Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = wooden wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5847 KiB  
Article
Parametric Analysis of Rammed Earth Walls in the Context of the Thermal Protection of Environmentally Friendly Buildings
by Piotr Kosiński, Wojciech Jabłoński and Krystian Patyna
Sustainability 2025, 17(15), 6886; https://doi.org/10.3390/su17156886 - 29 Jul 2025
Viewed by 285
Abstract
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response [...] Read more.
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response to the increasingly strict European Union (EU) regulations on carbon footprint, life cycle performance, and thermal efficiency. RE walls offer multiple benefits, including humidity regulation, thermal mass, plasticity, and structural strength. This study also draws attention to their often-overlooked ability to mitigate indoor overheating. To preserve these advantages while enhancing thermal performance, this study explores insulation strategies that maintain the vapor-permeable nature of RE walls. A parametric analysis using Delphin 6.1 software was conducted to simulate heat and moisture transfer in two main configurations: (a) a ventilated system insulated with mineral wool (MW), wood wool (WW), hemp shives (HS), and cellulose fiber (CF), protected by a jute mat wind barrier and finished with wooden cladding; (b) a closed system using MW and WW panels finished with lime plaster. In both cases, clay plaster was applied on the interior side. The results reveal distinct hygrothermal behavior among the insulation types and confirm the potential of natural, low-processed materials to support thermal comfort, moisture buffering, and the alignment with CE objectives in energy-efficient construction. Full article
Show Figures

Figure 1

9 pages, 2671 KiB  
Article
Wood Species Identification and Property Evaluation of Archaeological Wood Excavated from J1 at Shenduntou Site, Fanchang, Anhui, China
by Liang Xu, Weiwei Yang, Mihaela Liu, Zhigao Wang and Xinyou Liu
Forests 2025, 16(7), 1173; https://doi.org/10.3390/f16071173 - 16 Jul 2025
Viewed by 337
Abstract
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as [...] Read more.
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as Firmiana simplex (L.), indicating ancient selection of this locally available species for its water resistance and mechanical suitability in well construction. Comprehensive degradation assessment revealed severe structural deterioration: maximum water content (1100% ± 85% vs. modern 120% ± 8%) demonstrated extreme porosity from hydrolysis; X-ray diffraction (XRD) showed a 69.5% reduction in cellulose crystallinity (16.1% vs. modern 52.8%); Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy confirmed near-total hemicellulose degradation, partial cellulose loss, and lignin enrichment due to chemical recalcitrance; Scanning Electron Microscopy (SEM) imaging documented multiscale damage including vessel thinning, pit membrane loss, and cell wall delamination from hydrolytic, microbial, and mineral degradation. These findings reflect Western Zhou inhabitants’ pragmatic resource utilisation while highlighting advanced material deterioration that poses significant conservation challenges, providing critical insights into Zhou-era woodcraft and human–environment interactions in the lower Yangtze region. Full article
(This article belongs to the Special Issue Wood Processing, Modification and Performance)
Show Figures

Figure 1

16 pages, 4224 KiB  
Article
Optimizing Museum Acoustics: How Absorption Magnitude and Surface Location of Finishing Materials Influence Acoustic Performance
by Milena Jonas Bem and Jonas Braasch
Acoustics 2025, 7(3), 43; https://doi.org/10.3390/acoustics7030043 - 11 Jul 2025
Viewed by 348
Abstract
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific [...] Read more.
The architecture of contemporary museums often emphasizes visual aesthetics, such as large volumes, open-plan layouts, and highly reflective finishes, resulting in acoustic challenges, such as excessive reverberation, poor speech intelligibility, elevated background noise, and reduced privacy. This study quantified the impact of surface—specific absorption treatments on acoustic metrics across eight gallery spaces. Room impulse responses calibrated virtual models, which simulated nine absorption scenarios (low, medium, and high on ceilings, floors, and walls) and evaluated reverberation time (T20), speech transmission index (STI), clarity (C50), distraction distance (rD), Spatial Decay Rate of Speech (D2,S), and Speech Level at 4 m (Lp,A,S,4m). The results indicate that going from concrete to a wooden floor yields the most rapid T20 reductions (up to −1.75 s), ceiling treatments deliver the greatest STI and C50 gains (e.g., STI increases of +0.16), and high-absorption walls maximize privacy metrics (D2,S and Lp,A,S,4m). A linear regression model further predicted the STI from T20, total absorption (Sabins), and room volume, with an 84.9% conditional R2, enabling ±0.03 accuracy without specialized testing. These findings provide empirically derived, surface-specific “first-move” guidelines for architects and acousticians, underscoring the necessity of integrating acoustics early in museum design to balance auditory and visual objectives and enhance the visitor experience. Full article
Show Figures

Figure 1

17 pages, 2881 KiB  
Article
Seismic Vulnerability Assessment and Sustainable Retrofit of Masonry Factories: A Case Study of Industrial Archeology in Naples
by Giovanna Longobardi and Antonio Formisano
Sustainability 2025, 17(13), 6227; https://doi.org/10.3390/su17136227 - 7 Jul 2025
Viewed by 280
Abstract
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential [...] Read more.
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential for adaptive reuse, transforming into vibrant cultural, commercial, or residential spaces through well-planned restoration and consolidation efforts. This paper explores a case study of such industrial architecture: a decommissioned factory near Naples. The complex consists of multiple structures with vertical supports made of yellow tuff stone and roofs framed by wooden trusses. To improve the building’s seismic resilience, a comprehensive analysis was conducted, encompassing its historical, geometric, and structural characteristics. Using advanced computer software, the factory was modelled with a macro-element approach, allowing for a detailed assessment of its seismic vulnerability. This approach facilitated both a global analysis of the building’s overall behaviour and the identification of potential local collapse mechanisms. Non-linear analyses revealed a critical lack of seismic safety, particularly in the Y direction, with significant out-of-plane collapse risk due to weak connections among walls. Based on these findings, a restoration and consolidation plan was developed to enhance the structural integrity of the building and to ensure its long-term safety and functionality. This plan incorporated metal tie rods, masonry strengthening through injections, and roof reconstruction. The proposed interventions not only address immediate seismic risks but also contribute to the broader goal of preserving this industrial architectural heritage. This study introduces a novel multidisciplinary methodology—integrating seismic analysis, traditional retrofit techniques, and sustainable reuse—specifically tailored to the rarely addressed typology of masonry industrial structures. By transforming the factory into a functional urban space, the project presents a replicable model for preserving industrial heritage within contemporary cityscapes. Full article
Show Figures

Figure 1

26 pages, 9909 KiB  
Article
Three-Tiered Defensive System and Ethnic Fusion: A Study of Architectural Art in Guomari Fortress, Eastern Qinghai
by Liyue Wu, Qinchuan Zhan and Yanjun Li
Buildings 2025, 15(13), 2218; https://doi.org/10.3390/buildings15132218 - 24 Jun 2025
Cited by 1 | Viewed by 471
Abstract
Guomari fortress in eastern Qinghai Province exemplifies vernacular architecture shaped by multiethnic interaction, environmental adaptation, and localized defense strategies. Originally a Ming Dynasty military-agricultural outpost, it evolved into a Tu ethnic settlement. Fieldwork, including architectural surveys and spatial analysis, identified a three-tiered defensive [...] Read more.
Guomari fortress in eastern Qinghai Province exemplifies vernacular architecture shaped by multiethnic interaction, environmental adaptation, and localized defense strategies. Originally a Ming Dynasty military-agricultural outpost, it evolved into a Tu ethnic settlement. Fieldwork, including architectural surveys and spatial analysis, identified a three-tiered defensive system: (1) strategic use of terrain and rammed-earth walls; (2) labyrinthine alleys with L-, T-, and cross-shaped intersections; and (3) interconnected rooftops forming elevated circulation routes. Courtyards are categorized into single-line, L-shaped, U-shaped, and fully enclosed layouts, reflecting adaptations to terrain, ritual functions, and thermal needs. Architectural features such as thick loam-coated walls and flat roofs demonstrate climatic adaptation, while the integration of Han timber frameworks, Tibetan prayer halls, and Tu decorative elements reveals cultural convergence. Traditional craftsmanship, including carved wooden scripture blocks and tsampa-based murals, is embedded within domestic and ritual spaces. The fortress’s circulation patterns mirror Tibetan Buddhist cosmology, with mandala-like alleys and rooftop circumambulation routes. These findings offer insights into vernacular resilience and inform conservation strategies for multiethnic fortified settlements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 14744 KiB  
Article
Rapid Seismic Damage Assessment in Densely Built Wooden Residential Areas Using 3D Point Cloud Measurement
by Itsuki Nagaike, Ittetsu Kuniyoshi, Sachie Sato and Yue Bao
Buildings 2025, 15(10), 1623; https://doi.org/10.3390/buildings15101623 - 11 May 2025
Viewed by 527
Abstract
Rapid post-earthquake assessments of residential buildings are essential for preventing secondary disasters but typically require substantial human resources, with challenges related to accuracy and inspector safety. In wooden residential buildings, residual deformation can cause significant internal damage despite minor external indications. Thus, accurate [...] Read more.
Rapid post-earthquake assessments of residential buildings are essential for preventing secondary disasters but typically require substantial human resources, with challenges related to accuracy and inspector safety. In wooden residential buildings, residual deformation can cause significant internal damage despite minor external indications. Thus, accurate evaluation of secondary components such as exterior walls and window frames is crucial. Although recent studies on digital assessment technologies focus mainly on reinforced concrete structures, limited research addresses wooden structures, especially considering residual deformation. This study proposes a rapid emergency risk assessment method utilizing 3D point cloud measurements obtained by a 3D scanning camera for densely built wooden residential areas. Its practicality was verified through three aspects. First, a comparison with conventional methods showed that the measurement accuracy of the proposed method is sufficient for practical use, with errors significantly lower than the inclination thresholds used in emergency risk assessments (e.g., 1/60 rad ≈ 1°). Second, in detection experiments using a deformed window frame model, the average error between the applied inclination and the measured values was less than 3%, demonstrating that deformation, dislodgement, and inclination of secondary components can be reliably detected from point cloud data. Third, field validation conducted in a commercial district confirmed that multiple buildings can be simultaneously measured and that individual buildings and their secondary components can be efficiently extracted and identified. Thus, this method demonstrates practical applicability and significantly improves the speed and efficiency of emergency assessments in densely built wooden residential areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 1588 KiB  
Article
A Multi-Criteria Approach to Sustainable Building Material Selection: A Case Study in a Japanese Context
by Atsushi Takano and Masashi Aiki
Sustainability 2025, 17(9), 4210; https://doi.org/10.3390/su17094210 - 7 May 2025
Viewed by 525
Abstract
With the aim of reducing the environmental impact of buildings, the appropriate selection of building materials is essential, as a building is a complex system composed of various materials. With this background, a multi-criteria decision-making approach has recently gained traction. This study demonstrated [...] Read more.
With the aim of reducing the environmental impact of buildings, the appropriate selection of building materials is essential, as a building is a complex system composed of various materials. With this background, a multi-criteria decision-making approach has recently gained traction. This study demonstrated the effect of building material selection on both environmental and economic parameters of a building in the context of Japan. A comparative analysis of five structural frame options was conducted utilizing a reference building model to assess the implication of material choices. The findings indicated that wooden frame options are advantageous in environmental aspects compared to non-wooden frames, provided that sustainable forestry practices and appropriate recycling scenarios are implemented. Conversely, it was found that a Cross Laminated Timber (CLT) frame is the most expensive option. This suggests that a hybrid approach, which combines various frame materials, could yield a more effective solution in terms of both environmental and economic sustainability. In addition, it was highlighted that building envelopes, such as foundation, exterior wall, and roof, should be prioritized to enhance the sustainability of a building from a material perspective. Furthermore, gypsum board, commonly used for sheathing building elements, should be selected with careful consideration of its environmental impact. Full article
Show Figures

Figure 1

38 pages, 18563 KiB  
Article
Restoration Design of the Former Residences of Historical Dignitaries in Townships: Insights from Wu’s Juren Mansion in Fujian Province, China
by Lei Zhang, Yile Chen, Jiaying Fang and Liang Zheng
Buildings 2025, 15(8), 1303; https://doi.org/10.3390/buildings15081303 - 15 Apr 2025
Viewed by 724
Abstract
In the context of globalization and cultural diversity, the former residences of historical dignitaries in townships hold profound historical and cultural value, making them an important part of cultural heritage. However, as urbanization accelerates, these former residences encounter numerous challenges, necessitating a heightened [...] Read more.
In the context of globalization and cultural diversity, the former residences of historical dignitaries in townships hold profound historical and cultural value, making them an important part of cultural heritage. However, as urbanization accelerates, these former residences encounter numerous challenges, necessitating a heightened focus on their protection and restoration. In this study, we utilized Wu’s Juren Mansion in Fujian as a focal point to delve deeply into the restoration design of the former residences of historical dignitaries in townships. This study covers the basic information, historical evolution, and surrounding environment of the building and investigated its damage in detail—including damage to the gatehouse, corridor, main building, roll roof, and walls—classified and counted the defect locations, and deeply analyzed the causes of damage. Based on relevant laws and regulations, we determined the nature, design principles, and foundation of the restoration project. We then formulated specific restoration measures, such as repairing and maintaining roofs, wooden structures, and walls, as well as measures for wood selection, adhesive use, and termite control. The restoration strategies and design schemes proposed in this study can effectively eliminate safety hazards, preserve the original style of the building to the greatest extent, and maintain historical and cultural value. At the same time, this research provides a reference example for the protection and development of former residences of historical dignitaries in townships and promotes the sustainable development of rural cultural heritage. Full article
(This article belongs to the Special Issue Built Heritage Conservation in the Twenty-First Century: 2nd Edition)
Show Figures

Figure 1

24 pages, 9296 KiB  
Article
The Threat of Moisture in the Partitions of Unheated and Heated Wooden Historic Churches in Poland
by Grzegorz Nawalany, Małgorzata Michalik, Paweł Sokołowski, Elżbieta Michalik and Zbigniew Lofek
Sustainability 2025, 17(7), 2941; https://doi.org/10.3390/su17072941 - 26 Mar 2025
Viewed by 294
Abstract
This paper presents experimental studies of the formation of thermal and humidity conditions in two wooden historic churches in southern Poland. The environmental and cultural changes taking shape are creating the need to modernize existing buildings to sustainable standards. The modernization of historic [...] Read more.
This paper presents experimental studies of the formation of thermal and humidity conditions in two wooden historic churches in southern Poland. The environmental and cultural changes taking shape are creating the need to modernize existing buildings to sustainable standards. The modernization of historic religious buildings is complicated by restrictions on the intrusion of vertical partitions, which are often covered with valuable wall paintings. The paper focuses on the important aspect of preserving historically valuable buildings in good condition and assessing the threat posed by vapor condensation on the surface of the partitions. The studied buildings differ in terms of their uses and heating systems. Building A is unheated, while building B is equipped with a heating system. The scope of the study includes continuous measurements of the temperature and relative humidity of the indoor air inside and outside the studied churches. The work presents a detailed analysis and comparison of the formation of thermal and humidity conditions inside the churches. A computational model of the buildings was created, and then a computational simulation of the risk of water vapor condensation on the surface of the external walls was carried out. The analysis presents the influence of the external climate on the formation of the thermo-humidity conditions inside the buildings, especially in the unheated church. Also shown is the effect of the temporary heating of the church on ensuring the optimal heat and moisture conditions for historic wooden buildings. The analysis shows that turning on the heating only during the use of the church slightly improves the thermal and humidity conditions compared to the unheated church. Additionally, the analysis shows that the occasional use of the unheated church contributes to significant cooling of the church (even to −8.4 °C in the winter half year). Another conclusion that the computational analysis reveals is that water vapor condensation on the surface of the external walls is impossible. However, the difference between the air temperature in the church and the dew point temperature, specifically in the unheated church, is 1.6 °C. Therefore, at lower outside air temperatures, there may be a risk of water vapor condensation. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

27 pages, 6630 KiB  
Article
Sustainable Design of a Tiny House: Using a Life Cycle Assessment Approach to Compare the Environmental Performance of Industrial and Earth-Based Building Systems
by Letizia Dipasquale, Giada Giuffrida, Natalia Jorquera Silva, Riccardo Maria Pulselli and Rosa Caponetto
Buildings 2025, 15(3), 491; https://doi.org/10.3390/buildings15030491 - 5 Feb 2025
Cited by 2 | Viewed by 2185
Abstract
The increased concerns about climate change, diminishing natural resources, and environmental degradation call for deep research into new environmentally friendly building systems that use natural or recycled materials. The article presents an assessment of the environmental and climatic benefits associated with the construction [...] Read more.
The increased concerns about climate change, diminishing natural resources, and environmental degradation call for deep research into new environmentally friendly building systems that use natural or recycled materials. The article presents an assessment of the environmental and climatic benefits associated with the construction of a tiny house made of quincha, a building system based on a wooden structure filled with locally sourced earth and straw. The tiny house is located in the Elqui Valley, in the Chilean region of Coquimbo, and it is designed to be compact, functional, comfortable, and efficient. The study uses a life cycle approach to assess the environmental impacts of building construction, maintenance, and end-of-life treatment, comparing the adopted quincha solution with four hypothetical scenarios using industrial, prefabricated, and/or synthetic construction materials currently adopted in the region. The thermal performance of all the analyzed solutions is also included in order to provide insights into the impact of the operational phase. This paper demonstrates that the quincha solution, in the face of lower thermal insulation compared to the other prefabricated solutions (the U-value of the quincha wall is 0.79 W/m2K while the U-value of the best prefabricated wall is 0.26 W/m2K), has higher thermal inertia (time lag (TL) and decrement factor (DF) are, respectively, 6.97 h and 0.60, while other systems have a TL below 4 h and DF higher than 0.81). For a quantitative environmental evaluation, the carbon footprint (global warming potential), water footprint, and embodied energy indicators are assessed through LCA, which takes into account the mass of the materials and their emission factors. The effectiveness of the quincha solution is also reflected in environmental terms; in fact, it is found to have the lowest carbon footprint (2635.47 kgCO2eq) and embodied energy (42.7 GJ) and the second-lowest water footprint (2303.7 m3). Moreover, carbon sequestration values, which are assessed by estimating the carbon contained in building systems using wood and straw, demonstrate that the quincha tiny house is the only solution that can theoretically reach carbon neutrality (with its carbon storage value at −5670.21 kgCO2eq). Full article
(This article belongs to the Special Issue Materials and Technologies for Regenerative Built Environments)
Show Figures

Figure 1

10 pages, 2539 KiB  
Article
Heat Transmission Coefficient of Wooden House—Comparison of Infrared Thermography Measurements and Calculation
by Yoon-Seong Chang
Buildings 2025, 15(1), 105; https://doi.org/10.3390/buildings15010105 - 31 Dec 2024
Cited by 1 | Viewed by 718
Abstract
In this paper, the thermal insulation performance of a wooden house was evaluated with infrared thermographies which were captured by a non-contact and non-destructive method. Heat transmissions were determined by the difference between surface temperature of outdoor and indoor sides of the walls, [...] Read more.
In this paper, the thermal insulation performance of a wooden house was evaluated with infrared thermographies which were captured by a non-contact and non-destructive method. Heat transmissions were determined by the difference between surface temperature of outdoor and indoor sides of the walls, which were measured with an IR ray signal, and indoor and outdoor air temperatures. The heat transmission coefficient, which was determined by IR thermography, was compared to the coefficient calculated with thermal conductivities of wall component materials. The heat transmission coefficient calculated through wall components was 0.24 W/m2·K, while the coefficients determined with IR thermography ranged from 0.27 to 4.61 W/m2·K. The invisible thermal insulation defects in the wall, such as heat losses from the premature deterioration of thermal insulation material and air leakage through windows, were observed by IR thermography. It is expected that the results of this study could be used effectively not only for improving thermal insulation performance but also for suppressing decay occurrence in wooden building materials. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 8621 KiB  
Article
Assessment of In-Plane Timber Floor Stiffness as Structural Diaphragms: A Numerical Approach to Lateral Load Response
by Jelena Vilotijević and Miroslav Premrov
Forests 2025, 16(1), 56; https://doi.org/10.3390/f16010056 - 31 Dec 2024
Viewed by 1041
Abstract
The behaviour of horizontal floor diaphragms plays a crucial role in ensuring the overall response of a building during earthquakes, as the stiffness of these diaphragms determines whether the structure will act as an integrated system. If the diaphragms do not exhibit sufficient [...] Read more.
The behaviour of horizontal floor diaphragms plays a crucial role in ensuring the overall response of a building during earthquakes, as the stiffness of these diaphragms determines whether the structure will act as an integrated system. If the diaphragms do not exhibit sufficient stiffness, differences in the redistribution of forces on wall elements arise, increasing the risk of significant deformations and even local damage, which is commonly observed in earthquake-affected areas. Additionally, flexible diaphragms heighten the risk of torsional effects. Due to these factors, more attention should be given to the response of buildings with flexible diaphragms. Eurocode standard specifies general requirements under which diaphragms should be considered rigid within their plane, depending on the maximum diaphragm moment. However, specific guidelines regarding the geometric and material properties of elements that significantly impact seismic behaviour are not included in the existing European standards. This served as a basis for conducting a numerical study analysing the in-plane behaviour of floor elements made from different materials. This study, limited to a simple box-shaped structure with masonry walls, symmetrical in both orthogonal directions, evaluated and thoroughly analysed the deformations for different types of diaphragms, including prefabricated wooden frame-panel floors, CLT panels, and reinforced concrete slabs. Special emphasis was placed on wooden structural elements due to the increased demand for timber construction, as the behaviour of these elements needs to be properly studied, especially in seismic regions. The study results were obtained through FEM analysis using the SCIA Engineer software, version 22. The modelling of elements was carried out considering the orthotropy of brick wall and wooden ceiling elements, as well as simulating the appropriate shear stiffness of the connecting means. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

25 pages, 8302 KiB  
Article
Seismic Behavior of Bahareque Walls Under In-Plane Horizontal Loads
by Karol Cristancho, Iván Fernando Otálvaro, Daniel M. Ruiz, Natalia Barrera, Jesús D. Villalba-Morales, Yezid A. Alvarado and Orlando Cundumí
Buildings 2025, 15(1), 4; https://doi.org/10.3390/buildings15010004 - 24 Dec 2024
Cited by 2 | Viewed by 1324
Abstract
This study investigates the structural behavior of bahareque earth walls, a traditional construction system commonly used in rural areas of northern South America. Bahareque (wattle and daub) walls, consisting of guadua (a bamboo-like material) or wooden frames filled with soil mixes, have demonstrated [...] Read more.
This study investigates the structural behavior of bahareque earth walls, a traditional construction system commonly used in rural areas of northern South America. Bahareque (wattle and daub) walls, consisting of guadua (a bamboo-like material) or wooden frames filled with soil mixes, have demonstrated considerable resilience in seismic zones due to their lightweight and flexible nature. Despite their widespread use in these communities, limited scientific data exist on their seismic performance under in-plane pseudo-static horizontal loading. This research addresses this gap by experimentally evaluating the seismic behavior of five wall models with different combinations of guadua, wood, and earth filling materials. The methodology included four main phases, namely field visits to document traditional construction techniques, material characterization, prototype testing under pseudo-static loads, and an analysis of mechanical behavior. Key material properties, including compressive strength and Young’s modulus, were determined, alongside the mechanical and physical properties of the infill material, which incorporated natural fibers. Pseudo-static tests were conducted on five wall prototypes, featuring various configurations of guadua and wood frameworks, both with and without soil infill. The walls were subjected to horizontal in-plane loads to assess their deformation capacity, energy dissipation, and failure mechanisms. The results indicated that walls with soil mixture infill—specifically the GSHS (guadua frame with horizontal guadua strips and soil mixture infill) and TSHS (wood frame with horizontal guadua strips and soil mixture infill) configurations—demonstrated the best seismic performance, with maximum displacements reaching up to 166 mm and strengths ranging from 6.4 to 8.4 kN. The study concludes that bahareque walls, particularly those incorporating soil mixes and horizontal guadua strips, exhibit high resilience under seismic conditions and provide a sustainable construction alternative for rural regions. The scope of this study is limited by the exclusion of dynamic seismic simulations, which could offer additional insights into the behavior of bahareque walls under real earthquake conditions. The novelty of this research lies in the direct evaluation of the seismic performance of traditional bahareque configurations, specifically comparing walls constructed with guadua and wooden frameworks, while emphasizing the critical role of soil infill and guadua strips in structural performance. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

11 pages, 4970 KiB  
Article
Detecting Early Degradation of Wood Ultrastructure with Nonlinear Optical Imaging and Fluorescence Lifetime Analysis
by Alice Dal Fovo, Riccardo Cicchi, Claudia Gagliardi, Enrico Baria, Marco Fioravanti and Raffaella Fontana
Polymers 2024, 16(24), 3590; https://doi.org/10.3390/polym16243590 - 22 Dec 2024
Cited by 1 | Viewed by 1211
Abstract
Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear [...] Read more.
Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials. In this study, we employed a nonlinear multimodal approach to examine the effects of artificially induced delignification on samples of Norway spruce (Picea abies) and European beech (Fagus sylvatica) subjected to increasing treatment durations. The integration of SHG/TPEF imaging and multi-component fluorescence lifetime analysis enabled the detection of localized variations in nonlinear signals and τ-phase of key biopolymers within wood cell walls. This methodology provides a powerful tool for early detection of wood deterioration, facilitating proactive conservation efforts of wooden artefacts. Full article
(This article belongs to the Special Issue Advances in Applied Lignin Research)
Show Figures

Figure 1

12 pages, 6525 KiB  
Article
Analysis of the Factors Leading to the Degradation of Wooden Cultural Heritage Based on the Example of a 16th-Century Sacred Monument in Poland
by Bogusław Andres, Izabela Betlej, Małgorzata Nowacka and Piotr Boruszewski
Appl. Sci. 2024, 14(24), 11475; https://doi.org/10.3390/app142411475 - 10 Dec 2024
Viewed by 1429
Abstract
Microorganisms are one of the most critical factors involved in the degradation of buildings. Fungi that develop in historic spaces not only cause the degradation of monuments (immovable and movable) but can also negatively affect those who visit or use such spaces. This [...] Read more.
Microorganisms are one of the most critical factors involved in the degradation of buildings. Fungi that develop in historic spaces not only cause the degradation of monuments (immovable and movable) but can also negatively affect those who visit or use such spaces. This article is a case study of the 16th-century St. Catherine Church in Cięcina (Poland), whose walls became severely damp as a result of changes made to the church’s surroundings (relocation of the riverbed of the Cięcinka River, raising the level of St. Catherine Street and building a wooden fence on a concrete foundation around the church). The effect of the severe dampness of the building was the intensive development of Serpula lacrymans fungus and mold. This article highlights the importance of a multidisciplinary approach to hazard diagnosis in historic buildings. Full article
Show Figures

Figure 1

Back to TopTop