Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = wing membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3371 KiB  
Article
Scheduling Control Considering Model Inconsistency of Membrane-Wing Aircraft
by Yanxuan Wu, Yifan Fu, Zhengjie Wang, Yang Yu and Hao Li
Processes 2025, 13(8), 2367; https://doi.org/10.3390/pr13082367 - 25 Jul 2025
Viewed by 220
Abstract
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this [...] Read more.
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this paper, an integrated dynamic model is derived for a membrane-wing aircraft based on the structural dynamics equation of the membrane wing and the flight dynamics equation of the traditional fixed wing. Based on state feedback control theory, an autopilot system is designed to unify the flight and control properties of different flight and wing deformation statuses. The system uses models of different operating regions to estimate the dynamic response of the vehicle and compares the estimation results with the sensor signals. Based on the compared results, the autopilot can identify the overall flight and select the correct operating region for the control system. By switching to the operating region with the minimum modeling error, the autopilot system maintains good flight performance while flying in turbulence. According to the simulation results, compared with traditional rigid aircraft autopilots, the proposed autopilot can reduce the absolute maximum attack angles by nearly 27% and the absolute maximum wingtip twist angles by nearly 25% under gust conditions. This enhanced robustness and stability performance demonstrates the autopilot’s significant potential for practical deployment in micro-aerial vehicles, particularly in applications demanding reliable operation under turbulent conditions, such as military surveillance, environmental monitoring, precision agriculture, or infrastructure inspection. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

17 pages, 2815 KiB  
Article
Research on the Structural Design and Mechanical Properties of T800 Carbon Fiber Composite Materials in Flapping Wings
by Ruojun Wang, Zengyan Jiang, Yuan Zhang, Luyao Fan and Weilong Yin
Materials 2025, 18(15), 3474; https://doi.org/10.3390/ma18153474 - 24 Jul 2025
Viewed by 266
Abstract
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping [...] Read more.
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping mechanism of a single-degree-of-freedom miniature flapping wing aircraft. In this study, T800 carbon fiber composite material was used as the frame material. Three typical wing membrane materials, namely polyethylene terephthalate (PET), polyimide (PI), and non-woven kite fabric, were selected for comparative analysis. Three flapping wing configurations with different stiffness were proposed. These wings adopted carbon fiber composite material frames. The wing membrane material is bonded to the frame through a coating. Inspired by bionics, a flapping wing that mimics the membrane vein structure of insect wings is designed. By changing the type of membrane material and the distribution of carbon fiber composite materials on the wing, the stiffness of the flapping wing can be controlled, thereby affecting the mechanical properties of the flapping wing aircraft. The modal analysis of the flapping-wing structure was conducted using the finite element analysis method, and the experimental prototype was fabricated by using 3D printing technology. To evaluate the influence of different wing membrane materials on lift performance, a high-precision force measurement experimental platform was built, systematic tests were carried out, and the lift characteristics under different flapping frequencies were analyzed. Through computational modeling and experiments, it has been proven that under the same flapping wing frequency, the T800 carbon fiber composite material frame can significantly improve the stiffness and durability of the flapping wing. In addition, the selection of wing membrane materials has a significant impact on lift performance. Among the test materials, the PET wing film demonstrated excellent stability and lift performance under high-frequency conditions. This research provides crucial experimental evidence for the optimal selection of wing membrane materials for micro flapping-wing aircraft, verifies the application potential of T800 carbon fiber composite materials in micro flapping-wing aircraft, and opens up new avenues for the application of advanced composite materials in high-performance micro flapping-wing aircraft. Full article
Show Figures

Figure 1

20 pages, 5690 KiB  
Article
Wind Tunnel Experimental Study on the Flight Parameters of a Bio-Inspired Bat-like Flapping-Wing Robot
by Bosong Duan, Junlei Liu, Shuai Wang, Zhaoyang Chen and Bingfeng Ju
Aerospace 2025, 12(7), 615; https://doi.org/10.3390/aerospace12070615 - 8 Jul 2025
Viewed by 323
Abstract
With the in-depth study of the unique flight ability of bats in the field of bionic robots, wind-tunnel experiments have become an important means to verify the feasibility of bat-like flying robot structures. However, due to the complex structure of a bat’s flexible [...] Read more.
With the in-depth study of the unique flight ability of bats in the field of bionic robots, wind-tunnel experiments have become an important means to verify the feasibility of bat-like flying robot structures. However, due to the complex structure of a bat’s flexible wing membrane and multi-joint linkage, there is still a significant gap in the systematic experimental study of its flightability. In this study, a remote-controlled bionic prototype was designed and manufactured for the bat-like flapping-wing flying robot, and the changes in wing flight performance at different flapping frequencies (1–3.5 Hz) and angles of attack (0–15°) were tested in a low-speed (2–6 m/s) wind tunnel experiment. Six flight parameters were obtained through experiments. It was found that the flight performance of the prototype was successfully verified under a specific flapping frequency, angle of attack, and flight speed. This result not only determines the optimal flight parameter combination under the model, but also reveals the key influence of the flexible deformation of the wing membrane and the flapping frequency on the flight performance, which provides a key experimental basis for the structural optimization and control strategy design of the bat-like flapping-wing robot. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 1292 KiB  
Article
Compartmentalization of Free Fatty Acids in Blood-Feeding Tabanus bovinus Females
by Mikołaj Drozdowski and Mieczysława Irena Boguś
Insects 2025, 16(7), 696; https://doi.org/10.3390/insects16070696 - 6 Jul 2025
Viewed by 464
Abstract
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the [...] Read more.
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the qualitative and quantitative profiles of free fatty acids (FFAs) in the female Tabanus bovinus, a hematophagous horsefly species, across different anatomical regions, including the head, wings, legs, thorax, and abdomen. The surface and internal lipid fractions were isolated using petroleum ether/dichloromethane extraction followed by sonication. GC-MS revealed the presence of 21 FFAs, including 16 saturated (C7:0, C8:0, C9:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C19:0, C20:0, C22:0, C24:0) and five unsaturated (C16:1, C18:2, C18:1, C20:5, C20:4). The head and wings showed the highest concentrations of cuticular FFAs. At the same time, internal lipid stores were most prominent in the thorax and abdomen (but four times lower than in the head cuticle), reflecting their role in energy storage and reproduction. All cuticular and internal extracts were dominated by C16:0, C18:0, and C18:1. Notably, several FFAs were undetected in specific compartments: C10:0 from inside the head, C11:0 and C13:0 from inside all examined body parts, C19:0 was absent from inside the head, wings and legs, while C20:5 and C20:4 were absent from both the cuticular and internal lipid pools of the wings. Interestingly, our analysis of the cuticle on the thorax and abdomen together revealed that both C13:0 and C19:0 were present only on the dorsal side, i.e., absent from the ventral side. These absences suggest a selective lipid metabolism tailored to the functional and ecological demands of T. bovinus females. Our findings suggest that the absence of specific compounds from individual body parts may serve as an indicator of physiological specialization. This work provides new insights into lipid compartmentalization in Tabanidae and offers a framework for future comparative and ecological lipidomics studies in insects. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

68 pages, 10407 KiB  
Review
Bioinspired Morphing in Aerodynamics and Hydrodynamics: Engineering Innovations for Aerospace and Renewable Energy
by Farzeen Shahid, Maqusud Alam, Jin-Young Park, Young Choi, Chan-Jeong Park, Hyung-Keun Park and Chang-Yong Yi
Biomimetics 2025, 10(7), 427; https://doi.org/10.3390/biomimetics10070427 - 1 Jul 2025
Viewed by 1372
Abstract
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, [...] Read more.
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, and hydrofoils that actively change shape, reducing drag, improving maneuverability, and harvesting energy from unsteady flows. This review surveys over 296 studies, with primary emphasis on literature published between 2015 and 2025, distilling four biological archetypes—avian wing morphing, bat-wing elasticity, fish-fin compliance, and tubercled marine flippers—and tracing their translation into morphing aircraft, ornithopters, rotorcraft, unmanned aerial vehicles, and tidal or wave-energy converters. We compare experimental demonstrations and numerical simulations, identify consensus performance gains (up to 30% increase in lift-to-drag ratio, 4 dB noise reduction, and 15% boost in propulsive or power-capture efficiency), and analyze materials, actuation, control strategies, certification, and durability as the main barriers to deployment. Advances in multifunctional composites, electroactive polymers, and model-based adaptive control have moved prototypes from laboratory proof-of-concept toward field testing. Continued collaboration among biology, materials science, control engineering, and fluid dynamics is essential to unlock robust, scalable morphing technologies that meet future efficiency and sustainability targets. Full article
Show Figures

Figure 1

23 pages, 4562 KiB  
Review
Biomimetic Superhydrophobic Surfaces: From Nature to Application
by Yingke Wang, Jiashun Li, Haoran Song, Fenxiang Wang, Xuan Su, Donghe Zhang and Jie Xu
Materials 2025, 18(12), 2772; https://doi.org/10.3390/ma18122772 - 12 Jun 2025
Cited by 1 | Viewed by 760
Abstract
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy [...] Read more.
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy chemical modifications, researchers have devised various fabrication strategies—including laser etching, sol-gel processes, electrochemical deposition, and molecular self-assembly—to achieve superhydrophobic surfaces characterized by contact angles exceeding 150° and sliding angles below 5°. These technologies have found widespread applications in self-cleaning architectural coatings, efficient oil–water separation membranes, anti-icing materials for aviation, and anti-biofouling medical devices. This article begins by examining natural organisms exhibiting superhydrophobic properties, elucidating the principles underlying their surface structures and the wetting states of droplets on solid surfaces. Subsequently, it categorizes and highlights key fabrication methods and application domains of superhydrophobic surfaces, providing an in-depth and comprehensive discussion. Full article
Show Figures

Figure 1

28 pages, 7673 KiB  
Article
Modal Phase Study on Lift Enhancement of a Locally Flexible Membrane Airfoil Using Dynamic Mode Decomposition
by Wei Kang, Shilin Hu, Bingzhou Chen and Weigang Yao
Aerospace 2025, 12(4), 313; https://doi.org/10.3390/aerospace12040313 - 6 Apr 2025
Viewed by 338
Abstract
The dynamic mode decomposition serves as a useful tool for the coherent structure extraction of the complex flow fields with characteristic frequency identification, but the phase information of the flow modes is paid less attention to. In this study, phase information around the [...] Read more.
The dynamic mode decomposition serves as a useful tool for the coherent structure extraction of the complex flow fields with characteristic frequency identification, but the phase information of the flow modes is paid less attention to. In this study, phase information around the locally flexible membrane airfoil is quantitatively studied using dynamic mode decomposition (DMD) to unveil the physical mechanism of the lift improvement of the membrane airfoil. The flow over the airfoil at a low Reynolds number (Re = 5500) is computed parametrically across a range of angles of attack (AOA = 4°–14°) and membrane lengths (LM = 0.55c–0.70c) using a verified fluid–structure coupling framework. The lift enhancement is analyzed by the dynamic coherent patterns of the membrane airfoil flow fields, which are quantified by the DMD modal phase propagation. A downstream propagation pressure speed (DPP) on the upper surface is defined to quantify the propagation speed of the lagged maximal pressure in the flow separation zone. It is found that a faster DPP speed can induce more vortices. The correlation coefficient between the DPP speed and lift enhancement is above 0.85 at most cases, indicating the significant contribution of vortex evolution to aerodynamic performance. The DPP speed greatly impacts the retention time of dominant vortices on the upper surface, resulting in the lift enhancement. Full article
Show Figures

Figure 1

17 pages, 2414 KiB  
Article
Analysis of Large Membrane Vibrations Using Fractional Calculus
by Nihar Ranjan Mallick, Snehashish Chakraverty and Rajarama Mohan Jena
Fractal Fract. 2025, 9(4), 219; https://doi.org/10.3390/fractalfract9040219 - 31 Mar 2025
Viewed by 439
Abstract
The study of vibration equations of large membranes is crucial in various scientific and engineering fields. Analyzing the vibration equations of bridges, roofs, and spacecraft structures helps in designing structures that resist excessive oscillations and potential failures. Aircraft wings, parachutes, and satellite components [...] Read more.
The study of vibration equations of large membranes is crucial in various scientific and engineering fields. Analyzing the vibration equations of bridges, roofs, and spacecraft structures helps in designing structures that resist excessive oscillations and potential failures. Aircraft wings, parachutes, and satellite components often behave like large membranes. Understanding their vibration characteristics is essential for stability, efficiency, and durability. Studying large membrane vibration involves solving partial differential equations and eigenvalue problems, contributing to advancements in numerical methods and computational physics. In this paper, the Elzaki transformation decomposition method and the Shehu transformation decomposition method, along with inverse Elzaki and inverse Shehu transformations, are used to investigate the fractional vibration equation of a large membrane. The solutions are obtained in terms of Mittag–Leffler functions. Full article
Show Figures

Figure 1

13 pages, 5052 KiB  
Article
The Influence of Wing Membrane Elasticity on Aerodynamics in a Bat-Inspired Flapping Robot
by Szu-I Yeh and Chia-Hsu Chiang
Biomimetics 2025, 10(3), 161; https://doi.org/10.3390/biomimetics10030161 - 5 Mar 2025
Cited by 3 | Viewed by 1051
Abstract
This study investigates the aerodynamic effects of wing membrane elasticity inspired by bats, which exhibit exceptional maneuverability and stability. By mimicking bat wing folding and flapping motions, a 2-DOF flapping mechanism was developed to examine the impact of wing membrane elasticity. Polydimethylsiloxane (PDMS) [...] Read more.
This study investigates the aerodynamic effects of wing membrane elasticity inspired by bats, which exhibit exceptional maneuverability and stability. By mimicking bat wing folding and flapping motions, a 2-DOF flapping mechanism was developed to examine the impact of wing membrane elasticity. Polydimethylsiloxane (PDMS) membranes with tunable elastic properties were fabricated by adjusting the ratio of the curing agent (B agent), with the 1/50 ratio exhibiting the greatest extensibility and the lowest Young’s modulus. Experimental results demonstrate that wing membrane elasticity significantly influences aerodynamic performance. During flapping, increased elasticity led to larger camber changes, enhancing vertical lift through stronger leading-edge vortices, as confirmed by PIV flow field measurements. However, when elasticity became excessively high, as in the 1/50 membrane, the lift benefit diminished, and horizontal force decreased, indicating a trade-off between vertical and horizontal aerodynamic performance. Additionally, the folding mechanism was found to be critical for drag reduction, reducing nearly 50% of negative horizontal forces during flight. By integrating adjustable wing membrane properties and a bioinspired flapping mechanism, this research provides valuable insights into the aerodynamic characteristics of bat flight. These findings not only enhance the understanding of flapping wing aerodynamics but also offer guidance for the design of efficient and agile bioinspired aerial vehicles. Full article
(This article belongs to the Special Issue Bioinspired Flapping Wing Aerodynamics: Progress and Challenges)
Show Figures

Figure 1

26 pages, 31728 KiB  
Article
Discovery of Two New Deep-Sea Desmoscolex Species (Nematoda: Desmoscolecidae) with Wing-like Cephalic Setae from the Ulleung Basin, the East Sea, Korea
by Wooin Jung and Hyun Soo Rho
J. Mar. Sci. Eng. 2024, 12(12), 2257; https://doi.org/10.3390/jmse12122257 - 9 Dec 2024
Viewed by 909
Abstract
This study describes two new species of the subgenus Desmoscolex (Nematoda: Desmoscolecidae) from deep-sea habitats in the Ulleung Basin, the East Sea, Korea, located in the NorthWest Pacific Ocean. Both species exhibit cephalic setae with wing-like appendages—a rare trait documented in only a [...] Read more.
This study describes two new species of the subgenus Desmoscolex (Nematoda: Desmoscolecidae) from deep-sea habitats in the Ulleung Basin, the East Sea, Korea, located in the NorthWest Pacific Ocean. Both species exhibit cephalic setae with wing-like appendages—a rare trait documented in only a few species of this subgenus. Desmoscolex (Desmoscolex) globiceps sp. nov. is characterized by a rounded head covered with concretion particles, wing-like cephalic setae equipped with thin, flap-like membranes, and oval amphidial fovea that cover most of the head. The body is composed of 17 main rings, bearing slender somatic setae that taper to an open tip and a conical terminal ring that elongates to a short spinneret. Females of this species lack subventral setae on the 14th main ring. Desmoscolex (Desmoscolex) ovaliceps sp. nov. features an oval head covered with foreign particles, wing-like cephalic setae with thin, flap-like membranes, and oval amphids encompassing much of the head. This species also has a body with 17 main rings, with subdorsal setae gradually tapering toward the tip, which is slightly differentiated from the rest, and shorter subventral setae ending with an open distal tip. The terminal ring is conical, slightly tapered, and terminates in an uncovered spinneret. Detailed morphological descriptions of both species are provided, incorporating scanning electron microscopy (SEM) and differential interference contrast (DIC) images. A comparative analysis with previously described taxa is included, along with a pictorial key to assist in the identification of related species, contributing to a deeper understanding of morphological diversity within the subgenus Desmoscolex. Full article
(This article belongs to the Special Issue Biodiversity and Population Ecology of Marine Invertebrates)
Show Figures

Figure 1

11 pages, 1770 KiB  
Article
Comparative Metabolic Profiling in Drosophila suzukii by Combined Treatment of Fumigant Phosphine and Low Temperature
by Junbeom Lee, Hyun-Kyung Kim, Jong-Chan Jeon, Seung-Ju Seok, Gil-Hah Kim, Hyun-Na Koo and Dae-Weon Lee
Metabolites 2024, 14(10), 526; https://doi.org/10.3390/metabo14100526 - 28 Sep 2024
Cited by 3 | Viewed by 1527
Abstract
Background/Objectives: The mechanisms of action of phosphine are diverse and include neurotoxicity, metabolic inhibition, and oxidative stress; however, its efficacy at low temperatures is unclear. Methods: Comparative metabolomics is suitable for investigating the response of the spotted-wing fly Drosophila suzukii to exposure [...] Read more.
Background/Objectives: The mechanisms of action of phosphine are diverse and include neurotoxicity, metabolic inhibition, and oxidative stress; however, its efficacy at low temperatures is unclear. Methods: Comparative metabolomics is suitable for investigating the response of the spotted-wing fly Drosophila suzukii to exposure toward a combination of cold stimuli and fumigant PH3. Results: Under this combined exposure, 52 metabolites exhibiting significant differences in stress were identified and their physiological roles were analyzed in the Drosophila metabolic pathway. Most metabolites were involved in amino acids, TCA cycle, and nucleic acids. In addition, the alteration levels of cell membrane lipids, such as glycerophospholipids, sphingolipids, and glycerolipids, clearly showed changes in the combined treatment compared to PH3 and low temperatures alone. Aconitic acid, a component of the TCA cycle, was completely inhibited by the combined treatment. Conclusions: These results suggest that treatment-specific indicators could be useful biomarkers to indicate the synergistic effects of PH3 and low temperature on energy metabolism. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

24 pages, 43777 KiB  
Article
Socket Array Irregularities and Wing Membrane Distortions at the Eyespot Foci of Butterfly Wings Suggest Mechanical Signals for Color Pattern Determination
by Yugo Nakazato and Joji M. Otaki
Insects 2024, 15(7), 535; https://doi.org/10.3390/insects15070535 - 16 Jul 2024
Cited by 3 | Viewed by 1735
Abstract
Eyespot foci on butterfly wings function as organizers of eyespot color patterns during development. Despite their importance, focal structures have not been examined in detail. Here, we microscopically examined scales, sockets, and the wing membrane in the butterfly eyespot foci of both expanded [...] Read more.
Eyespot foci on butterfly wings function as organizers of eyespot color patterns during development. Despite their importance, focal structures have not been examined in detail. Here, we microscopically examined scales, sockets, and the wing membrane in the butterfly eyespot foci of both expanded and unexpanded wings using the Blue Pansy butterfly Junonia orithya. Images from a high-resolution light microscope revealed that, although not always, eyespot foci had scales with disordered planar polarity. Scanning electron microscopy (SEM) images after scale removal revealed that the sockets were irregularly positioned and that the wing membrane was physically distorted as if the focal site were mechanically squeezed from the surroundings. Focal areas without eyespots also had socket array irregularities, but less frequently and less severely. Physical damage in the background area induced ectopic patterns with socket array irregularities and wing membrane distortions, similar to natural eyespot foci. These results suggest that either the process of determining an eyespot focus or the function of an eyespot organizer may be associated with wing-wide mechanics that physically disrupt socket cells, scale cells, and the wing membrane, supporting the physical distortion hypothesis of the induction model for color pattern determination in butterfly wings. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

15 pages, 7829 KiB  
Article
A Review of Miroculis (Ommaethus) Savage and Peters, 1983 (Ephemeroptera: Leptophlebiidae)
by Frederico Falcão Salles, Gabriel Martins Pantoja, Isabel Cristina Hernandez Cortes and Thales Orlando
Taxonomy 2024, 4(2), 432-446; https://doi.org/10.3390/taxonomy4020021 - 19 Jun 2024
Viewed by 1255
Abstract
Miroculis (Ommaethus) Savage and Peters, 1983 (Ephemeroptera, Leptophlebiidae) is reviewed based on fresh material from Southeastern Brazil and on type specimens. Miroculis (Ommaethus) cipoensis sp. n. is described based on male and female imagos from Serra do Cipó, Minas Gerais State, Brazil. It [...] Read more.
Miroculis (Ommaethus) Savage and Peters, 1983 (Ephemeroptera, Leptophlebiidae) is reviewed based on fresh material from Southeastern Brazil and on type specimens. Miroculis (Ommaethus) cipoensis sp. n. is described based on male and female imagos from Serra do Cipó, Minas Gerais State, Brazil. It can be distinguished from other species of the subgenus based on the following characteristics: forewings with membrane brown and dark brown mark around cross veins; hind wing uniformly brown; forceps segment I light brown, segment II and III lighter; penis lobe long (at least ⅔ of forceps segment I) and apically rounded and curved on apical ¼; length of body between 5.0 and 6.3 mm. Photographs of fresh material belonging to M. (O.) froehlichi Savage and Peters, 1983 and M. (O.) mourei Savage and Peters, 1983 are provided, clarifying the boundaries between the existing species of the subgenus. Based on that, M. (O.) misionensis Domínguez, 2007 is considered a junior synonym of M. (O.) mourei. A key to the male imagos of the subgenus is presented, as well as a distributional map with updated records of the species. Full article
Show Figures

Figure 1

17 pages, 3241 KiB  
Review
Crystal-Inspired Cellular Metamaterials and Triply Periodic Minimal Surfaces
by Maxim Arsentev, Eduard Topalov, Sergey Balabanov, Evgenii Sysoev, Igor Shulga, Marsel Akhmatnabiev, Maxim Sychov, Ekaterina Skorb and Michael Nosonovsky
Biomimetics 2024, 9(5), 285; https://doi.org/10.3390/biomimetics9050285 - 10 May 2024
Cited by 8 | Viewed by 2734
Abstract
Triply periodic minimal surfaces (TPMSs) are found in many natural objects including butterfly wings, sea urchins, and biological membranes. They simultaneously have zero mean curvature at every point and a crystallographic group symmetry. A metamaterial can be created from such periodic surfaces or [...] Read more.
Triply periodic minimal surfaces (TPMSs) are found in many natural objects including butterfly wings, sea urchins, and biological membranes. They simultaneously have zero mean curvature at every point and a crystallographic group symmetry. A metamaterial can be created from such periodic surfaces or used as a reinforcement of a composite material. While a TPMS as a mathematical object has been known since 1865, only novel additive manufacturing (AM) technology made it possible to fabricate cellular materials with complex TPMS shapes. Cellular TPMS-based metamaterials have remarkable properties related to wetting/liquid penetration, shock absorption, and the absence of stress concentrators. Recent studies showed that TPMSs are also found in natural crystals when electron surfaces are considered. Artificial crystal-inspired metamaterials mimic such crystals including zeolites and schwarzites. These metamaterials are used for shock, acoustic waves, and vibration absorption, and as structural materials, heat exchangers, and for other applications. The choice of the crystalline cell of a material, as well as its microstructure, plays a decisive role in its properties. The new area of crystal-inspired materials has many common features with traditional biomimetics with models being borrowed from nature and adjusted for engineering applications. Full article
Show Figures

Figure 1

20 pages, 22640 KiB  
Article
The First Defined Null Allele of the Notch Regulator, a Suppressor of Deltex: Uncovering Its Novel Roles in Drosophila melanogaster Oogenesis
by Marian B. Wilkin, Rory Whiteford, Tanveer Akbar, Samira Hosseini-Alghaderi, Raluca Revici, Ann-Marie Carbery and Martin Baron
Biomolecules 2024, 14(5), 522; https://doi.org/10.3390/biom14050522 - 26 Apr 2024
Cited by 2 | Viewed by 2102
Abstract
Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent [...] Read more.
Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of Su(dx) result in developmental phenotypes in the Drosophila wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and Su(dx) functions to provide the developmental robustness of Notch activity to environmental temperature shifts. The full developmental functions of Su(dx) are unclear; however, this is due to a lack of a clearly defined null allele. Here we report the first defined null mutation of Su(dx), generated by P-element excision, which removes the complete open reading frame. We show that the mutation is recessive-viable, with the Notch gain of function phenotypes affecting wing vein and leg development. We further uncover new roles for Su(dx) in Drosophila oogenesis, where it regulates interfollicular stalk formation, egg chamber separation and germline cyst enwrapment by the follicle stem cells. Interestingly, while the null allele exhibited a gain in Notch activity during oogenesis, the previously described Su(dx)SP allele, which carries a seven amino acid in-frame deletion, displayed a Notch loss of function phenotypes and an increase in follicle stem cell turnover. This is despite both alleles displaying similar Notch gain of function in wing development. We attribute this unexpected context-dependent outcome of Su(dx)sp being due to the partial retention of function by the intact C2 and WW domain regions of the protein. Our results extend our understanding of the developmental role of Su(dx) in the tissue renewal and homeostasis of the Drosophila ovary and illustrate the importance of examining an allelic series of mutations to fully understand developmental functions. Full article
(This article belongs to the Special Issue Regulation of Notch Signaling Pathway and Its Relation to Diseases)
Show Figures

Figure 1

Back to TopTop