa and Tadashi Nakagawa
Cells 2025, 14(2), 63; https://doi.org/10.3390/cells14020063 - 7 Jan 2025
Cited by 3 | Viewed by 1731
Abstract
Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. [...] Read more.
Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. Although Cullin (CUL) proteins lack intrinsic enzymatic activity, they participate in the formation of active ubiquitin ligase complexes, known as Cullin-Ring ubiquitin Ligases (CRLs), through their association with ROC1 or ROC2, along with substrate adaptor and receptor proteins. Mammalian genomes encode several CUL proteins (CUL1–9), each contributing to distinct CRLs. Among these CUL proteins, CUL1, CUL3, and CUL4 are believed to be the most ancient and evolutionarily conserved from yeast to mammals, with CUL4 uniquely duplicated in vertebrates. Genetic evidence strongly implicates CUL4-based ubiquitin ligases (CRL4s) in chromatin regulation across various species and suggests that, in vertebrates, CRL4s have also acquired a cytosolic role, which is facilitated by a cytosol-localizing paralog of CUL4. Substrates identified through biochemical studies have elucidated the molecular mechanisms by which CRL4s regulate chromatin and cytosolic processes. The substantial body of knowledge on CUL4 biology amassed over the past two decades provides a unique opportunity to explore the functional evolution of CRL4. In this review, we synthesize the available structural, genetic, and biochemical data on CRL4 from various model organisms and discuss the conserved and novel functions of CRL4s. Full article
Show Figures

Figure 1

15 pages, 3931 KiB  
Article
Functional Roles of the Charged Residues of the C- and M-Gates in the Yeast Mitochondrial NAD+ Transporter Ndt1p
by Daniela Valeria Miniero, Ferdinando Palmieri, Virginia Quadrotta, Fabio Polticelli, Luigi Palmieri and Magnus Monné
Int. J. Mol. Sci. 2024, 25(24), 13557; https://doi.org/10.3390/ijms252413557 - 18 Dec 2024
Viewed by 816
Abstract
Mitochondrial carriers transport organic acids, amino acids, nucleotides and cofactors across the mitochondrial inner membrane. These transporters consist of a three-fold symmetric bundle of six transmembrane α-helices that encircle a pore with a central substrate binding site, whose alternating access is controlled by [...] Read more.
Mitochondrial carriers transport organic acids, amino acids, nucleotides and cofactors across the mitochondrial inner membrane. These transporters consist of a three-fold symmetric bundle of six transmembrane α-helices that encircle a pore with a central substrate binding site, whose alternating access is controlled by a cytoplasmic and a matrix gate (C- and M-gates). The C- and M-gates close by forming two different salt-bridge networks involving the conserved motifs [YF][DE]XX[KR] on the even-numbered and PX[DE]XX[KR] on the odd-numbered transmembrane α-helices, respectively. We have investigated the effects on transport of mutating the C-gate charged residues of the yeast NAD+ transporter Ndt1p and performed molecular docking with NAD+ and other substrates into structural models of Ndt1p. Double-cysteine substitutions and swapping the positions of the C-gate charged-pair residues showed that all of them contribute to the high transport rate of wild-type Ndt1p, although no single salt bridge is essential for activity. The in silico docking results strongly suggest that both the C-gate motif mutations and our previously reported M-gate mutations affect gate closing, whereas those of the M-gate also affect substrate binding, which is further supported by molecular dynamics. In particular, NAD+ most likely interferes with the cation-π interaction between R303-W198, which has been proposed to exist in the Ndt1p M-gate in the place of one of the salt bridges. These findings contribute to understanding the roles of the charged C- and M-gate residues in the transport mechanism of Ndt1p. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 2358 KiB  
Article
Extracellular Lipases of Yarrowia lipolytica Yeast in Media Containing Plant Oils—Studies Supported by the Design of Experiment Methodology
by Agata Fabiszewska, Bartłomiej Zieniuk, Karina Jasińska, Dorota Nowak, Katarzyna Sasal, Joanna Kobus and Urszula Jankiewicz
Appl. Sci. 2024, 14(23), 11449; https://doi.org/10.3390/app142311449 - 9 Dec 2024
Cited by 1 | Viewed by 1111
Abstract
Lipases are enzymes of great application importance in the food industry, in the cosmetic and detergent industries, in pharmacy and medicine, and in organic chemistry. Among lipases of various origins, those from microorganisms are currently the most commonly used. An excellent producer of [...] Read more.
Lipases are enzymes of great application importance in the food industry, in the cosmetic and detergent industries, in pharmacy and medicine, and in organic chemistry. Among lipases of various origins, those from microorganisms are currently the most commonly used. An excellent producer of lipases seems to be the nonconventional Yarrowia lipolytica yeast, but the biosynthesis of valuable metabolites depends on many factors. This study aimed to investigate the biodiversity of extracellular enzymes produced by four strains of Y. lipolytica, and to determine the optimal conditions of catalysis for the enzymes, according to temperature and pH, in a model hydrolysis reaction. Based on the obtained results, the biodiversity and strain dependence in lipase biosynthesis were observed. Using a Central Composite Design, it was found that temperature is the main factor in determining lipase activity. The enzymes produced by four different strains exhibited other substrate specificity, which was investigated using Latin square design methodology. Only two examined yeast strains, KKP 379 and W29, produced extracellular lipases at a high activity level towards medium- and long-chain fatty acid esters. Moreover, extracellular lipase from wild-type strain KKP 379 was further characterized, followed by exploring the activity of whole-cell biocatalyst and lyophilized enzyme solutions, and it was acknowledged that it was a “true” lipase with the highest affinity to p-nitrophenyl oleate. Full article
(This article belongs to the Special Issue Recent Advances in the Improvement of Food Quality and Safety)
Show Figures

Figure 1

21 pages, 6998 KiB  
Article
Effect of Dihydroquercetin During Long-Last Growth of Yarrowia lipolytica Yeast: Anti-Aging Potential and Hormetic Properties
by Maxim S. Pusev, Olga I. Klein, Natalya N. Gessler, Galina P. Bachurina, Svetlana Yu. Filippovich, Elena P. Isakova and Yulia I. Deryabina
Int. J. Mol. Sci. 2024, 25(23), 12574; https://doi.org/10.3390/ijms252312574 - 22 Nov 2024
Viewed by 1475
Abstract
Polyphenols are powerful natural antioxidants with numerous biological activities. They change cell membrane permeability, interact with receptors, intracellular enzymes, and cell membrane transporters, and quench reactive oxygen species (ROS). Yarrowia lipolytica yeast, being similar to mammalian cells, can be used as a model [...] Read more.
Polyphenols are powerful natural antioxidants with numerous biological activities. They change cell membrane permeability, interact with receptors, intracellular enzymes, and cell membrane transporters, and quench reactive oxygen species (ROS). Yarrowia lipolytica yeast, being similar to mammalian cells, can be used as a model to study their survival ability upon long-lasting cultivation, assaying the effect of dihydroquercetin polyphenol (DHQ). The complex assessment of the physiological features of the population assaying cell respiration, survival, ROS detection, and flow cytometry was used. Y. lipolytica showed signs of chronological aging by eight weeks of growth, namely a decrease in the cell number, and size, increased ROS generation, a decrease in colony-forming unit (CFU) and metabolic activity, and decreased respiratory rate and membrane potential. An amount of 150 µM DHQ decreased ROS generation at the 6-week growth stage upon adding an oxidant of 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). Moreover, it decreased CFU at 1–4 weeks of cultivation, inhibited cell metabolic activity of the 24-h-old culture and stimulated that on 14–56 days of growth, induced the cell respiration rate in the 24-h-old culture, and blocked alternative mitochondrial oxidase at growth late stages. DHQ serves as a mild pro-oxidant on the first day of age-stimulating anti-stress protection. In the deep stationary stage, it can act as a powerful antioxidant, stabilizing cell redox status and reducing free radical oxidation in mitochondria. It provides a stable state of population. The hormetic effects of DHQ using lower eukaryotes of Y. lipolytica have been previously discussed, which can be used as a model organism for screening geroprotective compounds of natural origin. Full article
(This article belongs to the Special Issue Stress Response Research: Yeast as Models: 2nd Edition)
Show Figures

Figure 1

Back to TopTop