Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,589)

Search Parameters:
Keywords = work characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2116 KiB  
Article
The First Step of AI in LEO SOPs: DRL-Driven Epoch Credibility Evaluation to Enhance Opportunistic Positioning Accuracy
by Jiaqi Yin, Feilong Li, Ruidan Luo, Xiao Chen, Linhui Zhao, Hong Yuan and Guang Yang
Remote Sens. 2025, 17(15), 2692; https://doi.org/10.3390/rs17152692 (registering DOI) - 3 Aug 2025
Abstract
Low Earth orbit (LEO) signal of opportunity (SOP) positioning relies on the accumulation of epochs obtained through prolonged observation periods. The contribution of an LEO satellite single epoch to positioning accuracy is influenced by multi-level characteristics that are challenging for traditional models. To [...] Read more.
Low Earth orbit (LEO) signal of opportunity (SOP) positioning relies on the accumulation of epochs obtained through prolonged observation periods. The contribution of an LEO satellite single epoch to positioning accuracy is influenced by multi-level characteristics that are challenging for traditional models. To address this limitation, we propose an Agent-Weighted Recursive Least Squares (RLS) Positioning Framework (AWR-PF). This framework employs an agent to comprehensively analyze individual epoch characteristics, assess their credibility, and convert them into adaptive weights for RLS iterations. We developed a novel Markov Decision Process (MDP) model to assist the agent in addressing the epoch weighting problem and trained the agent utilizing the Double Deep Q-Network (DDQN) algorithm on 107 h of Iridium signal data. Experimental validation on a separate 28 h Iridium signal test set through 97 positioning trials demonstrated that AWR-PF achieves superior average positioning accuracy compared to both standard RLS and randomly weighted RLS throughout nearly the entire iterative process. In a single positioning trial, AWR-PF improves positioning accuracy by up to 45.15% over standard RLS. To the best of our knowledge, this work represents the first instance where an AI algorithm is used as the core decision-maker in LEO SOP positioning, establishing a groundbreaking paradigm for future research. Full article
(This article belongs to the Special Issue LEO-Augmented PNT Service)
15 pages, 412 KiB  
Article
Analysis of Risk Factors in the Renovation of Old Underground Commercial Spaces in Resource-Exhausted Cities: A Case Study of Fushun City
by Kang Wang, Meixuan Li and Sihui Dong
Sustainability 2025, 17(15), 7041; https://doi.org/10.3390/su17157041 (registering DOI) - 3 Aug 2025
Abstract
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such [...] Read more.
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such as modern commerce develop slowly. This results in low economic dynamism and weak motivation for urban development. To address this issue, we propose a systematic method for analyzing construction risks during the decision-making stage of renovation projects. The method includes three steps: risk value assessment, risk factor identification, and risk weight calculation. First, unlike previous studies that only used SWOT for risk factor analysis, we also applied it for project value assessment. Then, using the Work Breakdown Structure–Risk Breakdown Structure framework method (WBS-RBS), we identified specific risk sources by analyzing key construction technologies throughout the entire lifecycle of the renovation project. Finally, to enhance expert consensus, we proposed an improved Delphi–Analytic Hierarchy Process method (Delphi–AHP) to calculate risk indicator weights for different construction phases. The risk analysis covered all lifecycle stages of the renovation and upgrading project. The results show that in the Fushun city renovation case study, the established framework—consisting of five first-level indicators and twenty s-level indicators—enables analysis of renovation projects. Among these, management factors and human factors were identified as the most critical, with weights of 0.3608 and 0.2017, respectively. The proposed method provides a structured approach to evaluating renovation risks, taking into account the specific characteristics of construction work. This can serve as a useful reference for ensuring safe and efficient implementation of underground commercial space renovation projects in resource-exhausted cities. Full article
Show Figures

Figure 1

26 pages, 3326 KiB  
Article
Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress
by Eleonora Cataldo, Sergio Puccioni, Aleš Eichmeier and Giovan Battista Mattii
Horticulturae 2025, 11(8), 897; https://doi.org/10.3390/horticulturae11080897 (registering DOI) - 3 Aug 2025
Abstract
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with [...] Read more.
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with solutions inclined to respect the ecosystem. In this academic work, we focused on describing the drought stress consequences on several parameters of secondary metabolites on Vitis vinifera leaves (quercetins, kaempferol, resveratrol, proline, and xanthophylls) and on some ecophysiological characteristics (e.g., water potential, stomatal conductance, and leaf temperature) to compare the answers that diverse agronomic management techniques (i.e., irrigation with and without zeolite, pure zeolite and no application) could instaurate in the metabolic pathway of this important crop with the aim to find convincing and thought-provoking responses to use this captivating and versatile mineral, the zeolite known as the “magic rock”. Stressed grapevines reached 56.80 mmol/m2s gs at veraison and a more negative stem Ψ (+10.63%) compared to plants with zeolite. Resveratrol, in the hottest season, fluctuated from 0.18–0.19 mg/g in zeolite treatments to 0.37 mg/g in stressed vines. Quercetins were inclined to accumulate in response to drought stress too. In fact, we recorded a peak of quercetin (3-O-glucoside + 3-O-glucuronide) of 11.20 mg/g at veraison in stressed plants. It is interesting to note how the pool of metabolites was often unchanged for plants treated with zeolite and for plants treated with water only, thus elevating this mineral to a “stress reliever”. Full article
Show Figures

Figure 1

18 pages, 5815 KiB  
Article
Novel Lipid Biomarkers of Chronic Kidney Disease of Unknown Etiology Based on Urinary Small Extracellular Vesicles: A Pilot Study of Sugar Cane Workers
by Jie Zhou, Kevin J. Kroll, Jaime Butler-Dawson, Lyndsay Krisher, Abdel A. Alli, Chris Vulpe and Nancy D. Denslow
Metabolites 2025, 15(8), 523; https://doi.org/10.3390/metabo15080523 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine [...] Read more.
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine may provide novel biomarkers. Methods: We obtained two urine samples at the start and the end of a workday in the fields from a limited set of workers with and without kidney impairment. Isolated sEVs were characterized for size, surface marker expression, and purity and, subsequently, their lipid composition was determined by mass spectrometry. Results: The number of particles per ml of urine normalized to osmolality and the size variance were larger in workers with possible CKDu than in control workers. Surface markers CD9, CD63, and CD81 are characteristic of sEVs and a second set of surface markers suggested the kidney as the origin. Differential expression of CD25 and CD45 suggested early inflammation in CKDu workers. Of the twenty-one lipids differentially expressed, several were bioactive, suggesting that they may have essential functions. Remarkably, fourteen of the lipids showed intermediate expression values in sEVs from healthy individuals with acute creatinine increases after a day of work. Conclusions: We identified twenty-one possible lipid biomarkers in sEVs isolated from urine that may be able to distinguish agricultural workers with early onset of CKDu. Differentially expressed surface proteins in these sEVs suggested early-stage inflammation. This pilot study was limited in the number of workers evaluated, but the approach should be further evaluated in a larger population. Full article
Show Figures

Graphical abstract

19 pages, 1797 KiB  
Article
Predicting Adsorption Performance Based on the Properties of Activated Carbon: A Case Study of Shenqi Fuzheng System
by Zhilong Tang, Bo Chen, Wenhua Huang, Xuehua Liu, Xinyu Wang and Xingchu Gong
Chemosensors 2025, 13(8), 279; https://doi.org/10.3390/chemosensors13080279 (registering DOI) - 1 Aug 2025
Abstract
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted [...] Read more.
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted Shenqi Extract (DSE), an intermediate in the production process of Shenqi Fuzheng injection, was adsorbed with different batches of activated carbon. The adsorption capacities of adenine, adenosine, calycosin-7-glucoside, and astragaloside IV in DSE were selected as evaluation indices for activated carbon absorption. Characterization methods such as nitrogen adsorption, X-ray photoelectron spectrum (XPS), and Fourier transform infrared (FTIR) were chosen to explore the quantitative relationships between the properties of activated carbon (i.e., specific surface area, pore volume, surface elements, and spectrum) and the adsorption capacities of these four components. It was found that the characteristic wavelengths from FTIR characterization, i.e., 1560 cm−1, 2325 cm−1, 3050 cm−1, and 3442 cm−1, etc., showed the strongest correlation with the adsorption capacities of these four components. Prediction models based on the transmittance at characteristic wavelengths were successfully established via multiple linear regression. In validation experiments of models, the relative errors of predicted adsorption capacities of activated carbon were mostly within 5%, indicating good predictive ability of the models. The results of this work suggest that the prediction method of adsorption capacity based on the mid-infrared spectrum can provide a new way for the quality control of activated carbon. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
13 pages, 680 KiB  
Article
Anthropometric Characteristics and Somatotype of Young Slovenian Tennis Players
by Ales Germic, Tjasa Filipcic and Ales Filipcic
Appl. Sci. 2025, 15(15), 8584; https://doi.org/10.3390/app15158584 (registering DOI) - 1 Aug 2025
Abstract
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 [...] Read more.
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 years) over the last two decades. Using standardised anthropometric measurements and the Heath-Carter method, somatotypes were calculated and analysed by age and gender. The results showed clear age- and gender-specific trends and differences in both somatotype profiles and detailed anthropometric characteristics. Significant differences were found in height, body mass, BMI, skinfolds, girths, and limb lengths, with gender differences becoming more pronounced in the older age groups. In boys, mesomorphy increased with age, reflecting an increase in musculature, while in girls, a shift from ectomorphic to endomorphic profiles was observed during adolescence, probably influenced by pubertal and hormonal changes. Significant sex-specific differences were observed in all three somatotype components in most age groups, especially in fat mass and muscle. The longitudinal design provides valuable data and insights into the evolving physical profiles of adolescent tennis players that support more effective talent identification and training. Despite the changes that have taken place in tennis over time, standardised measurement protocols ensured comparability, making the results relevant for practitioners working with adolescents in tennis development. Full article
(This article belongs to the Special Issue Human Performance and Health in Sport and Exercise—2nd Edition)
Show Figures

Figure 1

10 pages, 1883 KiB  
Article
In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
by Susana Carbajal-Ocaña, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García and Jorge Membrillo-Hernández
Hygiene 2025, 5(3), 32; https://doi.org/10.3390/hygiene5030032 (registering DOI) - 1 Aug 2025
Abstract
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on [...] Read more.
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on two medical-grade polymers: polyether ether ketone (PEEK) and polyamide 12 (PA12). Using a modified crystal violet staining method and spectrophotometric quantification, we evaluated biofilm development over time on polymer granules and catheter segments composed of these materials. Results revealed that PEEK surfaces supported significantly more biofilm formation than PA12, with peak accumulation observed at 24 h for both pathogens. Conversely, PA12 demonstrated reduced bacterial adhesion and lower biofilm biomass, suggesting surface characteristics less conducive to microbial colonization. Additionally, the study validated a reproducible protocol for assessing biofilm formation, providing a foundation for evaluating anti-biofilm strategies. While the assays were performed under static in vitro conditions, the findings highlight the importance of material selection and early prevention strategies in the design of infection-resistant medical devices. This work contributes to the understanding of how surface properties affect microbial adhesion and underscores the critical need for innovative surface modifications or coatings to mitigate biofilm-related healthcare risks. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

18 pages, 1025 KiB  
Article
The Analysis of Three-Dimensional Time-Fractional Helmholtz Model Using a New İterative Method
by Yasin Şahin, Mehmet Merdan and Pınar Açıkgöz
Symmetry 2025, 17(8), 1219; https://doi.org/10.3390/sym17081219 (registering DOI) - 1 Aug 2025
Abstract
This paper proposes a novel analytical method to address the Helmholtz fractional differential equation by combining the Aboodh transform with the Adomian Decomposition Method, resulting in the Aboodh–Adomian Decomposition Method (A-ADM). Fractional differential equations offer a comprehensive framework for describing intricate physical processes, [...] Read more.
This paper proposes a novel analytical method to address the Helmholtz fractional differential equation by combining the Aboodh transform with the Adomian Decomposition Method, resulting in the Aboodh–Adomian Decomposition Method (A-ADM). Fractional differential equations offer a comprehensive framework for describing intricate physical processes, including memory effects and anomalous diffusion. This work employs the Caputo–Fabrizio fractional derivative, defined by a non-singular exponential kernel, to more precisely capture these non-local effects. The classical Helmholtz equation, pivotal in acoustics, electromagnetics, and quantum physics, is extended to the fractional domain. Following the exposition of fundamental concepts and characteristics of fractional calculus and the Aboodh transform, the suggested A-ADM is employed to derive the analytical solution of the fractional Helmholtz equation. The method’s validity and efficiency are evidenced by comparisons of analytical and approximation solutions. The findings validate that A-ADM is a proficient and methodical approach for addressing fractional differential equations that incorporate Caputo–Fabrizio derivatives. Full article
11 pages, 1758 KiB  
Article
Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes
by Fan Zhang, Wuyang Shi, Xixiao Li, Yigang Wang, Leilei Si, Wentao Gao, Meng Qi, Minjie Zhou, Jiajun Ma, Ao Li, Zhiqiang Li, Hongming Wang and Bing Jin
Photonics 2025, 12(8), 779; https://doi.org/10.3390/photonics12080779 (registering DOI) - 1 Aug 2025
Abstract
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan [...] Read more.
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan and I-scan techniques at both 800 nm and 900 nm. Both dyes exhibited strong saturable absorption (SA), confirming their potential as saturable absorbers. Critically, the comparative analysis revealed that SNF exhibits a significantly greater nonlinear absorption coefficient (β) compared to LNF under identical conditions. For instance, at 800 nm, the β of SNF was approximately 3–5 times larger than that of LNF. This result conclusively demonstrates that the introduction of long hydrophobic alkyl chains attenuates the NLO response. Furthermore, I-scan measurements revealed excellent SA performance, with high modulation depths (e.g., LNF: 43.0% at 900 nm) and low saturation intensities. This work not only clarifies the structure–property relationship in these D-A-D dyes but also presents a clear strategy for modulating the NLO properties of organic chromophores for applications in near-infrared pulsed lasers. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

11 pages, 5112 KiB  
Article
Fabrication of a Porous TiNi3 Intermetallic Compound to Enhance Anti-Corrosion Performance in 1 M KOH
by Zhenli He, Yue Qiu, Yuehui He, Qian Zhao, Zhonghe Wang and Yao Jiang
Metals 2025, 15(8), 865; https://doi.org/10.3390/met15080865 (registering DOI) - 1 Aug 2025
Abstract
Porous intermetallic compounds have the properties of porous materials as well as a combination of covalent and metallic bonds, and they exhibit high porosity, structural stability, and corrosion resistance. In this work, a porous TiNi3 intermetallic compound was fabricated through reactive synthesis [...] Read more.
Porous intermetallic compounds have the properties of porous materials as well as a combination of covalent and metallic bonds, and they exhibit high porosity, structural stability, and corrosion resistance. In this work, a porous TiNi3 intermetallic compound was fabricated through reactive synthesis of elemental powders. Next, detailed studies of its phase composition and pore structure characteristics at different sintering temperatures, as well as its corrosion behavior against an alkaline environment, were carried out. The results show that the as-prepared porous TiNi3 intermetallic compound has abundant pore structures, with an open porosity of 56.5%, which can be attributed to a combination of the bridging effects of initial powder particles and the Kirkendall effect occurring during the sintering process. In 1 M KOH solution, a higher positive corrosion potential (−0.979 VSCE) and a lower corrosion current density (1.18 × 10−4 A∙cm−2) were exhibited by the porous TiNi3 intermetallic compound, compared to the porous Ni, reducing the thermodynamic corrosion tendency and the corrosion rate. The corresponding corrosion process is controlled by the charge transfer process, and the increased charge transfer resistance value (713.9 Ω⋅cm2) of TiNi3 makes it more difficult to charge-transfer than porous Ni (204.5 Ω⋅cm2), thus decreasing the rate of electrode reaction. The formation of a more stable passive film with the incorporation of Ti contributes to this improved corrosion resistance performance. Full article
(This article belongs to the Special Issue Advanced Ti-Based Alloys and Ti-Based Materials)
Show Figures

Figure 1

20 pages, 2223 KiB  
Article
Category Attribute-Oriented Heterogeneous Resource Allocation and Task Offloading for SAGIN Edge Computing
by Yuan Qiu, Xiang Luo, Jianwei Niu, Xinzhong Zhu and Yiming Yao
J. Sens. Actuator Netw. 2025, 14(4), 81; https://doi.org/10.3390/jsan14040081 (registering DOI) - 1 Aug 2025
Viewed by 21
Abstract
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task [...] Read more.
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task execution and undesirable network performance. As a consequence, we formulate a category attribute-oriented resource allocation and task offloading optimization problem with the aim of minimizing the overall scheduling cost. We first introduce a task–resource matching matrix to facilitate optimal task offloading policies with computation resources. In addition, virtual queues are constructed to take the impacts of randomized task arrival into account. To solve the optimization objective which jointly considers bandwidth allocation, transmission power control and task offloading decision effectively, we proposed a deep reinforcement learning (DRL) algorithm framework considering type matching. Simulation experiments demonstrate the effectiveness of our proposed algorithm as well as superior performance compared to others. Full article
(This article belongs to the Section Communications and Networking)
Show Figures

Figure 1

19 pages, 5340 KiB  
Article
Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring
by Xiaokai Chen, Yuxin Miao, Krzysztof Kusnierek, Fenling Li, Chao Wang, Botai Shi, Fei Wu, Qingrui Chang and Kang Yu
Remote Sens. 2025, 17(15), 2666; https://doi.org/10.3390/rs17152666 (registering DOI) - 1 Aug 2025
Viewed by 37
Abstract
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral [...] Read more.
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. Full article
(This article belongs to the Special Issue Perspectives of Remote Sensing for Precision Agriculture)
12 pages, 306 KiB  
Article
Health Problems, Unhealthy Behaviors and Occupational Carcinogens Exposures Among Night Shift Brazilian Workers: Results from National Health Survey, 2019
by Fernanda de Albuquerque Melo Nogueira, Giseli Nogueira Damacena, Ubirani Barros Otero, Débora Cristina de Almeida Mariano Bernardino, Christiane Soares Pereira Madeira, Marcia Sarpa and Celia Landmann Szwarcwald
Int. J. Environ. Res. Public Health 2025, 22(8), 1215; https://doi.org/10.3390/ijerph22081215 (registering DOI) - 1 Aug 2025
Viewed by 48
Abstract
Introduction: Night shift work (NSW) has been increasingly addressed in the scientific literature, as it is considered a probable carcinogen. In this study, we investigated the association of NSW with health problems, unhealthy behaviors, and occupational carcinogens. Methods: Cross-sectional study with a sample [...] Read more.
Introduction: Night shift work (NSW) has been increasingly addressed in the scientific literature, as it is considered a probable carcinogen. In this study, we investigated the association of NSW with health problems, unhealthy behaviors, and occupational carcinogens. Methods: Cross-sectional study with a sample of 47,953 workers from the 2019 National Health Survey. NSW prevalence was estimated according to sociodemographic characteristics. To investigate the associations of NSW with all study variables, gender stratified logistic regression models were used. The odds-ratio and 95% confidence intervals were estimated. Results: Among men, there was a significant association of NSW with sleep disorders (OR = 1.39; 95% CI: 1.17–1.65), tiredness (OR = 1.68; 95% CI: 1.41–2.00), obesity (OR = 1.41; 95% CI: 1.20–1.66), unhealthy food consumption (OR = 1.28; 95% CI: 1.12–1.46), handling of radioactive material (OR = 2.45; 95% CI: 1.61–3.72), and biological material (OR = 3.18; 95% CI: 3.15–4.80). Among females, NSW was associated with the same variables except obesity, but depressive feelings (OR = 1.35 95% CI: 1.09–1.67), frequent alcohol intake (OR = 1.48; 95% CI: 1.23–1.78), handling of chemical substances (OR = 1.54; OR = 1.54; 95% CI: 1.20–1.97), and passive smoking at work (OR = 1.45; 95% CI: 1.12–1.86) were highly significant. Conclusion: Night shift workers are more vulnerable to occupational carcinogen exposure, experience greater impacts on their well-being, and are more likely to engage in unhealthy behaviors. These findings should be considered in managing and organizing night work in the workplace. Actions to promote healthy work environments should be encouraged to protect workers’ health. Full article
19 pages, 3458 KiB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 (registering DOI) - 1 Aug 2025
Viewed by 37
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
27 pages, 4070 KiB  
Article
Quantum Transport in GFETs Combining Landauer–Büttiker Formalism with Self-Consistent Schrödinger–Poisson Solutions
by Modesto Herrera-González, Jaime Martínez-Castillo, Pedro J. García-Ramírez, Enrique Delgado-Alvarado, Pedro Mabil-Espinosa, Jairo C. Nolasco-Montaño and Agustín L. Herrera-May
Technologies 2025, 13(8), 333; https://doi.org/10.3390/technologies13080333 (registering DOI) - 1 Aug 2025
Viewed by 46
Abstract
The unique properties of graphene have allowed for the development of graphene-based field-effect transistors (GFETs) for applications in biosensors and chemical devices. However, the modeling and optimization of GFET performance exhibit great challenges. Herein, we propose a quantum transport simulation model for graphene-based [...] Read more.
The unique properties of graphene have allowed for the development of graphene-based field-effect transistors (GFETs) for applications in biosensors and chemical devices. However, the modeling and optimization of GFET performance exhibit great challenges. Herein, we propose a quantum transport simulation model for graphene-based field-effect transistors (GFETs) implemented in the open-source Octave programming language. The proposed simulation model (named SimQ) combines the Landauer–Büttiker formalism with self-consistent Schrödinger–Poisson solutions, enabling reliable simulations of transport phenomena. Our approach agrees well with established models, achieving Landauer–Büttiker transmission and tunneling transmission of 0.28 and 0.92, respectively, which are validated against experimental data. The model can predict key GFET characteristics, including carrier mobilities (500–4000 cm2/V·s), quantum capacitance effects, and high-frequency operation (80–100 GHz). SimQ offers detailed insights into charge distribution and wave function evolution, achieving an enhanced computational efficiency through optimized algorithms. Our work contributes to the modeling of graphene-based field-effect transistors, providing a flexible and accessible simulation platform for designing and optimizing GFETs with potential applications in the next generation of electronic devices. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

Back to TopTop