Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = wild fires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 715 KiB  
Article
One Health Approach to Trypanosoma cruzi: Serological and Molecular Detection in Owners and Dogs Living on Oceanic Islands and Seashore Mainland of Southern Brazil
by Júlia Iracema Moura Pacheco, Louise Bach Kmetiuk, Melissa Farias, Gustavo Gonçalves, Aaronson Ramathan Freitas, Leandro Meneguelli Biondo, Cristielin Alves de Paula, Ruana Renostro Delai, Cláudia Turra Pimpão, João Henrique Perotta, Rogério Giuffrida, Vamilton Alvares Santarém, Helio Langoni, Fabiano Borges Figueiredo, Alexander Welker Biondo and Ivan Roque de Barros Filho
Trop. Med. Infect. Dis. 2025, 10(8), 220; https://doi.org/10.3390/tropicalmed10080220 - 2 Aug 2025
Viewed by 223
Abstract
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to [...] Read more.
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to detect anti-T. cruzi antibodies, while dog serum samples were tested using indirect fluorescent antibodies in an immunofluorescence assay (IFA). Seropositive human and dog individuals were also tested using quantitative polymerase chain reaction (qPCR) in corresponding blood samples. Overall, 2/304 (0.6%) human and 1/292 dog samples tested seropositive for T. cruzi by ELISA and IFA, respectively, and these cases were also molecularly positive for T. cruzi by qPCR. Although a relatively low positivity rate was observed herein, these cases were likely autochthonous, and the individuals may have been infected as a consequence of isolated events of disturbance in the natural peridomicile areas nearby. Such a disturbance could come in the form of a fire or deforestation event, which can cause stress and parasitemia in wild reservoirs and, consequently, lead to positive triatomines. In conclusion, T. cruzi monitoring should always be conducted in suspicious areas to ensure a Chagas disease-free status over time. Further studies should also consider entomological and wildlife surveillance to fully capture the transmission and spread of T. cruzi on islands and in seashore mainland areas of Brazil and other endemic countries. Full article
(This article belongs to the Section One Health)
Show Figures

Figure 1

17 pages, 3823 KiB  
Article
Lightweight UAV-Based System for Early Fire-Risk Identification in Wild Forests
by Akmalbek Abdusalomov, Sabina Umirzakova, Alpamis Kutlimuratov, Dilshod Mirzaev, Adilbek Dauletov, Tulkin Botirov, Madina Zakirova, Mukhriddin Mukhiddinov and Young Im Cho
Fire 2025, 8(8), 288; https://doi.org/10.3390/fire8080288 - 23 Jul 2025
Viewed by 388
Abstract
The escalating impacts and occurrence of wildfires threaten the public, economies, and global ecosystems. Physiologically declining or dead trees are a great portion of the fires because these trees are prone to higher ignition and have lower moisture content. To prevent wildfires, hazardous [...] Read more.
The escalating impacts and occurrence of wildfires threaten the public, economies, and global ecosystems. Physiologically declining or dead trees are a great portion of the fires because these trees are prone to higher ignition and have lower moisture content. To prevent wildfires, hazardous vegetation needs to be removed, and the vegetation should be identified early on. This work proposes a real-time fire risk tree detection framework using UAV images, which is based on lightweight object detection. The model uses the MobileNetV3-Small spine, which is optimized for edge deployment, combined with an SSD head. This configuration results in a highly optimized and fast UAV-based inference pipeline. The dataset used in this study comprises over 3000 annotated RGB UAV images of trees in healthy, partially dead, and fully dead conditions, collected from mixed real-world forest scenes and public drone imagery repositories. Thorough evaluation shows that the proposed model outperforms conventional SSD and recent YOLOs on Precision (94.1%), Recall (93.7%), mAP (90.7%), F1 (91.0%) while being light-weight (8.7 MB) and fast (62.5 FPS on Jetson Xavier NX). These findings strongly support the model’s effectiveness for large-scale continuous forest monitoring to detect health degradations and mitigate wildfire risks proactively. The framework UAV-based environmental monitoring systems differentiates itself by incorporating a balance between detection accuracy, speed, and resource efficiency as fundamental principles. Full article
Show Figures

Figure 1

12 pages, 1033 KiB  
Article
Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species
by Belén Luna
Plants 2025, 14(14), 2237; https://doi.org/10.3390/plants14142237 - 19 Jul 2025
Viewed by 305
Abstract
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought [...] Read more.
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought resilience and maintaining seed viability under the warmer conditions predicted by climate change. In this study, I investigated the effects of hydration–dehydration cycles on germination response under water stress in eight Cistus species typical of Mediterranean shrublands. First, seeds were exposed to a heat shock to break physical dormancy, simulating fire conditions. Subsequently, they underwent one of two hydration–dehydration treatments (24 or 48 h) and were germinated under a range of water potentials (0, –0.2, –0.4, –0.6, and –0.8 MPa). Six out of eight species showed enhanced germination responses following hydration–dehydration treatments, including higher final germination percentages, earlier germination onset (T0), or increased tolerance to water stress. These findings highlight the role of water availability as a key factor regulating germination in Cistus species and evidence a hydration memory mechanism that may contribute in different ways to post-fire regeneration in Mediterranean ecosystems. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

10 pages, 203 KiB  
Article
Molecular Detection of Various Non-Seasonal, Zoonotic Influenza Viruses Using BioFire FilmArray and GenXpert Diagnostic Platforms
by Charlene Ranadheera, Taeyo Chestley, Orlando Perez, Breanna Meek, Laura Hart, Morgan Johnson, Yohannes Berhane and Nathalie Bastien
Viruses 2025, 17(7), 970; https://doi.org/10.3390/v17070970 - 10 Jul 2025
Viewed by 491
Abstract
Since 2020, the Gs/Gd H5N1 influenza virus (clade 2.3.4.4b) has established itself within wild bird populations across Asia, Europe, and the Americas, causing outbreaks in wild mammals, commercial poultry, and dairy farms. The impacts on the bird populations and the agricultural industry has [...] Read more.
Since 2020, the Gs/Gd H5N1 influenza virus (clade 2.3.4.4b) has established itself within wild bird populations across Asia, Europe, and the Americas, causing outbreaks in wild mammals, commercial poultry, and dairy farms. The impacts on the bird populations and the agricultural industry has been significant, requiring a One Health approach to enhanced surveillance in both humans and animals. To support pandemic preparedness efforts, we evaluated the Cepheid Xpert Xpress CoV-2/Flu/RSV plus kit and the BioFire Respiratory 2.1 Panel for their ability to detect the presence of non-seasonal, zoonotic influenza A viruses, including circulating H5N1 viruses from clade 2.3.4.4b. Both assays effectively detected the presence of influenza virus in clinically-contrived nasal swab and saliva specimens at low concentrations. The results generated using the Cepheid Xpert Xpress CoV-2/Flu/RSV plus kit and the BioFire Respiratory 2.1 Panel, in conjunction with clinical and epidemiological findings provide valuable diagnostic findings that can strengthen pandemic preparedness and surveillance initiatives. Full article
(This article belongs to the Section Animal Viruses)
16 pages, 1330 KiB  
Article
Bee Hotels as a Tool for Post-Fire Recovery of Cavity-Nesting Native Bees
by Kit Stasia Prendergast and Rachele S. Wilson
Insects 2025, 16(7), 659; https://doi.org/10.3390/insects16070659 - 25 Jun 2025
Viewed by 3307
Abstract
Wildfires are increasing in extent and severity under anthropogenic climate change, with potential adverse impacts on native pollinators like wild bees. In 2019/2020, wildfires burned swathes of the Australian bushland. Whilst herbaceous angiosperms may flower in the post-fire environment, providing sustenance to native [...] Read more.
Wildfires are increasing in extent and severity under anthropogenic climate change, with potential adverse impacts on native pollinators like wild bees. In 2019/2020, wildfires burned swathes of the Australian bushland. Whilst herbaceous angiosperms may flower in the post-fire environment, providing sustenance to native bees, pre-made holes created by wood-boring beetles that obligate cavity-nesting “renter” bees may take a longer time to recover. This may prevent native bees from colonising new areas or reduce the populations that have survived. To date, trap-nests, also known as bee hotels, have never been used as a tool to assist in providing nesting resources in post-fire environments. The project “Bee hotels to boost bees after bushfires” supported the recovery of native bee populations by installing artificial nesting substrates (bee hotels) in areas of high biodiversity value that were impacted by the 2019/2020 bushfires. This was achieved through monitoring of 1000 bee hotels (500 bamboo and 500 wooden) and visual surveys at five burnt sites and three control sites (nearby burnt sites without bee hotels) by a native bee ecologist from September–March 2021/2022. The bee hotel uptake was low initially, but by March, all hotels were occupied. Over 800 nests were created by bees in the bee hotels installed for this project and significantly more bees were observed in sites with bee hotels compared to control sites. Across sites, there was a significant negative association between honeybee density and nest occupancy, suggesting honeybees may be exerting competitive pressure on native bees in post-fire habitats. In conclusion, bee hotels, if designed correctly, can aid in boosting cavity-nesting bee populations following fires. Full article
(This article belongs to the Special Issue Bee Conservation: Behavior, Health and Pollination Ecology)
Show Figures

Graphical abstract

20 pages, 932 KiB  
Article
Predicting the Damage of Urban Fires with Grammatical Evolution
by Constantina Kopitsa, Ioannis G. Tsoulos, Andreas Miltiadous and Vasileios Charilogis
Big Data Cogn. Comput. 2025, 9(6), 142; https://doi.org/10.3390/bdcc9060142 - 22 May 2025
Viewed by 747
Abstract
Fire, whether wild or urban, depends on the triad of oxygen, fuel, and heat. Urban fires, although smaller in scale, have devastating impacts, as evidenced by the 2018 wildfire in Mati, Attica (Greece), which claimed 104 lives. The elderly and children are the [...] Read more.
Fire, whether wild or urban, depends on the triad of oxygen, fuel, and heat. Urban fires, although smaller in scale, have devastating impacts, as evidenced by the 2018 wildfire in Mati, Attica (Greece), which claimed 104 lives. The elderly and children are the most vulnerable due to mobility and cognitive limitations. This study applies Grammatical Evolution (GE), a machine learning method that generates interpretable classification rules to predict the consequences of urban fires. Using historical data (casualties, containment time, and meteorological/demographic parameters), GE produces classification rules in human-readable form. The rules achieve over 85% accuracy, revealing critical correlations. For example, high temperatures (>35 °C) combined with irregular building layouts exponentially increase fatality risks, while firefighter response time proves more critical than fire intensity itself. Applications include dynamic evacuation strategies (real-time adaptation), preventive urban planning (fire-resistant materials and green buffer zones), and targeted awareness campaigns for at-risk groups. Unlike “black-box” machine learning techniques, GE offers transparent human-readable rules, enabling firefighters and authorities to make rapid informed decisions. Future advancements could integrate real-time data (IoT sensors and satellites) and extend the methodology to other natural disasters. Protecting urban centers from fires is not only a technological challenge but also a moral imperative to safeguard human lives and societal cohesion. Full article
Show Figures

Figure 1

22 pages, 4290 KiB  
Article
KCNH3 Loss-of-Function Variant Associated with Epilepsy and Neurodevelopmental Delay Enhances Kv12.2 Channel Inactivation
by Christiane K. Bauer, Arne Bilet, Frederike L. Harms and Robert Bähring
Int. J. Mol. Sci. 2025, 26(10), 4631; https://doi.org/10.3390/ijms26104631 - 13 May 2025
Viewed by 428
Abstract
A de novo missense variant in KCNH3 has been identified in a patient with neurological symptoms including seizures. Here, we confirm the previously reported loss-of-function features for the associated Kv12.2 mutant A371V and investigate the underlying mechanism. Loss of function was not rescued [...] Read more.
A de novo missense variant in KCNH3 has been identified in a patient with neurological symptoms including seizures. Here, we confirm the previously reported loss-of-function features for the associated Kv12.2 mutant A371V and investigate the underlying mechanism. Loss of function was not rescued by low temperature during channel biogenesis. Elevated external K+ reduced the rectification of Kv12.2 conductance as predicted by the GHK current equation, allowing the detection of currents mediated by homomeric A371V Kv12.2 channels and a detailed biophysical analysis of the mutant. Compared to wild-type, the voltage dependences of activation and deactivation of A371V Kv12.2 channels were shifted in the positive direction by 15 to 20 mV. Moreover, A371V Kv12.2 channels exhibited accelerated inactivation kinetics combined with a dramatic negative shift in the voltage dependence of inactivation by more than 100 mV. Even in heteromeric wild-type + A371V Kv12.2 channels, inactivation was enhanced, leading to a significant current reduction at physiological potentials. Our Kv12.2 data show similarities to Kv11 channels regarding C-type inactivation and differences regarding the sensitivity to external K+ and pharmacological inhibition of inactivation. The gating modification caused by the A371V amino acid substitution in Kv12.2 renders loss of function voltage-dependent, with a possible impact on neuronal excitability and firing behavior. Full article
(This article belongs to the Special Issue Voltage-Gated Ion Channels and Human Diseases)
Show Figures

Figure 1

18 pages, 1136 KiB  
Review
The Impact of Vegetation Changes in Savanna Ecosystems on Tick Populations in Wildlife: Implications for Ecosystem Management
by Tsireledzo Goodwill Makwarela, Nimmi Seoraj-Pillai and Tshifhiwa Constance Nangammbi
Diversity 2025, 17(5), 314; https://doi.org/10.3390/d17050314 - 26 Apr 2025
Viewed by 855
Abstract
Vegetation changes in savanna ecosystems are playing an increasingly important role in shaping tick populations and the spread of tick-borne diseases, with consequences for both wildlife and livestock health. This study examines how factors such as climate variability, land use, vegetation structures, and [...] Read more.
Vegetation changes in savanna ecosystems are playing an increasingly important role in shaping tick populations and the spread of tick-borne diseases, with consequences for both wildlife and livestock health. This study examines how factors such as climate variability, land use, vegetation structures, and host availability influence tick survival, distribution, and behavior. As grasslands degrade and woody plants become more dominant, ticks are finding more suitable habitats, often supported by microclimatic conditions that favor their development. At the same time, increased contact between domestic and wild animals is facilitating the transmission of pathogens. This review highlights how seasonal patterns, fire regimes, grazing pressure, and climate change are driving shifts in tick activity and expanding their geographical range. These changes increase the risk of disease for animals and humans alike. Addressing these challenges calls for integrated management strategies that include vegetation control, host population monitoring, and sustainable vector control methods. A holistic approach that connects ecological, animal, and human health perspectives is essential for effective disease prevention and long-term ecosystem management. Full article
Show Figures

Graphical abstract

26 pages, 7687 KiB  
Article
A Comparative Study Between Gaofen-1 WFV and Sentinel MSI Imagery for Fire Severity Assessment in a Karst Region, China
by Yao Liao, Yun Liu, Juan Yang, Huixuan Li, Yue Shi, Xue Li, Feng Hu, Jinlong Fan and Zhong Zheng
Forests 2025, 16(4), 597; https://doi.org/10.3390/f16040597 - 28 Mar 2025
Viewed by 331
Abstract
Wild fires frequently influence fragile karst forest ecosystems in southwestern China. We evaluated the potential of Gaofen Wide Field of View (WFV) imagery for assessing the fire severity of karst forest fires. Comparison with Sentinel Multispectral Imager (MSI) imagery was conducted using 19 [...] Read more.
Wild fires frequently influence fragile karst forest ecosystems in southwestern China. We evaluated the potential of Gaofen Wide Field of View (WFV) imagery for assessing the fire severity of karst forest fires. Comparison with Sentinel Multispectral Imager (MSI) imagery was conducted using 19 spectral indices. The highest correlation for Sentinel-2 MSI is 0.634, while for Gaofen-1 WFV it is 0.583. This is not a significant difference. The burned area index, differenced burned area index, and relative differenced modified soil adjusted vegetation index were the highest performing indices for the Gaofen-1 WFV, while the normalized burn ratio plus, differenced normalized differential vegetation index, and relative differenced normalized differential vegetation index were the best for the Sentinel MSI. The total accuracy evaluation of the fire severity assessment for Gaofen-1 WFV ranged from 40 to 44% and that for Sentinel MSI ranged from 40 to 48%. The difference in accuracy between the two satellites was less than 10%. The RMSE values for all six models were close to 0.6, ranging from 0.58 to 0.67. The fire severity maps derived from both imagery sources exhibited overall similar spatial patterns, but the Sentinel-2 MSI maps are obviously finer. These maps matched well with the unmanned aerial vehicle (UAV) images, particularly at high and unburned severity levels. The results of this study revealed that the performance of the Gaofen WFV imagery was close to that of Sentinel MSI imagery which makes it an effective data source for fire severity assessment in this region. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

16 pages, 6314 KiB  
Article
Distribution and Dendrometry Evolution of Gall Oak (Quercus faginea Lam.) Forest Stands in the Region of Murcia (Southeastern Spain) as an Indicator of Climate Change
by Miguel Ángel Sánchez-Sánchez and Alfonso Albacete
Forests 2025, 16(3), 494; https://doi.org/10.3390/f16030494 - 11 Mar 2025
Viewed by 550
Abstract
The southeast of Spain is one of the most arid and desertification-prone areas in continental Europe, with climate change contributing to this situation. Climatic conditions affect the availability of water in the plant structures of wild species, facilitating the onset and/or spread of [...] Read more.
The southeast of Spain is one of the most arid and desertification-prone areas in continental Europe, with climate change contributing to this situation. Climatic conditions affect the availability of water in the plant structures of wild species, facilitating the onset and/or spread of forest fires and increasing aridity. The Region of Murcia, in southeastern Spain, has small forest stands of gall oak (Quercus faginea Lam.) with relict value. It is of interest to investigate the situation of these stands, allowing us to know about their distribution and their evolution in the face of climate change. For this purpose, previous dendrometric studies, available from a specific stand, are considered to be contrasted with current data, individual trees were geolocated, and distribution maps of contrasting environmental conditions were created. In general, gall oak has been observed to be distributed up to 1200 m altitude, especially in shady areas and embedded valleys and north-northeast orientations. Importantly, there was a positive evolution of vegetative development, with increments in the number of trees during the study period, despite some negative affections in specific areas due to climate change. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

16 pages, 4586 KiB  
Article
Real-Time Detection of Smoke and Fire in the Wild Using Unmanned Aerial Vehicle Remote Sensing Imagery
by Xijian Fan, Fan Lei and Kun Yang
Forests 2025, 16(2), 201; https://doi.org/10.3390/f16020201 - 22 Jan 2025
Cited by 2 | Viewed by 1284
Abstract
Detecting wildfires and smoke is essential for safeguarding forest ecosystems and offers critical information for the early evaluation and prevention of such incidents. The advancement of unmanned aerial vehicle (UAV) remote sensing has further enhanced the detection of wildfires and smoke, which enables [...] Read more.
Detecting wildfires and smoke is essential for safeguarding forest ecosystems and offers critical information for the early evaluation and prevention of such incidents. The advancement of unmanned aerial vehicle (UAV) remote sensing has further enhanced the detection of wildfires and smoke, which enables rapid and accurate identification. This paper presents an integrated one-stage object detection framework designed for the simultaneous identification of wildfires and smoke in UAV imagery. By leveraging mixed data augmentation techniques, the framework enriches the dataset with small targets to enhance its detection performance for small wildfires and smoke targets. A novel backbone enhancement strategy, integrating region convolution and feature refinement modules, is developed to facilitate the ability to localize smoke features with high transparency within complex backgrounds. By integrating the shape aware loss function, the proposed framework enables the effective capture of irregularly shaped smoke and fire targets with complex edges, facilitating the accurate identification and localization of wildfires and smoke. Experiments conducted on a UAV remote sensing dataset demonstrate that the proposed framework achieves a promising detection performance in terms of both accuracy and speed. The proposed framework attains a mean Average Precision (mAP) of 79.28%, an F1 score of 76.14%, and a processing speed of 8.98 frames per second (FPS). These results reflect increases of 4.27%, 1.96%, and 0.16 FPS compared to the YOLOv10 model. Ablation studies further validate that the incorporation of mixed data augmentation, feature refinement models, and shape aware loss results in substantial improvements over the YOLOv10 model. The findings highlight the framework’s capability to rapidly and effectively identify wildfires and smoke using UAV imagery, thereby providing a valuable foundation for proactive forest fire prevention measures. Full article
Show Figures

Figure 1

15 pages, 4052 KiB  
Article
Engineering of an Alkaline Feruloyl Esterase PhFAE for Enhanced Thermal Stability and Catalytic Efficiency Through Molecular Dynamics and FireProt
by Sheng Yang, Miaofang Lin, Jiyang Chen, Min Liu and Qi Chen
Catalysts 2025, 15(1), 92; https://doi.org/10.3390/catal15010092 - 19 Jan 2025
Viewed by 1368
Abstract
Feruloyl esterases (FAEs) play critical roles in industrial applications such as food processing, pharmaceuticals, and paper production by breaking down plant cell walls and releasing ferulic acid. However, most bacterial FAEs function optimally in acidic environments, limiting their use in alkaline industrial processes. [...] Read more.
Feruloyl esterases (FAEs) play critical roles in industrial applications such as food processing, pharmaceuticals, and paper production by breaking down plant cell walls and releasing ferulic acid. However, most bacterial FAEs function optimally in acidic environments, limiting their use in alkaline industrial processes. Additionally, FAEs with alkaline activity often lack the thermal stability required for demanding industrial conditions. In this study, an alkaline feruloyl esterase, PhFAE, from Pandoraea horticolens was identified that exhibits high catalytic activity but suffers from thermal instability, restricting its broader industrial applications. To address this limitation, molecular dynamics simulations were used to analyze enzyme stability, and FireProt, an automated computational tool, was employed to design stabilizing mutations. The engineered S155F mutant demonstrated a 7.8-fold increase in half-life at 60 °C and a 1.72-fold improvement in catalytic efficiency (Kcat/Km), corresponding to 680% and 72% enhancements, respectively, compared to the wild-type enzyme. Molecular docking and dynamics simulations revealed that these enhancements were likely due to increased hydrophobic interactions and altered surface charge, which stabilized the enzyme’s structure. This study provides an effective strategy for improving the functional properties of FAEs and other industrial enzymes, broadening their applicability in diverse industrial processes. Full article
(This article belongs to the Special Issue Recent Advances in Biocatalysis and Enzyme Engineering)
Show Figures

Figure 1

27 pages, 964 KiB  
Article
An Examination of the Leadership and Management Traits and Style in the Forest Fire Incident Command System: The Cyprus Forest Fire Service
by Nicolas-George Homer Eliades, Achilleas Karayiannis, Georgios Tsantopoulos and Spyros Galatsidas
Fire 2025, 8(1), 6; https://doi.org/10.3390/fire8010006 - 26 Dec 2024
Viewed by 1516
Abstract
Since the early 21st century, wildlands have witnessed an effusion of wildfires, with climate and social changes resulting in unanticipated wildfire activity and impact. For forest fires to be prevented and suppressed effectively, forest firefighting forces have adopted a specific administrative system for [...] Read more.
Since the early 21st century, wildlands have witnessed an effusion of wildfires, with climate and social changes resulting in unanticipated wildfire activity and impact. For forest fires to be prevented and suppressed effectively, forest firefighting forces have adopted a specific administrative system for organizing and managing the fighting force. Under the administrative system, a debate on desired “leadership and management qualities” arises, and hence, this study sought to identify the leadership and management traits that should distinguish individuals in the forest fire incident command system (FFICS) applied by the Department of Forests (Cyprus). The research subject was addressed using mixed method research, employing quantitative and qualitative data. Both datasets were used to distinguish the purposes of the applied triangulation, enabling the examination of differentiation between the trends/positions recorded in terms of the object of study. These findings point to ideal forms of transformational leadership and neoclassical management. The outcomes suggest that at the individual level, the leaders of each of the operating structures should develop leadership qualities related to emotional intelligence, empathy, judgment, critical thinking, and especially self-awareness of strengths and weaknesses. At the stage of pre-suppression, a democratic leadership style (or guiding style) is supported, while during the operational progress stage of the FFICS, a “hybrid” leadership style is suggested, borrowing elements from the democratic and authoritarian (or managerial) leadership styles. The administrative skills of FFICS leaders should include the moral and psychological rewards of subordinates, job satisfaction and recognition, and two-way communication. The current study illustrates the need for divergent leadership and management traits and styles among the different hierarchical structures of the FFICS. Full article
Show Figures

Figure 1

28 pages, 8683 KiB  
Article
Suppression of MT5-MMP Reveals Early Modulation of Alzheimer’s Pathogenic Events in Primary Neuronal Cultures of 5xFAD Mice
by Dominika Pilat, Jean-Michel Paumier, Laurence Louis, Christine Manrique, Laura García-González, Delphine Stephan, Anne Bernard, Raphaëlle Pardossi-Piquard, Frédéric Checler, Michel Khrestchatisky, Eric Di Pasquale, Kévin Baranger and Santiago Rivera
Biomolecules 2024, 14(12), 1645; https://doi.org/10.3390/biom14121645 - 21 Dec 2024
Cited by 1 | Viewed by 1180
Abstract
We previously reported that membrane-type 5-matrix metalloproteinase (MT5-MMP) deficiency not only reduces pathological hallmarks of Alzheimer’s disease (AD) in 5xFAD (Tg) mice in vivo but also impairs interleukin-1 beta (IL-1β)-mediated neuroinflammation and Aβ production in primary Tg immature neural cell cultures after 11 days [...] Read more.
We previously reported that membrane-type 5-matrix metalloproteinase (MT5-MMP) deficiency not only reduces pathological hallmarks of Alzheimer’s disease (AD) in 5xFAD (Tg) mice in vivo but also impairs interleukin-1 beta (IL-1β)-mediated neuroinflammation and Aβ production in primary Tg immature neural cell cultures after 11 days in vitro. We now investigate the effect of MT5-MMP on incipient pathogenic pathways that are activated in cortical primary cultures at 21–24 days in vitro (DIV), during which time neurons are organized into a functional mature network. Using wild-type (WT), MT5-MMP−/− (MT5−/−), 5xFAD (Tg), and 5xFADxMT5-MMP−/− (TgMT5−/−) mice, we generated primary neuronal cultures that were exposed to IL-1β and/or different proteolytic system inhibitors. We assessed neuroinflammation, APP metabolism, synaptic integrity, and electrophysiological properties using biochemical, imaging and whole-cell patch-clamp approaches. The absence of MT5-MMP impaired the IL-1β-mediated induction of inflammatory genes in TgMT5−/− cells compared to Tg cells. Furthermore, the reduced density of dendritic spines in Tg neurons was also prevented in TgMT5−/− neurons. IL-1β caused a strong decrease in the dendritic spine density of WT neurons, which was prevented in MT5−/− neurons. However, the latter exhibited fewer spines than the WT under untreated conditions. The spontaneous rhythmic firing frequency of the network was increased in MT5−/− neurons, but not in TgMT5−/− neurons, and IL-1β increased this parameter only in Tg neurons. In terms of induced somatic excitability, Tg and TgMT5−/− neurons exhibited lower excitability than WT and MT5−/−, while IL-1β impaired excitability only in non-AD backgrounds. The synaptic strength of miniature global synaptic currents was equivalent in all genotypes but increased dramatically in WT and MT5−/− neurons after IL-1β. MT5-MMP deficiency decreased endogenous and overexpressed C83 and C99 levels but did not affect Aβ levels. C99 appears to be cleared by several pathways, including γ-secretase, the autophagolysosomal system, and also α-secretase, via its conversion to C83. In summary, this study confirms that MT5-MMP is a pivotal factor affecting not only neuroinflammation and APP metabolism but also synaptogenesis and synaptic activity at early stages of the pathology, and reinforces the relevance of targeting MT5-MMP to fight AD. Full article
(This article belongs to the Special Issue Role of Matrix Metalloproteinase in Health and Disease)
Show Figures

Figure 1

13 pages, 3342 KiB  
Article
Evaluation of the Thermal Insulation Potential of Post-Harvest Blocks Using the Native Strain of the Edible Mushroom Pleurotus ostreatus
by Miguel Aravena, Leonardo Almonacid-Muñoz, Carlos Rojas-Herrera, Héctor Herrera, Juan Pablo Cárdenas-Ramírez, Alejandro Veliz Reyes and Cristiane Sagredo-Saez
Buildings 2024, 14(12), 3908; https://doi.org/10.3390/buildings14123908 - 6 Dec 2024
Cited by 1 | Viewed by 1123
Abstract
In recent years, the need to adopt materials that are partially or fully recyclable or biodegradable has grown significantly. This paper presents a study aiming to develop a physical and thermal characterization of post-harvest blocks (spent mushroom substrate) used in the production of [...] Read more.
In recent years, the need to adopt materials that are partially or fully recyclable or biodegradable has grown significantly. This paper presents a study aiming to develop a physical and thermal characterization of post-harvest blocks (spent mushroom substrate) used in the production of the edible mushroom Pleurotus ostreatus in order to test its feasibility as an insulation material. For this purpose, culture blocks based on wheat straw residues were prepared using a wild strain of the fungus. After the mushroom harvest, the post-harvest blocks were evaluated for stability, thermal conductivity, moisture content, fire behavior, and surface analysis. The results showed that the post-harvest blocks had an average thermal conductivity of 0.032 W/mK, a density of 56.63 kg/m3, and a moisture content of 5.96%. They also exhibited high fire resistance. The culture blocks showed stable dimensional properties, reasonable productivity, low moisture, high density, and fire resistance. Therefore, results suggest that this material could be used as insulation in construction. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop