Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = wireless sensor and actuator network (WSAN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3015 KB  
Article
Robust Distributed Collaborative Beamforming for WSANs in Dual-Hop Scattered Environments with Nominally Rectangular Layouts
by Oussama Ben Smida, Sofiène Affes, Dushantha Jayakody and Yoosuf Nizam
J. Sens. Actuator Netw. 2025, 14(2), 32; https://doi.org/10.3390/jsan14020032 - 19 Mar 2025
Cited by 1 | Viewed by 1372
Abstract
We introduce a robust distributed collaborative beamforming (RDCB) approach for addressing channel estimation challenges in dual-hop transmissions within wireless sensor and actuator networks (WSANs) of K nodes. WSANs enhance wireless communication by reducing data transmission, latency, and energy consumption while optimizing network load [...] Read more.
We introduce a robust distributed collaborative beamforming (RDCB) approach for addressing channel estimation challenges in dual-hop transmissions within wireless sensor and actuator networks (WSANs) of K nodes. WSANs enhance wireless communication by reducing data transmission, latency, and energy consumption while optimizing network load through integrated sensing and actuation. The source S transmits signals to the WSAN, where nodes relay them to the destination D using beamforming weights to minimize noise and preserve signal integrity. These weights depend on channel state information (CSI), where estimation errors degrade performance. We develop RDCB solutions for three first-hop propagation scenarios—monochromatic [line-of-sight (LoS)] or “M”, bichromatic (moderately scattered) or “B”, and polychromatic (highly scattered) or “P”—while assuming a monochromatic LoS or “M” link for the second hop between the nodes and the far-field destination. Termed MM-RDCB, BM-RDCB, and PM-RDCB, respectively (“X” and “Y” in XY-RDCB—for X {M,B,P} and Y {M}—refer to the chromatic natures of the first- and second-hop channels, respectively, to which a specific RDCB solution is tailored), these solutions leverage asymptotic approximations for large K values and the nodes’ geometric symmetries. Our distributed solutions allow local weight computation, enhancing spectral and power efficiency. Simulation results show significant improvements in the signal-to-noise ratio (SNR) and robustness versus WSAN node placement errors, making the solutions well suited for emerging 5G and future 5G+/6G and Internet of Things (IoT) applications for different challenging environments. Full article
Show Figures

Figure 1

25 pages, 20254 KB  
Article
IoT-Enhanced Decision Support System for Real-Time Greenhouse Microclimate Monitoring and Control
by Dragoș-Ioan Săcăleanu, Mihai-Gabriel Matache, Ștefan-George Roșu, Bogdan-Cristian Florea, Irina-Petra Manciu and Lucian-Andrei Perișoară
Technologies 2024, 12(11), 230; https://doi.org/10.3390/technologies12110230 - 14 Nov 2024
Cited by 10 | Viewed by 6318
Abstract
Greenhouses have taken on a fundamental role in agriculture. The Internet of Things (IoT) is a key concept used in greenhouse-based precision agriculture (PA) to enhance vegetable quality and quantity while improving resource efficiency. Integrating wireless sensor networks (WSNs) into greenhouses to monitor [...] Read more.
Greenhouses have taken on a fundamental role in agriculture. The Internet of Things (IoT) is a key concept used in greenhouse-based precision agriculture (PA) to enhance vegetable quality and quantity while improving resource efficiency. Integrating wireless sensor networks (WSNs) into greenhouses to monitor environmental parameters represents a critical first step in developing a complete IoT solution. For further optimization of the results, including actuator nodes to control the microclimate is necessary. The greenhouse must also be remotely monitored and controlled via an internet-based platform. This paper proposes an IoT-based architecture as a decision support system for farmers. A web platform has been developed to acquire data from custom-developed wireless sensor nodes and send commands to custom-developed wireless actuator nodes in a greenhouse environment. The wireless sensor and actuator nodes (WSANs) utilize LoRaWAN, one of the most prominent Low-Power Wide-Area Network (LPWAN) technologies, known for its long data transmission range. A real-time end-to-end deployment of a remotely managed WSAN was conducted. The power consumption of the wireless sensor nodes and the recharge efficiency of installed solar panels were analyzed under worst-case scenarios with continuously active nodes and minimal intervals between data transmissions. Datasets were acquired from multiple sensor nodes over a month, demonstrating the system’s functionality and feasibility. Full article
(This article belongs to the Special Issue Advanced Autonomous Systems and Artificial Intelligence Stage)
Show Figures

Figure 1

23 pages, 6929 KB  
Article
IoT Energy Management System Based on a Wireless Sensor/Actuator Network
by Omar Arzate-Rivas, Víctor Sámano-Ortega, Juan Martínez-Nolasco, Mauro Santoyo-Mora, Coral Martínez-Nolasco and Roxana De León-Lomelí
Technologies 2024, 12(9), 140; https://doi.org/10.3390/technologies12090140 - 24 Aug 2024
Cited by 5 | Viewed by 4617
Abstract
The use of DC microgrids (DC-µGs) offers a variety of environmental benefits; albeit, a successful implementation depends on the implementation of an Energy Management System (EMS). An EMS is broadly implemented with a hierarchical and centralized structure, where the communications layer presents as [...] Read more.
The use of DC microgrids (DC-µGs) offers a variety of environmental benefits; albeit, a successful implementation depends on the implementation of an Energy Management System (EMS). An EMS is broadly implemented with a hierarchical and centralized structure, where the communications layer presents as a key element of the system to achieve a successful operation. Additionally, the relatively low cost of wireless communication technologies and the advantages offered by remote monitoring have promoted the inclusion of the Internet of Things (IoT) and Wireless Sensor and Actuator Network (WSAN) technologies in the energy sector. In this article is presented the development of an IoT EMS based on a WSAN (IoT-EMS-WSAN) for the management of a DC-µG. The proposed EMS is composed of a WiFi-based WSAN that is interconnected to a DC-µG, a cloud server, and a User Web App. The proposed system was compared to a conventional EMS with a high latency wired communication layer. In comparison to the conventional EMS, the IoT-EMS-WSAN increased the updating time from 100 ms to 1200 ms; also, the bus of the DC-µG maintained its stability even though its variations increased; finally, the DC bus responded to an energy-outage scenario with a recovery time of 1 s instead of 150 ms, as seen with the conventional EMS. Despite the reduced latency, the developed IoT-EMS-WSAN was demonstrated to be a reliable tool for the management, monitoring, and remote controlling of a DC-µG. Full article
(This article belongs to the Special Issue IoT-Enabling Technologies and Applications)
Show Figures

Figure 1

16 pages, 2404 KB  
Article
Joint Optimization of Control Strategy and Energy Consumption for Energy Harvesting WSAN
by Zhuwei Wang, Zhicheng Liu, Lihan Liu, Chao Fang, Meng Li and Jingcheng Zhao
Entropy 2022, 24(5), 723; https://doi.org/10.3390/e24050723 - 19 May 2022
Cited by 1 | Viewed by 2230
Abstract
With the rapid development of wireless sensor technology, recent progress in wireless sensor and actuator networks (WSANs) with energy harvesting provide the possibility for various real-time applications. Meanwhile, extensive research activities are carried out in the fields of efficient energy allocation and control [...] Read more.
With the rapid development of wireless sensor technology, recent progress in wireless sensor and actuator networks (WSANs) with energy harvesting provide the possibility for various real-time applications. Meanwhile, extensive research activities are carried out in the fields of efficient energy allocation and control strategy design. However, the joint design considering physical plant control, energy harvesting, and consumption is rarely concerned in existing works. In this paper, in order to enhance system control stability and promote quality of service for the WSAN energy efficiency, a novel three-step joint optimization algorithm is proposed through control strategy and energy management analysis. First, the optimal sampling interval can be obtained based on energy harvesting, consumption, and remaining conditions. Then, the control gain for each sampling interval is derived by using a backward iteration. Finally, the optimal control strategy is determined as a linear function of the current plant states and previous control strategies. The application of UAV formation flight system demonstrates that better system performance and control stability can be achieved by the proposed joint optimization design for all poor, sufficient, and general energy harvesting scenarios. Full article
Show Figures

Figure 1

42 pages, 5103 KB  
Article
The DEWI High-Level Architecture: Wireless Sensor Networks in Industrial Applications
by Ramiro Sámano-Robles, Tomas Nordström, Kristina Kunert, Salvador Santonja-Climent, Mikko Himanka, Markus Liuska, Michael Karner and Eduardo Tovar
Technologies 2021, 9(4), 99; https://doi.org/10.3390/technologies9040099 - 9 Dec 2021
Cited by 3 | Viewed by 4246
Abstract
This paper presents the High-Level Architecture (HLA) of the European research project DEWI (Dependable Embedded Wireless Infrastructure). The objective of this HLA is to serve as a reference framework for the development of industrial Wireless Sensor and Actuator Networks (WSANs) based on the [...] Read more.
This paper presents the High-Level Architecture (HLA) of the European research project DEWI (Dependable Embedded Wireless Infrastructure). The objective of this HLA is to serve as a reference framework for the development of industrial Wireless Sensor and Actuator Networks (WSANs) based on the concept of the DEWI Bubble. The DEWI Bubble constitutes a set of architecture design rules and recommendations that can be used to integrate legacy industrial sensor networks with a modern, interoperable and flexible IoT (Internet-of-Things) infrastructure. The DEWI Bubble can be regarded as a high-level abstraction of an industrial WSAN with enhanced interoperability (via standardized interfaces), dependability, technology reusability and cross-domain development. The DEWI Bubble aims to resolve the issue on how to integrate commercial WSAN technology to match the dependability, interoperability and high criticality needs of industrial domains. This paper details the criteria used to design the HLA and the organization of the infrastructure internal and external to the DEWI Bubble. The description includes the different perspectives, models, or views of the architecture: the entity model, the layered perspective of the entity model and the functional model. This includes an overview of software and hardware interfaces. The DEWI HLA constitutes an extension of the ISO/IEC 29182 SNRA (Sensor Network Reference Architecture) towards the support of wireless industrial applications in different domains: aeronautics, automotive, railway and building. To improve interoperability with existing approaches, the DEWI HLA also reuses some features from other standardized technologies and architectures. The DEWI HLA and the concept of Bubble allow networks with different industrial sensor technologies to exchange information between them or with external clients via standard interfaces, thus providing consolidated access to sensor information of different industrial domains. This is an important aspect for smart city applications, Big Data, Industry 4.0 and the Internet-of-Things (IoT). The paper includes a non-exhaustive review of the state of the art of the different interfaces, protocols and standards of this architecture. The HLA has also been proposed as the basis of the European projects SCOTT (Secure Connected Trustable Things) for enhanced security and privacy in the IoT and InSecTT (Intelligent Secure Trustable Things) for the convergence of artificial intelligence (AI) and the IoT. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

20 pages, 1179 KB  
Article
A Comprehensive Worst Case Bounds Analysis of IEEE 802.15.7
by Harrison Kurunathan, Ricardo Severino and Eduardo Tovar
J. Sens. Actuator Netw. 2021, 10(2), 23; https://doi.org/10.3390/jsan10020023 - 26 Mar 2021
Cited by 10 | Viewed by 3809
Abstract
Visible Light Communication (VLC) has been emerging as a promising technology to address the increasingly high data-rate and time-critical demands that the Internet of Things (IoT) and 5G paradigms impose on the underlying Wireless Sensor Actuator Networking (WSAN) technologies. In this line, the [...] Read more.
Visible Light Communication (VLC) has been emerging as a promising technology to address the increasingly high data-rate and time-critical demands that the Internet of Things (IoT) and 5G paradigms impose on the underlying Wireless Sensor Actuator Networking (WSAN) technologies. In this line, the IEEE 802.15.7 standard proposes several physical layers and Medium Access Control (MAC) sub-layer mechanisms that support a variety of VLC applications. Particularly, at the MAC sub-layer, it can support contention-free communications using Guaranteed Timeslots (GTS), introducing support for time-critical applications. However, to effectively guarantee accurate usage of such functionalities, it is vital to derive the worst-case bounds of the network. In this paper, we use network calculus to carry out the worst-case bounds analysis for GTS utilization of IEEE 802.15.7 and complement our model with an in-depth performance analysis. We also propose the inclusion of an additional mechanism to improve the overall scalability and effective bandwidth utilization of the network. Full article
(This article belongs to the Special Issue QoS in Wireless Sensor/Actuator Networks)
Show Figures

Figure 1

26 pages, 17082 KB  
Article
Time Slotted Channel Hopping and ContikiMAC for IPv6 Multicast-Enabled Wireless Sensor Networks
by Eden Teshome, Diana Deac, Steffen Thielemans, Matthias Carlier, Kris Steenhaut, An Braeken and Virgil Dobrota
Sensors 2021, 21(5), 1771; https://doi.org/10.3390/s21051771 - 4 Mar 2021
Cited by 7 | Viewed by 5079
Abstract
Smart buildings benefit from IEEE 802.15.4e time slotted channel hopping (TSCH) medium access for creating reliable and power aware wireless sensor and actuator networks (WSANs). As in these networks, sensors are supposed to communicate to each other and with actuators, IPv6 multicast forwarding [...] Read more.
Smart buildings benefit from IEEE 802.15.4e time slotted channel hopping (TSCH) medium access for creating reliable and power aware wireless sensor and actuator networks (WSANs). As in these networks, sensors are supposed to communicate to each other and with actuators, IPv6 multicast forwarding is seen as a valuable means to reduce traffic. A promising approach to multicast, based on the Routing Protocol for Low Power and Lossy Networks (RPL) is Bidirectional Multicast RPL Forwarding (BMRF). This paper aimed to analyze the performance of BMRF over TSCH. The authors investigated how an adequate TSCH scheduler can help to achieve a requested quality of service (QoS). A theoretical model for the delay and energy consumption of BMRF over TSCH is presented. Next, BMRF’s link layer (LL) unicast and LL broadcast forwarding modes were analyzed on restricted and realistic topologies. On topologies with increased interference, BMRF’s LL broadcast on top of TSCH causes high energy consumption, mainly because of the amount of energy needed to run the schedule, but it significantly improves packet delivery ratio and delay compared to ContikiMAC under the same conditions. In most cases, the LL unicast was found to outperform the LL broadcast, but the latter can be beneficial to certain applications, especially those sensitive to delays. Full article
(This article belongs to the Special Issue Wireless Sensor Networks in Smart Homes)
Show Figures

Figure 1

36 pages, 14494 KB  
Article
Simulation of Scalability in Cloud-Based IoT Reactive Systems Leveraged on a WSAN Simulator and Cloud Computing Technologies
by Luis Jurado Pérez and Joaquín Salvachúa
Appl. Sci. 2021, 11(4), 1804; https://doi.org/10.3390/app11041804 - 18 Feb 2021
Cited by 11 | Viewed by 4241
Abstract
Implementing a wireless sensor and actuator network (WSAN) in Internet of Things (IoT) applications is a complex task. The need to establish the number of nodes, sensors, and actuators, and their location and characteristics, requires a tool that allows the preliminary determination of [...] Read more.
Implementing a wireless sensor and actuator network (WSAN) in Internet of Things (IoT) applications is a complex task. The need to establish the number of nodes, sensors, and actuators, and their location and characteristics, requires a tool that allows the preliminary determination of this information. Additionally, in IoT scenarios where a large number of sensors and actuators are present, such as in a smart city, it is necessary to analyze the scalability of these systems. Modeling and simulation can help to conduct an early study and reduce development and deployment times in environments such as a smart city. The design-time verification of the system through a network simulation tool is useful for the most complex and expensive part of the system formed by a WSAN. However, the use of real components for other parts of the IoT system is feasible by using cloud computing infrastructure. Although there are cloud computing simulators, the cloud layer is poorly developed for the requirements of IoT applications. Technologies around cloud computing can be used for the rapid deployment of some parts of the IoT application and software services using containers. With this framework, it is possible to accelerate the development of the real system, facilitate the rapid deployment of a prototype, and provide more realistic simulations. This article proposes an approach for the modeling and simulation of IoT systems and services in a smart city leveraged in a WSAN simulator and technologies of cloud computing. Our approach was verified through experiments with two use cases. (1) A model of sensor and actuator networks as an integral part of an IoT application to monitor and control parks in a city. Through this use case, we analyze the scalability of a system whose sensors constantly emit data. (2) A model for cloud-based IoT reactive parking lot systems for a city. Through our approach, we have created an IoT parking system simulation model. The model contains an M/M/c/N queuing system to simulate service requests from users. In this use case, the model replication through hierarchical modeling and scalability of a distributed parking reservation service were evaluated. This last use case showed how the simulation model could provide information to size the system through probability distribution variables related to the queuing system. The experimental results show that the use of simulation techniques for this type of application makes it possible to analyze scalability in a more realistic way. Full article
(This article belongs to the Special Issue Development of IoE Applications for Multimedia Security)
Show Figures

Figure 1

34 pages, 8242 KB  
Article
A Context-Aware Middleware Cloud Approach for Integrating Precision Farming Facilities into the IoT toward Agriculture 4.0
by Eleni Symeonaki, Konstantinos Arvanitis and Dimitrios Piromalis
Appl. Sci. 2020, 10(3), 813; https://doi.org/10.3390/app10030813 - 23 Jan 2020
Cited by 99 | Viewed by 12850
Abstract
The adoption of Precision Farming (PF) practices involving ubiquitous computing advancements and conceptual innovations of “smart” agricultural production toward Agriculture 4.0 is a significant factor for the benefit of sustainable growth. In this context, the dynamic integration of PF facility systems into the [...] Read more.
The adoption of Precision Farming (PF) practices involving ubiquitous computing advancements and conceptual innovations of “smart” agricultural production toward Agriculture 4.0 is a significant factor for the benefit of sustainable growth. In this context, the dynamic integration of PF facility systems into the Internet of Things (IoT) represents an excessive challenge considering the large amount of heterogeneous raw data acquired in agricultural environments by Wireless Sensor and Actuator Networks (WSANs). This paper focuses on the issue of facilitating the management, process, and exchange of the numerous and diverse data points generated in multiple PF environments by introducing a framework of a cloud-based context-aware middleware solution as part of a responsive, adaptive, and service-oriented IoT integrated system. More particularly, the paper presents in detail a layered hierarchical structure according to which all functional elements of the system cope with context, while the context awareness operation is accomplished into a cloud-based distributed middleware component that is the core of the entire system acting as a Decision Support System (DSS). Furthermore, as proof of concept, the functionality of the proposed system is studied in real conditions where some evaluation results regarding its performance are quoted. Full article
(This article belongs to the Special Issue Applied Agri-Technologies)
Show Figures

Graphical abstract

21 pages, 3258 KB  
Article
A Novel Hybrid Optimization Scheme on Connectivity Restoration Processes for Large Scale Industrial Wireless Sensor and Actuator Networks
by Ying Zhang, Zheming Zhang and Bin Zhang
Processes 2019, 7(12), 939; https://doi.org/10.3390/pr7120939 - 10 Dec 2019
Cited by 9 | Viewed by 3150
Abstract
In the wireless sensor and actuator networks (WSANs) of industrial field monitoring, maintaining network connectivity with coverage perception plays a decisive role in many industrial process scenarios. The mobile actuator node is responsible for collecting data from the sensing nodes and performing diverse [...] Read more.
In the wireless sensor and actuator networks (WSANs) of industrial field monitoring, maintaining network connectivity with coverage perception plays a decisive role in many industrial process scenarios. The mobile actuator node is responsible for collecting data from the sensing nodes and performing diverse specific collaborative operation tasks. However, the failure of the nodes usually causes coverage vulnerability and partition of the network. Urgent and time-sensitive applications expect a minimum coverage loss to complete an instant connectivity restoration. This paper presents a hybrid coverage perception-based connectivity restoration algorithm, which is designed to restore network connectivity with minimal coverage area loss. The algorithm uses a backup node, which is selected nearby the critical node, to ensure a timely restoration when the critical node encounters failure. In the process of backup node migration, the optimal destination will be reselected to maintain the best network coverage after network connectivity recovery. The effectiveness of the proposed algorithm was verified by some simulation experiments. Full article
(This article belongs to the Special Issue Process Optimization and Control)
Show Figures

Figure 1

19 pages, 3705 KB  
Article
Efficient Resource Scheduling for Multipath Retransmission over Industrial WSAN Systems
by Hongchao Wang, Jian Ma, Dong Yang and Mikael Gidlund
Sensors 2019, 19(18), 3927; https://doi.org/10.3390/s19183927 - 12 Sep 2019
Cited by 3 | Viewed by 3247
Abstract
With recent adoption of Wireless Sensor-Actuator Networks (WSANs) in industrial automation, wireless control systems have emerged as a frontier of industrial networks. Hence, it has been shown that existing standards and researches concentrate on the reliability and real-time performance of WSANs. The multipath [...] Read more.
With recent adoption of Wireless Sensor-Actuator Networks (WSANs) in industrial automation, wireless control systems have emerged as a frontier of industrial networks. Hence, it has been shown that existing standards and researches concentrate on the reliability and real-time performance of WSANs. The multipath retransmission scheme with multiple channels is a key approach to guarantee the deterministic wireless communication. However, the efficiency of resource scheduling is seldom considered in applications with diverse data sampling rates. In this paper, we propose an efficient resources scheduling algorithm for multipath retransmission in WSANs. The objective of our algorithm is to improve efficiency and schedulability for the use of slot and channel resources. In detail, the proposed algorithm uses the approaches of CCA (clear channel assessment)-Embedded slot and Multiple sinks with Rate Monotonic scheme (CEM-RM) to decrease the number of collisions. We have simulated and implemented our algorithm in hardware and verified its performance in a real industrial environment. The achieved results show that the proposed algorithm significantly improves the schedulability without trading off reliability and real-time performance. Full article
(This article belongs to the Special Issue Real-Time Sensor Networks and Systems for the Industrial IoT)
Show Figures

Figure 1

28 pages, 930 KB  
Article
Robust Wireless Sensor and Actuator Networks for Networked Control Systems
by Bongsang Park, Junghyo Nah, Jang-Young Choi, Ick-Jae Yoon and Pangun Park
Sensors 2019, 19(7), 1535; https://doi.org/10.3390/s19071535 - 29 Mar 2019
Cited by 13 | Viewed by 5523
Abstract
The stability guarantee of wireless networked control systems is still challenging due to the complex interaction among the layers and the vulnerability to network faults, such as link and node failures. In this paper, we propose a robust wireless sensor and actuator network [...] Read more.
The stability guarantee of wireless networked control systems is still challenging due to the complex interaction among the layers and the vulnerability to network faults, such as link and node failures. In this paper, we propose a robust wireless sensor and actuator network (R-WSAN) to maintain the control stability of multiple plants over the spatial-temporal changes of wireless networks. The proposed joint design protocol combines the distributed controller of control systems and the clustering, resource scheduling, and control task sharing scheme of wireless networks over a hierarchical cluster-based network. In particular, R-WSAN decouples the tasks from the inherently unreliable nodes and allows control tasks to share between nodes of wireless networks. Our simulations demonstrate that R-WSAN provides the enhanced resilience to the network faults for sensing and actuation without significantly disrupting the control performance. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

35 pages, 12715 KB  
Article
NovaGenesis Applied to Information-Centric, Service-Defined, Trustable IoT/WSAN Control Plane and Spectrum Management
by Antônio Marcos Alberti, Marília Martins Bontempo, José Rodrigo Dos Santos, Arismar Cerqueira Sodré and Rodrigo Da Rosa Righi
Sensors 2018, 18(9), 3160; https://doi.org/10.3390/s18093160 - 19 Sep 2018
Cited by 6 | Viewed by 7098
Abstract
We integrate, for the first time in the literature, the following ingredients to deal with emerging dynamic spectrum management (DSM) problem in heterogeneous wireless sensors and actuators networks (WSANs), Internet of things (IoT) and Wi-Fi: (i) named-based routing to provide provenance and location-independent [...] Read more.
We integrate, for the first time in the literature, the following ingredients to deal with emerging dynamic spectrum management (DSM) problem in heterogeneous wireless sensors and actuators networks (WSANs), Internet of things (IoT) and Wi-Fi: (i) named-based routing to provide provenance and location-independent access to control plane; (ii) temporary storage of control data for efficient and cohesive control dissemination, as well as asynchronous communication between software-controllers and devices; (iii) contract-based control to improve trust-ability of actions; (iv) service-defined configuration of wireless devices, approximating their configurations to real services needs. The work is implemented using NovaGenesis architecture and a proof-of-concept is evaluated in a real scenario, demonstrating our approach to automate radio frequency channel optimization in Wi-Fi and IEEE 802.15.4 networks in the 2.4 GHz bands. An integrated cognitive radio system provides the dual-mode best channel indications for novel DSM services in NovaGenesis. By reconfiguring Wi-Fi/IoT devices to best channels, the proposed solution more than doubles the network throughput, when compared to the case of mutual interference. Therefore, environments equipped with the proposal provide enhanced performance to their users. Full article
Show Figures

Graphical abstract

16 pages, 4952 KB  
Article
Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage
by Jesús Blanco, Andrés García and Javier De las Morenas
Sensors 2018, 18(6), 1892; https://doi.org/10.3390/s18061892 - 9 Jun 2018
Cited by 25 | Viewed by 9240
Abstract
Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a [...] Read more.
Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings. Full article
(This article belongs to the Special Issue Dependable Monitoring in Wireless Sensor Networks)
Show Figures

Figure 1

23 pages, 5528 KB  
Article
Devising Mobile Sensing and Actuation Infrastructure with Drones
by Mungyu Bae, Seungho Yoo, Jongtack Jung, Seongjoon Park, Kangho Kim, Joon Yeop Lee and Hwangnam Kim
Sensors 2018, 18(2), 624; https://doi.org/10.3390/s18020624 - 19 Feb 2018
Cited by 18 | Viewed by 6354
Abstract
Vast applications and services have been enabled as the number of mobile or sensing devices with communication capabilities has grown. However, managing the devices, integrating networks or combining services across different networks has become a new problem since each network is not directly [...] Read more.
Vast applications and services have been enabled as the number of mobile or sensing devices with communication capabilities has grown. However, managing the devices, integrating networks or combining services across different networks has become a new problem since each network is not directly connected via back-end core networks or servers. The issue is and has been discussed especially in wireless sensor and actuator networks (WSAN). In such systems, sensors and actuators are tightly coupled, so when an independent WSAN needs to collaborate with other networks, it is difficult to adequately combine them into an integrated infrastructure. In this paper, we propose drone-as-a-gateway (DaaG), which uses drones as mobile gateways to interconnect isolated networks or combine independent services. Our system contains features that focus on the service being provided in the order of importance, different from an adaptive simple mobile sink system or delay-tolerant system. Our simulation results have shown that the proposed system is able to activate actuators in the order of importance of the service, which uses separate sensors’ data, and it consumes almost the same time in comparison with other path-planning algorithms. Moreover, we have implemented DaaG and presented results in a field test to show that it can enable large-scale on-demand deployment of sensing and actuation infrastructure or the Internet of Things (IoT). Full article
(This article belongs to the Special Issue UAV or Drones for Remote Sensing Applications)
Show Figures

Graphical abstract

Back to TopTop