Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = wind turbine near wake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4555 KiB  
Article
Influence of Geometric Effects on Dynamic Stall in Darrieus-Type Vertical-Axis Wind Turbines for Offshore Renewable Applications
by Qiang Zhang, Weipao Miao, Kaicheng Zhao, Chun Li, Linsen Chang, Minnan Yue and Zifei Xu
J. Mar. Sci. Eng. 2025, 13(7), 1327; https://doi.org/10.3390/jmse13071327 - 11 Jul 2025
Viewed by 316
Abstract
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due [...] Read more.
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due to the pitching motion, where the angle of attack varies cyclically with the blade azimuth. This leads to strong unsteady effects and susceptibility to dynamic stalls, which significantly degrade aerodynamic performance. To address these unresolved issues, this study conducts a comprehensive investigation into the dynamic stall behavior and wake vortex evolution induced by Darrieus-type pitching motion (DPM). Quasi-three-dimensional CFD simulations are performed to explore how variations in blade geometry influence aerodynamic responses under unsteady DPM conditions. To efficiently analyze geometric sensitivity, a surrogate model based on a radial basis function neural network is constructed, enabling fast aerodynamic predictions. Sensitivity analysis identifies the curvature near the maximum thickness and the deflection angle of the trailing edge as the most influential geometric parameters affecting lift and stall behavior, while the blade thickness is shown to strongly impact the moment coefficient. These insights emphasize the pivotal role of blade shape optimization in enhancing aerodynamic performance under inherently unsteady VAWT operating conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

21 pages, 20778 KiB  
Article
Experimental and Numerical Investigation of Localized Wind Effects from Terrain Variations at a Coastal Bridge Site
by Ziyong Lin, Dandan Xia, Yan Jiang, Zhiqun Yuan, Huaifeng Wang and Li Lin
J. Mar. Sci. Eng. 2025, 13(7), 1223; https://doi.org/10.3390/jmse13071223 - 25 Jun 2025
Viewed by 275
Abstract
Terrain conditions may significantly affect the near-ground-layer wind speed in coastal areas. In this research, wind tunnel tests and computational fluid dynamics (CFD) were performed to investigate the impact of topographic changes on the local wind field at coastal bridge sites. Considering the [...] Read more.
Terrain conditions may significantly affect the near-ground-layer wind speed in coastal areas. In this research, wind tunnel tests and computational fluid dynamics (CFD) were performed to investigate the impact of topographic changes on the local wind field at coastal bridge sites. Considering the geographic information system (GIS) information of an offshore bridge site, a 1:1000 topographic model was constructed to conduct tests in the wind tunnel lab under different wind directions. The influences of terrain conditions on localized wind characteristics such as the wind speed and wind attack angle under different test conditions were obtained. The results show that the wind angle varied between −6° and 6° under different conditions. To more comprehensively show the radius of influence on the local terrain, a CFD simulation was conducted. To verify the results of the wind tunnel tests, the SST k-ω model was compared and selected for simulation in this research. The influence radius of localized wind characteristics was determined by CFD simulation. The results indicate that the original topography showed “reverse amplification” on the leeward side, resulting in complex wake flows. These results may provide a reference for the design of wind-resistant structures such as bridges and offshore wind turbines in coastal areas. Full article
Show Figures

Figure 1

16 pages, 9079 KiB  
Article
Study on the Wake Characteristics of the Loess Plateau Terrain Based on Wind Tunnel Experiment
by Yulong Ma, Shoutu Li, Deshun Li, Zhiteng Gao, Xingduo Guo and Qingdong Ma
Energies 2025, 18(4), 958; https://doi.org/10.3390/en18040958 - 17 Feb 2025
Cited by 1 | Viewed by 626
Abstract
The northwest region of China’s loess plateau is an important area for wind power development. However, the unclear understanding of the evolution mechanism of the near-ground atmospheric boundary layer (ABL), which is influenced by its unique geomorphological features, has compromised the safety and [...] Read more.
The northwest region of China’s loess plateau is an important area for wind power development. However, the unclear understanding of the evolution mechanism of the near-ground atmospheric boundary layer (ABL), which is influenced by its unique geomorphological features, has compromised the safety and stability of wind turbine operations. To address this challenge, wind tunnel experiments were conducted to investigate the mean and turbulent characteristics of wake flow generated by mountains in the loess plateau. The results indicate that the terrain significantly affects both the average velocity deficit and turbulence intensity distribution within the wake. Specifically, topographic features dominate turbulent energy transfer and modulate coherent structures in the inertial subrange. Additionally, the scale of these features enhances turbulence energy input at corresponding scales in the fluctuating wind speed spectrum, leading to a non-decaying energy interval within the inertial subregion. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

35 pages, 42329 KiB  
Article
The Influence of Structural Design on the Hydrodynamics of Floating Offshore Wind Turbine Platforms
by Nilotpal Dhar, Charlie J. Lloyd, John Walker and Robert M. Dorrell
J. Mar. Sci. Eng. 2025, 13(2), 248; https://doi.org/10.3390/jmse13020248 - 28 Jan 2025
Cited by 1 | Viewed by 1414
Abstract
Floating offshore wind turbine (FOWT) platforms are subject to a wide range of hydrodynamic loading and dynamic movement, making hydrodynamic force evaluation difficult. Amongst various floating platforms, submersible platforms are structurally complex, with multiple members held together by cross-braces. The influence of these [...] Read more.
Floating offshore wind turbine (FOWT) platforms are subject to a wide range of hydrodynamic loading and dynamic movement, making hydrodynamic force evaluation difficult. Amongst various floating platforms, submersible platforms are structurally complex, with multiple members held together by cross-braces. The influence of these members on hydrodynamic loading is poorly understood. An investigation of the effect of these members on loads is essential to optimise the design of FOWT platforms, mooring systems, and protective coatings, leading to a reduction in construction and maintenance costs. This paper numerically investigates the effect of structural members on the forces acting on a static semi-submersible platform in a unidirectional current flow of Reynolds number (Re) ranging from 2000 to 200,000, based on structural diameter and tidal velocity. The OC4 semi-submersible is chosen as the baseline platform. For each Re, this study is divided into three stages, such that in each stage, the number of members increased. These stages are as follows: (1) a finite cylinder (FC), (2) a finite cylinder with a heave plate (FCHP), (3) three cylinders with heave plates (TCHP) in an equilateral triangle arrangement, and (4) the OC4 semi-sub. The drag coefficient (C¯d) increases with increasing structural members and weakly varies with increasing Re. However, the viscous drag coefficient (C¯f) decreases with increasing Re, and a reverse trend is seen in the case of the pressure drag coefficient (C¯p), with pressure drag dominating over friction drag. Further, the contribution of individual members is observed to vary with Re. The contribution of cylinders towards C¯d is higher than heave plates, showing that contributions directly depend on the aspect ratio of members. In the case of TCHP and OC4, the contribution of the rear members is higher than that of the leading members due to the strong wake effect of the former. Also, the braces and pontoons of OC4 have contributed substantially towards total C¯d, unlike the central cylinder, which has experienced low drag due to the wake effect of the front cylinder and heave plate. Also, flow visualisation has shown vortex cores, and recirculating flows in the near wake of the cylinders and under the heave plates. Recirculation zones under the heave plates lead to vertical pressure on the structures. This vertical pressure increases with the number of structural members and the vertical pressure coefficient (C¯v), varying with Re due to three-dimensionality in the wake. Further, this pressure varies across the bottom surfaces of structures. Analyses of the streamwise pressure coefficient have shown it is highest on the front surfaces of cylinders. The highest friction is on the top and sides of the heave plates, and there is considerable friction on the sides of the cylinder. Full article
Show Figures

Figure 1

25 pages, 19545 KiB  
Article
CFD Analysis on Novel Vertical Axis Wind Turbine (VAWT)
by Chris Sungkyun Bang, Zeeshan A. Rana and Simon A. Prince
Machines 2024, 12(11), 800; https://doi.org/10.3390/machines12110800 - 12 Nov 2024
Cited by 1 | Viewed by 2868
Abstract
The operation of vertical axis wind turbines (VAWTs) to generate low-carbon electricity is growing in popularity. Their advantages over the widely used horizontal axis wind turbine (HAWT) include their low tip speed, which reduces noise, and their cost-effective installation and maintenance. A Farrah [...] Read more.
The operation of vertical axis wind turbines (VAWTs) to generate low-carbon electricity is growing in popularity. Their advantages over the widely used horizontal axis wind turbine (HAWT) include their low tip speed, which reduces noise, and their cost-effective installation and maintenance. A Farrah turbine equipped with 12 blades was designed to enhance performance and was recently the subject of experimental investigation. However, little research has been focused on turbine configurations with more than three blades. The objective of this study is to employ numerical methods to analyse the performance of the Farrah wind turbine and to validate the findings in comparison with experimental results. The investigated blade pitch angles included both positive and negative angles of 7, 15, 20 and 40 degrees. The k-ω SST model with the sliding mesh technique was used to perform simulations of a 14.4 million element unstructured mesh. Comparable trends of power output results in the experimental investigation were obtained and the assumptions of mechanical losses discussed. Wake recovery was determined at an approximate distance of nine times the turbine diameter. Two large complex quasi-symmetric vortical structures were observed between positive and negative blade pitch angles, located in the near wake region of the turbine and remaining present throughout its rotation. It is demonstrated that a number of recognised vortical structures are transferred towards the wake region, further contributing to its formation. Additional notable vortical formations are examined, along with a recirculation zone located in the turbine’s core, which is described to exhibit quasi-symmetric behaviour between positive and negative rotations. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

20 pages, 4554 KiB  
Article
Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines
by Luca Cacciali, Martin O. L. Hansen and Krzysztof Rogowski
Energies 2024, 17(19), 4847; https://doi.org/10.3390/en17194847 - 27 Sep 2024
Cited by 4 | Viewed by 2115
Abstract
A 2-D Lattice Boltzmann Method, designed to ensure stability at high Reynolds numbers, is combined with an Actuator Line Model to compute the loads on a two-bladed vertical axis wind turbine. Tests on the kernel size at a high mesh resolution reveal that [...] Read more.
A 2-D Lattice Boltzmann Method, designed to ensure stability at high Reynolds numbers, is combined with an Actuator Line Model to compute the loads on a two-bladed vertical axis wind turbine. Tests on the kernel size at a high mesh resolution reveal that a size equal to half of the full chord length yields the most accurate results. The aerodynamic load solution is validated against a fully resolved Scale-Adaptive Simulation (SAS) output, demonstrating high correlation, and enabling an assessment of near wake and downstream effects. The model’s adaptability to various rotor operating conditions is confirmed through tests at high and low tip-speed ratios. Additionally, a Biot–Savart-based Vortex Model (VM) is employed for further comparison, showing good agreement with the Lattice Boltzmann output. The results indicate that the Highly Stable Lattice Boltzmann Method integrated with the Actuator Line Model enhances the accuracy of flow field resolution and effectively captures complex aerodynamic phenomena, making it a valuable tool for simulating vertical axis wind turbines. Full article
(This article belongs to the Topic Advances in Wind Energy Technology)
Show Figures

Figure 1

27 pages, 4883 KiB  
Article
Applied Machine Learning to Study the Movement of Air Masses in the Wind Farm Area
by Vladislav N. Kovalnogov, Ruslan V. Fedorov, Andrei V. Chukalin, Vladimir N. Klyachkin, Vladimir P. Tabakov and Denis A. Demidov
Energies 2024, 17(16), 3961; https://doi.org/10.3390/en17163961 - 9 Aug 2024
Cited by 3 | Viewed by 1409
Abstract
Modeling the atmospheric boundary layer (ABL) in the area of a wind farm using computational fluid dynamics (CFD) methods allows us to study the characteristics of air movement, the shading effect, the influence of relief, etc., and can be actively used in studies [...] Read more.
Modeling the atmospheric boundary layer (ABL) in the area of a wind farm using computational fluid dynamics (CFD) methods allows us to study the characteristics of air movement, the shading effect, the influence of relief, etc., and can be actively used in studies of local territories where powerful wind farms are planned to be located. The operating modes of a wind farm largely depend on meteorological phenomena, the intensity and duration of which cause suboptimal operating modes of wind farms, which require the use of modern tools for forecasting and classifying precipitation. The methods and approaches used to predict meteorological phenomena are well known. However, for designed and operated wind farms, the influence of meteorological phenomena on the operating modes, such as freezing rain and hail, remains an urgent problem. This study presents a multi-layered neural network for the classification of precipitation zones, designed to identify adverse meteorological phenomena for wind farms according to weather stations. The neural network receives ten inputs and has direct signal propagation between six hidden layers. During the training of the neural network, an overall accuracy of 81.78%, macro-average memorization of 81.07%, and macro-average memorization of 75.05% were achieved. The neural network is part of an analytical module for making decisions on the application of control actions (control of the boundary layer of the atmosphere by injection of silver iodide, ionization, etc.) and the formation of the initial conditions for CFD modeling. Using the example of the Ulyanovsk wind farm, a study on the movement of air masses in the area of the wind farm was conducted using the initial conditions of the neural network. Digital models of wind turbines and terrain were created in the Simcenter STAR-CCM+ software package, version 2022.1; an approach based on a LES model using an actuating drive disk model (ADM) was implemented for modeling, allowing calculation with an error not exceeding 5%. According to the results of the modeling of the current layout of the wind turbines of the Ulyanovsk wind farm, a significant overlap of the turbulent wake of the wind turbines and an increase in the speed deficit in the area of the wind farm were noted, which significantly reduced its efficiency. A shortage of speed in the near and far tracks was determined for special cases of group placement of wind turbines. Full article
(This article belongs to the Special Issue Solar and Wind Energy Prediction and Its Application Technology)
Show Figures

Figure 1

20 pages, 6137 KiB  
Article
Experimental Study on Aerodynamic Characteristics of Downwind Bionic Tower Wind Turbine
by Junwei Yang, Xin Sun, Hua Yang and Xiangjun Wang
Biomimetics 2024, 9(6), 336; https://doi.org/10.3390/biomimetics9060336 - 2 Jun 2024
Cited by 1 | Viewed by 1527
Abstract
The vibrissae of harbor seals exhibit a distinct three-dimensional structure compared to circular cylinders, resulting in a wave-shaped configuration that effectively reduces drag and suppresses vortex shedding in the wake. However, this unique cylinder design has not yet been applied to wind power [...] Read more.
The vibrissae of harbor seals exhibit a distinct three-dimensional structure compared to circular cylinders, resulting in a wave-shaped configuration that effectively reduces drag and suppresses vortex shedding in the wake. However, this unique cylinder design has not yet been applied to wind power technologies. Therefore, this study applies this concept to the design of downwind wind turbines and employs wind tunnel testing to compare the wake flow characteristics of a single-cylinder model while also investigating the output power and wake performance of the model wind turbine. Herein, we demonstrate that in the single-cylinder test, the bionic case shows reduced turbulence intensity in its wake compared to that observed with the circular cylinder case. The difference in the energy distribution in the frequency domain behind the cylinder was mainly manifested in the near-wake region. Moreover, our findings indicate that differences in power coefficient are predominantly noticeable with high tip speed ratios. Furthermore, as output power increases, this bionic cylindrical structure induces greater velocity deficit and higher turbulence intensity behind the rotor. These results provide valuable insights for optimizing aerodynamic designs of wind turbines towards achieving enhanced efficiency for converting wind energy. Full article
Show Figures

Figure 1

16 pages, 6656 KiB  
Article
Study on the near Wake Aerodynamic Characteristics of Floating Offshore Wind Turbine under Combined Surge and Pitch Motion
by Shudong Leng, Yefeng Cai, Haisheng Zhao, Xin Li and Jiafei Zhao
Energies 2024, 17(3), 744; https://doi.org/10.3390/en17030744 - 5 Feb 2024
Cited by 1 | Viewed by 1853
Abstract
Floating offshore wind turbines (FOWTs) may experience six degree of freedom (DoF) movements under the influence of environmental conditions. Different combinations of platform movements with the same amplitude and frequency may have distinct influences on the aerodynamic characteristics of the wind turbine. In [...] Read more.
Floating offshore wind turbines (FOWTs) may experience six degree of freedom (DoF) movements under the influence of environmental conditions. Different combinations of platform movements with the same amplitude and frequency may have distinct influences on the aerodynamic characteristics of the wind turbine. In this study, a detailed, full-scale CFD model of NREL 5 MW wind turbine is developed to investigate the specific aerodynamic and near wake characteristics under the influence of surge, pitch, and coupled surge–pitch platform motion based on the OpenFOAM tool box. It is clearly noted that different platform movements led to varying relative velocities of the blade, which affected the aerodynamic performance of wind turbines such as thrust, torque, and angle of attack (AOA). On the other hand, when the wind turbine was subjected to combined surge–pitch motion with the same phase, the wake velocity field fluctuated greatly, and the velocity at the center of the wake even exceeded the free flow velocity. Moreover, the platform movement affected the gap between the shed vortices. When the wind turbine moved forward, the gap between the vortices increased, while when the wind turbine moved backward, the gap between the vortices decreased or even converged, resulting in vortex–vortex interaction. Full article
(This article belongs to the Special Issue Advances in Offshore Wind Energy Development)
Show Figures

Figure 1

15 pages, 3631 KiB  
Article
Spatiotemporal Evolution of Wind Turbine Wake Characteristics at Different Inflow Velocities
by Qian Xu, Hui Yang, Yuehong Qian and Yikun Wei
Energies 2024, 17(2), 357; https://doi.org/10.3390/en17020357 - 10 Jan 2024
Viewed by 1351
Abstract
In this paper, the spatiotemporal evolution of wind turbine (WT) wake characteristics is studied based on lattice Boltzmann method-large eddy simulations (LBM-LES) and grid adaptive encryption at different incoming flow velocities. It is clearly captured that secondary flow occurs in the vortex ring [...] Read more.
In this paper, the spatiotemporal evolution of wind turbine (WT) wake characteristics is studied based on lattice Boltzmann method-large eddy simulations (LBM-LES) and grid adaptive encryption at different incoming flow velocities. It is clearly captured that secondary flow occurs in the vortex ring under shear force in the incoming flow direction, the S-wave and the Kelvin–Helmholtz instability occur in the major vortex ring mainly due to the unstable vortex ring interface with small disturbance of shear velocity along the direction of flow velocity. The S-wave and Kelvin–Helmholtz instability are increasingly enhanced in the main vortex ring, and three-dimensional disturbances are inevitable along the mainstream direction when it evolves along the flow direction. With increasing incoming flow, the S-wave and Kelvin–Helmholtz instability are gradually enhanced due to the increasing shear force in the flow direction. This is related to the nonlinear growth mechanism of the disturbance. The analysis of the velocity signal, as well as the pressure signal with a fast Fourier transform, indicates that the interaction between the vortices effectively accelerates the turbulence generation. In the near-field region of the wake, the dissipation mainly occurs at the vortex at the blade tip, and the velocity distribution appears asymmetric around the turbine centerline under shear and the mixing of fluids with different velocities in the wake zone also leads to asymmetric distributions. Full article
(This article belongs to the Special Issue Recent Advances in Wind Farms)
Show Figures

Figure 1

19 pages, 5597 KiB  
Article
Wind Farm Blockage Revealed by Fog: The 2018 Horns Rev Photo Case
by Charlotte Bay Hasager, Nicolai Gayle Nygaard and Gregory S. Poulos
Energies 2023, 16(24), 8014; https://doi.org/10.3390/en16248014 - 11 Dec 2023
Cited by 1 | Viewed by 3363
Abstract
Fog conditions at the offshore wind farm Horns Rev 2 were photographed on 16 April 2018. In this study, we present the results of an analysis of the meteorological conditions on the day of the photographs. The aim of the study was to [...] Read more.
Fog conditions at the offshore wind farm Horns Rev 2 were photographed on 16 April 2018. In this study, we present the results of an analysis of the meteorological conditions on the day of the photographs. The aim of the study was to examine satellite images, meteorological observations, wind turbine data, lidar data, reanalysis data, and wake and blockage model results to assess whether wind farm blockage was a likely cause for the formation of fog upstream of the wind farm. The analysis indicated the advection of warm and moist air mass from the southwest over a cool ocean, causing cold sea fog. Wind speeds at hub height were slightly above cut-in, and there was a strong veer in the shallow stable boundary layer. The most important finding is that the wake and blockage model indicated stagnant air mass arcs to the south and west of the wind farm. In the photographs, sea fog is visible in approximately the same area. Therefore, it is likely that the reduced wind triggered the sea fog condensation due to blockage in this area. A discrepancy between the blockage model and sea fog in the photographs appears in the southwest direction. Slightly higher winds might have occurred locally in a southwesterly direction, which may have dissolved sea fog. The wake model predicted long and narrow wind turbine wakes similar to those observed in the photographs. The novelty of the study is new evidence of wind farm blockage. It fills the gap in knowledge about flow in wind farms. Implications for future research include advanced modeling of flow phenomena near large offshore wind farms relevant to wind farm operators. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

18 pages, 11213 KiB  
Article
Investigation of Physics-Informed Neural Networks to Reconstruct a Flow Field with High Resolution
by Zhou Yang, Yuwang Xu, Jionglin Jing, Xuepeng Fu, Bofu Wang, Haojie Ren, Mengmeng Zhang and Tongxiao Sun
J. Mar. Sci. Eng. 2023, 11(11), 2045; https://doi.org/10.3390/jmse11112045 - 25 Oct 2023
Cited by 4 | Viewed by 3768
Abstract
Particle image velocimetry (PIV) is a widely used experimental technique in ocean engineering, for instance, to study the vortex fields near marine risers and the wake fields behind wind turbines or ship propellers. However, the flow fields measured using PIV in water tanks [...] Read more.
Particle image velocimetry (PIV) is a widely used experimental technique in ocean engineering, for instance, to study the vortex fields near marine risers and the wake fields behind wind turbines or ship propellers. However, the flow fields measured using PIV in water tanks or wind tunnels always have low resolution; hence, it is difficult to accurately reveal the mechanics behind the complex phenomena sometimes observed. In this paper, physics-informed neural networks (PINNs), which introduce the Navier–Stokes equations or the continuity equation into the loss function during training to reconstruct a flow field with high resolution, are investigated. The accuracy is compared with the cubic spline interpolation method and a classic neural network in a case study of reconstructing a two-dimensional flow field around a cylinder, which is obtained through direct numerical simulation. Finally, the validated PINN method is applied to reconstruct a flow field measured using PIV and shows good performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 9491 KiB  
Article
Comparison of Mixing Plane, Frozen Rotor, and Sliding Mesh Methods on a Counter-Rotating Dual-Rotor Wind Turbine
by Ferenc Szlivka, Csaba Hetyei, Gusztáv Fekete and Ildikó Molnár
Appl. Sci. 2023, 13(15), 8982; https://doi.org/10.3390/app13158982 - 5 Aug 2023
Cited by 8 | Viewed by 4598
Abstract
Nowadays, there are numerous new features available in CFD (computational fluid dynamics) that can simulate complex physical phenomena, which used to be challenging to address. However, in current CFD software, certain problems can be simulated using different approaches. In our article, we chose [...] Read more.
Nowadays, there are numerous new features available in CFD (computational fluid dynamics) that can simulate complex physical phenomena, which used to be challenging to address. However, in current CFD software, certain problems can be simulated using different approaches. In our article, we chose different rotating motion methods to analyze a counter-rotating dual-rotor wind turbine (CO-DRWT). Using the different rotating motion approaches we selected (mixing plane, frozen rotor, and sliding mesh), we examined the torque on the rotors and compared them. The following conclusion was reached. If transient fluid flow must be examined, then the sliding mesh method provided the most realistic results, while the frozen rotor method was adequate if we investigated the effect of wake and vortex near the rotating blades or on its environment. The mixing plane method should be used when the focus is on the kinetics and kinematics of the rotating blade or structure. Full article
(This article belongs to the Special Issue Advances and Applications of CFD (Computational Fluid Dynamics))
Show Figures

Figure 1

17 pages, 6236 KiB  
Article
Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil
by Mustafa Özden, Mustafa Serdar Genç and Kemal Koca
Energies 2023, 16(14), 5339; https://doi.org/10.3390/en16145339 - 12 Jul 2023
Cited by 20 | Viewed by 3206
Abstract
The current study is aimed at investigating the influences of vortex generator (VG) applications mounted to the suction and pressure surfaces of the S809 wind turbine airfoil at low Reynolds number flow conditions. Both single and double VG applications were investigated to provide [...] Read more.
The current study is aimed at investigating the influences of vortex generator (VG) applications mounted to the suction and pressure surfaces of the S809 wind turbine airfoil at low Reynolds number flow conditions. Both single and double VG applications were investigated to provide technological advancement in wind turbine blades by optimizing their exact positions on the surface of the airfoil. The results of the smoke-wire experiment for the uncontrolled case reveal that a laminar separation bubble formed near the trailing edge of the suction surface, and it was moved towards the leading edge as expected when the angle of attack was increased, resulting in bubble burst and leading-edge flow separation at α = 12°. The u/U, laminar kinetic energy and total fluctuation energy contours obtained from the numerical study clearly show that both the single and double VG applications produced small eddies, and those eddies in the double VG case led the flow to be reattached at the trailing edge of the suction surface and to gain more momentum by energizing. This situation was clearly supported by the results of aerodynamic force; the double VG application caused the lift coefficient to increase, resulting in an enhancement of the aerodynamic performance. A novel finding is that the VG at the pressure surface caused the flow at the wake region to gain more energy and momentum, resulting in a reattached and steadier flow condition. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Research and Applications)
Show Figures

Figure 1

13 pages, 3264 KiB  
Article
Numerical Simulations of the NREL Phase VI Wind Turbine with Low-Amplitude Sinusoidal Pitch
by Amir Akbarzadeh and Iman Borazjani
Fluids 2023, 8(7), 201; https://doi.org/10.3390/fluids8070201 - 3 Jul 2023
Cited by 1 | Viewed by 2636
Abstract
Currently, most wind turbine performance analyses and simulations are performed assuming constant pitch and yaw angles during each rotation. Nevertheless, induced vibration or rotor imbalance can affect the pitch or yaw angle within each rotation. In this study, the effects of low-amplitude sinusoidal [...] Read more.
Currently, most wind turbine performance analyses and simulations are performed assuming constant pitch and yaw angles during each rotation. Nevertheless, induced vibration or rotor imbalance can affect the pitch or yaw angle within each rotation. In this study, the effects of low-amplitude sinusoidal pitch angle oscillations of the blade on the performance of a wind turbine was investigated numerically by comparing it against the baseline (without pitch variations). Large eddy simulations were performed in which the motion of blades was handled by the curvilinear immersed boundary (CURVIB) method. The grid resolution was increased near the moving immersed boundaries using dynamic overset grids to resolve rotating blades. It was found that low-amplitude (up to 3 degrees) sinusoidal oscillations in the pitch angle negligibly affected the mean torque but increased its fluctuations and created distinct features in the wake of the turbine. In fact, the turbine’s mean torque at wind speed of 15 m/s decreases from 1245 N.m to 1223 N.m, while its fluctuation (standard deviation) increases from 2.85 N.m to 7.94 N.m, with a dynamic pitch of 0.5 degrees and frequency of 3.6 Hz. Full article
Show Figures

Figure 1

Back to TopTop