Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = whole-cell bacterial biosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2642 KiB  
Article
Optimizing Whole-Cell Biosensors for the Early Detection of Crop Infections: A Proof-of-Concept Study
by Nadav Zanger and Evgeni Eltzov
Biosensors 2025, 15(5), 300; https://doi.org/10.3390/bios15050300 - 8 May 2025
Cited by 1 | Viewed by 493
Abstract
This study presents a proof-of-concept evaluation of optimized whole-cell biosensors designed for the real-time detection of crop infections. Genetically engineered luminescent bacterial strains were used to detect volatile organic compounds (VOCs) emitted by crops during spoilage. Key factors investigated include bacterial uniformity, nutrient [...] Read more.
This study presents a proof-of-concept evaluation of optimized whole-cell biosensors designed for the real-time detection of crop infections. Genetically engineered luminescent bacterial strains were used to detect volatile organic compounds (VOCs) emitted by crops during spoilage. Key factors investigated include bacterial uniformity, nutrient supply, and temperature effects. The results demonstrated that lower temperatures (+4 °C) yielded higher sensor sensitivity and prolonged bacterial viability. A proof-of-concept evaluation was conducted in storage-like conditions, showing effective infection detection in potatoes. These findings underscore the potential of whole-cell-based biosensors for monitoring postharvest production in cold storage environments. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

29 pages, 4900 KiB  
Article
Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors
by Elise Rotureau, Christophe Pagnout and Jérôme F. L. Duval
Biosensors 2024, 14(11), 552; https://doi.org/10.3390/bios14110552 - 13 Nov 2024
Viewed by 1395
Abstract
There is currently a critical need for understanding how the response and activity of whole-cell bacterial reporters positioned in a complex biological or environmental matrix are impacted by the physicochemical properties of their micro-environment. Accordingly, a comprehensive analysis of the bioluminescence response of [...] Read more.
There is currently a critical need for understanding how the response and activity of whole-cell bacterial reporters positioned in a complex biological or environmental matrix are impacted by the physicochemical properties of their micro-environment. Accordingly, a comprehensive analysis of the bioluminescence response of Cd(II)-inducible PzntA-luxCDABE Escherichia coli biosensors embedded in silica-based hydrogels is reported to decipher how metal bioavailability, cell photoactivity and ensuing light bioproduction are impacted by the hydrogel environment and the associated matrix effects. The analysis includes the account of (i) Cd speciation and accumulation in the host hydrogels, in connection with their reactivity and electrostatic properties, and (ii) the reduced bioavailability of resources for the biosensors confined (deep) inside the hydrogels. The measurements of the bioluminescence response of the Cd(II) inducible-lux biosensors in both hydrogels and free-floating cell suspensions are completed by those of the constitutive rrnB P1-luxCDABE E. coli so as to probe cell metabolic activity in these two situations. The approach contributes to unraveling the connections between the electrostatic hydrogel charge, the nutrient/metal bioavailabilities and the resulting Cd-triggered bioluminescence output. Biosensors are hosted in hydrogels with thickness varying between 0 mm (the free-floating cell situation) and 1.6 mm, and are exposed to total Cd concentrations from 0 to 400 nM. The partitioning of bioavailable metals at the hydrogel/solution interface following intertwined metal speciation, diffusion and Boltzmann electrostatic accumulation is addressed by stripping chronopotentiometry. In turn, we detail how the bioluminescence maxima generated by the Cd-responsive cells under all tested Cd concentration and hydrogel thickness conditions collapse remarkably well on a single plot featuring the dependence of bioluminescence on free Cd concentration at the individual cell level. Overall, the construction of this master curve integrates the contributions of key and often overlooked processes that govern the bioavailability properties of metals in 3D matrices. Accordingly, the work opens perspectives for quantitative and mechanistic monitoring of metals by biosensors in environmental systems like biofilms or sediments. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Graphical abstract

11 pages, 3509 KiB  
Article
Quantitative Chemical Sensing Using Genetically Engineered Bacterial Bioreporters
by Yonatan Uziel, Yossef Kabessa, Benjamin Shemer, Etai Shpigel, Shimshon Belkin and Aharon J. Agranat
Chemosensors 2024, 12(10), 207; https://doi.org/10.3390/chemosensors12100207 - 11 Oct 2024
Cited by 1 | Viewed by 1248
Abstract
We present a generic quantitative chemical sensing methodology for assessing the concentration of a target material (TM) in an aqueous solution by using bioluminescent microbial bioreporters as the core sensing elements. Such bioreporters, genetically engineered to respond to the presence of a TM [...] Read more.
We present a generic quantitative chemical sensing methodology for assessing the concentration of a target material (TM) in an aqueous solution by using bioluminescent microbial bioreporters as the core sensing elements. Such bioreporters, genetically engineered to respond to the presence of a TM in their microenvironment by emitting bioluminescence, have previously been mostly designed to report the presence or absence of the TM in the sample. We extend this methodology to also assess the TM concentration, by exploiting the dose-dependency of the TM-induced luminescence. To overcome luminescence intensity variations due to bacterial batch differences and the ambient temperature, simultaneous measurements were carried out on sample solutions containing known concentrations of the TM. A “standard ratio” parameter, defined as the ratio between the two measurements, is shown to be independent of the bacterial batch and the temperature, and hence provides the conceptual basis for a generic quantitative chemical sensing methodology. Assessment of 2,4-dinitrotoluene (DNT) concentration in solutions is demonstrated with an accuracy of 2.5% over a wide dynamic range. Full article
Show Figures

Figure 1

12 pages, 3242 KiB  
Article
Electrochemical Impedance Spectroscopy-Based Microfluidic Biosensor Using Cell-Imprinted Polymers for Bacteria Detection
by Shiva Akhtarian, Satinder Kaur Brar and Pouya Rezai
Biosensors 2024, 14(9), 445; https://doi.org/10.3390/bios14090445 - 18 Sep 2024
Cited by 6 | Viewed by 2121
Abstract
The rapid and sensitive detection of bacterial contaminants using low-cost and portable point-of-need (PoN) biosensors has gained significant interest in water quality monitoring. Cell-imprinted polymers (CIPs) are emerging as effective and inexpensive materials for bacterial detection as they provide specific binding sites designed [...] Read more.
The rapid and sensitive detection of bacterial contaminants using low-cost and portable point-of-need (PoN) biosensors has gained significant interest in water quality monitoring. Cell-imprinted polymers (CIPs) are emerging as effective and inexpensive materials for bacterial detection as they provide specific binding sites designed to capture whole bacterial cells, especially when integrated into PoN microfluidic devices. However, improving the sensitivity and detection limits of these sensors remains challenging. In this study, we integrated CIP-functionalized stainless steel microwires (CIP-MWs) into a microfluidic device for the impedimetric detection of E. coli bacteria. The sensor featured two parallel microchannels with three-electrode configurations that allowed simultaneous control and electrochemical impedance spectroscopy (EIS) measurements. A CIP-MW and a non-imprinted polymer (NIP)-MW suspended perpendicular to the microchannels served as the working electrodes in the test and control channels, respectively. Electrochemical spectra were fitted with equivalent electrical circuits, and the charge transfer resistances of both cells were measured before and after incubation with target bacteria. The charge transfer resistance of the CIP-MWs after 30 min of incubation with bacteria was increased. By normalizing the change in charge transfer resistance and analyzing the dose–response curve for bacterial concentrations ranging from 0 to 107 CFU/mL, we determined the limits of detection and quantification as 2 × 102 CFU/mL and 1.4 × 104 CFU/mL, respectively. The sensor demonstrated a dynamic range of 102 to 107 CFU/mL, where bacterial counts were statistically distinguishable. The proposed sensor offers a sensitive, cost-effective, durable, and rapid solution for on-site identification of waterborne pathogens. Full article
Show Figures

Figure 1

22 pages, 8826 KiB  
Article
Microbead-Encapsulated Luminescent Bioreporter Screening of P. aeruginosa via Its Secreted Quorum-Sensing Molecules
by Abraham Abbey Paul, Yael Schlichter Kadosh, Ariel Kushmaro and Robert S. Marks
Biosensors 2024, 14(8), 383; https://doi.org/10.3390/bios14080383 - 8 Aug 2024
Cited by 3 | Viewed by 2729
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that remains a prevalent clinical and environmental challenge. Quorum-sensing (QS) molecules are effective biomarkers in pinpointing the presence of P. aeruginosa. This study aimed to develop a convenient-to-use, whole-cell biosensor using P. aeruginosa reporters individually [...] Read more.
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that remains a prevalent clinical and environmental challenge. Quorum-sensing (QS) molecules are effective biomarkers in pinpointing the presence of P. aeruginosa. This study aimed to develop a convenient-to-use, whole-cell biosensor using P. aeruginosa reporters individually encapsulated within alginate-poly-L-lysine (alginate-PLL) microbeads to specifically detect the presence of bacterial autoinducers. The PLL-reinforced microbeads were prepared using a two-step method involving ionic cross-linking and subsequent coating with thin layers of PLL. The alginate-PLL beads showed good stability in the presence of a known cation scavenger (sodium citrate), which typically limits the widespread applications of calcium alginate. In media containing synthetic autoinducers—such as N-(3-oxo dodecanoyl) homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), or the cell-free supernatants of planktonic or the flow-cell biofilm effluent of wild P. aeruginosa (PAO1)—the encapsulated bacteria enabled a dose-dependent detection of the presence of these QS molecules. The prepared bioreporter beads remained stable during prolonged storage at 4 and −80 °C and were ready for on-the-spot sensing without the need for recovery. The proof-of-concept, optical fiber-based, and whole-cell biosensor developed here demonstrates the practicality of the encapsulated bioreporter for bacterial detection based on specific QS molecules. Full article
Show Figures

Figure 1

14 pages, 1524 KiB  
Article
Biosensor-Based Assessment of Pesticides and Mineral Fertilizers’ Influence on Ecotoxicological Parameters of Soils under Soya, Sunflower and Wheat
by Ludmila Khmelevtsova, Maria Klimova, Shorena Karchava, Tatiana Azhogina, Elena Polienko, Alla Litsevich, Elena Chernyshenko, Margarita Khammami, Ivan Sazykin and Marina Sazykina
Chemosensors 2024, 12(5), 73; https://doi.org/10.3390/chemosensors12050073 - 2 May 2024
Cited by 2 | Viewed by 1993
Abstract
Pesticides and fertilizers used in agriculture can negatively affect the soil, increasing its toxicity. In this work, a battery of whole-cell bacterial lux-biosensors based on the E. coli MG1655 strain with various inducible promoters, as well as the natural luminous Vibrio aquamarinus VKPM [...] Read more.
Pesticides and fertilizers used in agriculture can negatively affect the soil, increasing its toxicity. In this work, a battery of whole-cell bacterial lux-biosensors based on the E. coli MG1655 strain with various inducible promoters, as well as the natural luminous Vibrio aquamarinus VKPM B-11245 strain, were used to assess the effects of agrochemical soil treatments. The advantages of using biosensors are sensitivity, specificity, low cost of analysis, and the ability to assess the total effect of toxicants on a living cell and the type of their toxic effect. Using the V. aquamarinus VKPM B-11245 strain, the synergistic effect of combined soil treatment with pesticides and mineral fertilizers was shown, which led to an increase in the overall (integral) toxicity of soils higher than that of the individual application of substances. Several probable implementation mechanisms of agrochemical toxic effects have been discovered. DNA damage caused by both SOS response induction and alkylation, oxidative stress due to increased superoxide levels, and damage to cellular proteins and membranes are among them. Thus, the usage of biosensors makes it possible to assess the cumulative effect of various toxicants on living organisms without using expensive chemical analyses. Full article
(This article belongs to the Special Issue Chemiluminescent and Bioluminescent Sensors)
Show Figures

Figure 1

30 pages, 4958 KiB  
Review
Recent Advances in Aptamer-Based Biosensors for Bacterial Detection
by Vincent Léguillier, Brahim Heddi and Jasmina Vidic
Biosensors 2024, 14(5), 210; https://doi.org/10.3390/bios14050210 - 23 Apr 2024
Cited by 22 | Viewed by 8017
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of [...] Read more.
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection. Full article
(This article belongs to the Special Issue Nano Biosensor and Its Application for In Vivo/Vitro Diagnosis)
Show Figures

Figure 1

11 pages, 1076 KiB  
Article
Genotoxic Effect of Dicyclopropanated 5-Vinyl-2-Norbornene
by Uliana S. Novoyatlova, Andrei G. Kessenikh, Olga V. Kononchuk, Sergey V. Bazhenov, Alexander A. Fomkin, Anna A. Kudryavtseva, Sergey V. Shorunov, Maxim V. Bermeshev and Ilya V. Manukhov
Biosensors 2023, 13(1), 57; https://doi.org/10.3390/bios13010057 - 29 Dec 2022
Cited by 2 | Viewed by 2399
Abstract
Dicyclopropanated 5-vinyl-2-norbornene (dcpVNB) is a strained polycyclic hydrocarbon compound with a high energy content, which makes it promising for the development of propellant components based on it. In this work, the genotoxic properties of dcpVNB were studied using whole-cell lux-biosensors based on [...] Read more.
Dicyclopropanated 5-vinyl-2-norbornene (dcpVNB) is a strained polycyclic hydrocarbon compound with a high energy content, which makes it promising for the development of propellant components based on it. In this work, the genotoxic properties of dcpVNB were studied using whole-cell lux-biosensors based on Escherichia coli and Bacillus subtilis. It was shown that the addition of dcpVNB to bacterial cells leads to the appearance of DNA damage inducing the SOS response and Dps expression with slight activation of the OxyR-mediated response to oxidative stress. The highest toxic effect of dcpVNB is detected by the following lux-biosensors: E. coli pColD-lux, E. coli pDps, B. subtilis pNK-DinC, and B. subtilis pNK-MrgA, in which the genes of bacterial luciferases are transcriptionally fused to the corresponding promoters: Pcda, Pdps, PdinC, and PmrgA. It was shown that lux-biosensors based on B. subtilis, and E. coli are almost equally sensitive to dcpVNB, which indicates the same permeability to this compound of cell wall of Gram-positive and Gram-negative bacteria. The activation of Pdps after dcpVNB addition maintains even in oxyR mutant E. coli strains, which means that the Pdps induction is only partially determined by the OxyR/S regulon. Comparison of specific stress effects caused by dcpVNB and 2-ethyl(bicyclo[2.2.1]heptane) (EBH), characterized by the absence of cyclopropanated groups, shows that structural changes in hydrocarbons could significantly change the mode of toxicity. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

24 pages, 5312 KiB  
Article
Comparative Analysis of Cell Metabolic Activity Sensing by Escherichia coli rrnB P1-lux and Cd Responsive-Lux Biosensors: Time-Resolved Experiments and Mechanistic Modelling
by Eva Delatour, Christophe Pagnout, Marie L. Zaffino and Jérôme F. L. Duval
Biosensors 2022, 12(9), 763; https://doi.org/10.3390/bios12090763 - 16 Sep 2022
Cited by 4 | Viewed by 2699
Abstract
Whole-cell bacterial sensors are used in medical/environmental applications to detect chemicals, and to assess medium toxicity or stress. Non-specific constitutive biosensors generally serve the latter purpose, whereas chemical detection is performed with biosensors involving a specific chemical-inducible promoter. Herein, we show that functioning [...] Read more.
Whole-cell bacterial sensors are used in medical/environmental applications to detect chemicals, and to assess medium toxicity or stress. Non-specific constitutive biosensors generally serve the latter purpose, whereas chemical detection is performed with biosensors involving a specific chemical-inducible promoter. Herein, we show that functioning principles of specific and non-specific whole-cell biosensors are not exclusive as both can probe modulations of cell metabolic activity under stressing conditions. The demonstration is based on (i) time-resolved measurements of bioluminescence produced by constitutive rrnB P1-luxCDABE Escherichia coli biosensor in media differing with respect to carbon source, (ii) theoretical reconstruction of the measured signals using a here-reported theory for bioluminescence generated by constitutive cells, (iii) comparison between time-dependent cell photoactivity (reflecting metabolic activity) retrieved by theory with that we reported recently for cadmium-inducible PzntA-luxCDABE E. coli in media of similar compositions. Whereas signals of constitutive and non-constitutive biosensors differ in terms of shape, amplitude and peak number depending on nutritional medium conditions, analysis highlights the features shared by their respective cell photoactivity patterns mediated by the interplay between stringent response and catabolite repressions. The work advocates for the benefits of a theoretical interpretation for the time-dependent response of biosensors to unravel metabolic and physicochemical contributions to the bioluminescence signal. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Figure 1

28 pages, 5502 KiB  
Article
Exploiting Catabolite Repression and Stringent Response to Control Delay and Multimodality of Bioluminescence Signal by Metal Whole-Cell Biosensors: Interplay between Metal Bioavailability and Nutritional Medium Conditions
by Eva Delatour, Christophe Pagnout, Marie Zaffino and Jérôme F. L. Duval
Biosensors 2022, 12(5), 327; https://doi.org/10.3390/bios12050327 - 11 May 2022
Cited by 8 | Viewed by 2584
Abstract
The time-dependent response of metal-detecting whole-cell luminescent bacterial sensors is impacted by metal speciation/bioavailability in solution. The comprehensive understanding of such connections requires the consideration of the bacterial energy metabolism at stake and the effects of supplied food on cells’ capability to convert [...] Read more.
The time-dependent response of metal-detecting whole-cell luminescent bacterial sensors is impacted by metal speciation/bioavailability in solution. The comprehensive understanding of such connections requires the consideration of the bacterial energy metabolism at stake and the effects of supplied food on cells’ capability to convert bioaccumulated metals into light. Accordingly, we investigated the time response (48 h assay) of PzntA-luxCDABE Escherichia coli Cd biosensors in media differing with respect to sources of amino acids (tryptone or Lysogeny Broth) and carbon (glucose, xylose and mixtures thereof). We show that the resulting coupling between the stringent cell response and glucose/xylose-mediated catabolite repressions lead to well-defined multimodalities and shapes of the bioluminescence signal over time. Based on a recent theory for the time–response of metal-sensing luminescent bacteria, successful theoretical reconstructions of the bioluminescence signals are reported under all Cd concentrations (0–20 nM) and nutritive conditions examined. This analysis leads to the evaluation of time-dependent cell photoactivity and qualitative information on metal speciation/bioavailability in solution. Biosensor performance and the position, shape, number, and magnitude of detected peaks are discussed in relation to the metabolic pathways operative during the successive light emission modes identified here over time. Altogether, the results clarify the contributions of metal/nutrient bio-availabilities and food quality to cell response typology. Full article
(This article belongs to the Special Issue Microbial Biosensors for Environmental Monitoring)
Show Figures

Figure 1

12 pages, 1695 KiB  
Article
Development and Characterization of Indole-Responsive Whole-Cell Biosensor Based on the Inducible Gene Expression System from Pseudomonas putida KT2440
by Paulius Matulis, Ingrida Kutraite, Ernesta Augustiniene, Egle Valanciene, Ilona Jonuskiene and Naglis Malys
Int. J. Mol. Sci. 2022, 23(9), 4649; https://doi.org/10.3390/ijms23094649 - 22 Apr 2022
Cited by 7 | Viewed by 4759
Abstract
Indole is a biologically active compound naturally occurring in plants and some bacteria. It is an important specialty chemical that is used as a precursor by the pharmaceutical and chemical industries, as well as in agriculture. Recently, indole has been identified as an [...] Read more.
Indole is a biologically active compound naturally occurring in plants and some bacteria. It is an important specialty chemical that is used as a precursor by the pharmaceutical and chemical industries, as well as in agriculture. Recently, indole has been identified as an important signaling molecule for bacteria in the mammalian gut. The regulation of indole biosynthesis has been studied in several bacterial species. However, this has been limited by the lack of in vivo tools suitable for indole-producing species identification and monitoring. The genetically encoded biosensors have been shown to be useful for real-time quantitative metabolite analysis. This paper describes the identification and characterization of the indole-inducible system PpTrpI/PPP_RS00425 from Pseudomonas putida KT2440. Indole whole-cell biosensors based on Escherichia coli and Cupriavidus necator strains are developed and validated. The specificity and dynamics of biosensors in response to indole and its structurally similar derivatives are investigated. The gene expression system PpTrpI/PPP_RS00425 is shown to be specifically induced up to 639.6-fold by indole, exhibiting a linear response in the concentration range from approximately 0.4 to 5 mM. The results of this study form the basis for the use of whole-cell biosensors in indole metabolism-relevant bacterial species screening and characterization. Full article
Show Figures

Figure 1

41 pages, 2110 KiB  
Review
Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives
by Beatrix Péter, Eniko Farkas, Sandor Kurunczi, Zoltán Szittner, Szilvia Bősze, Jeremy J. Ramsden, Inna Szekacs and Robert Horvath
Biosensors 2022, 12(4), 188; https://doi.org/10.3390/bios12040188 - 22 Mar 2022
Cited by 25 | Viewed by 7498
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these [...] Read more.
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

21 pages, 2433 KiB  
Review
Strategies for Improving Small-Molecule Biosensors in Bacteria
by Corwin A. Miller, Joanne M. L. Ho and Matthew R. Bennett
Biosensors 2022, 12(2), 64; https://doi.org/10.3390/bios12020064 - 25 Jan 2022
Cited by 20 | Viewed by 7416
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of [...] Read more.
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules. Full article
Show Figures

Figure 1

12 pages, 2586 KiB  
Article
Influence of the luxR Regulatory Gene Dosage and Expression Level on the Sensitivity of the Whole-Cell Biosensor to Acyl-Homoserine Lactone
by Sergey Bazhenov, Uliana Novoyatlova, Ekaterina Scheglova, Vadim Fomin, Svetlana Khrulnova, Olga Melkina, Vladimir Chistyakov and Ilya Manukhov
Biosensors 2021, 11(6), 166; https://doi.org/10.3390/bios11060166 - 23 May 2021
Cited by 13 | Viewed by 4235
Abstract
Aliivibrio fischeri LuxR and Aliivibrio logei LuxR1 and LuxR2 regulatory proteins are quorum sensing transcriptional (QS) activators, inducing promoters of luxICDABEG genes in the presence of an autoinducer (3-oxo-hexanoyl-l-homoserine lactone). In the Aliivibrio cells, luxR genes are regulated by HNS, CRP, LitR, etc. [...] Read more.
Aliivibrio fischeri LuxR and Aliivibrio logei LuxR1 and LuxR2 regulatory proteins are quorum sensing transcriptional (QS) activators, inducing promoters of luxICDABEG genes in the presence of an autoinducer (3-oxo-hexanoyl-l-homoserine lactone). In the Aliivibrio cells, luxR genes are regulated by HNS, CRP, LitR, etc. Here we investigated the role of the luxR expression level in LuxI/R QS system functionality and improved the whole-cell biosensor for autoinducer detection. Escherichia coli-based bacterial lux-biosensors were used, in which Photorhabdus luminescensluxCDABE genes were controlled by LuxR-dependent promoters and luxR, luxR1, or luxR2 regulatory genes. We varied either the dosage of the regulatory gene in the cells using additional plasmids, or the level of the regulatory gene expression using the lactose operon promoter. It was shown that an increase in expression level, as well as dosage of the regulatory gene in biosensor cells, leads to an increase in sensitivity (the threshold concentration of AI is reduced by one order of magnitude) and to a two to threefold reduction in response time. The best parameters were obtained for a biosensor with an increased dosage of luxRA. fischeri (sensitivity to 3-oxo-hexanoyl-l-homoserine lactone reached 30–100 pM). Full article
(This article belongs to the Special Issue Genetically Encoded Biosensor)
Show Figures

Figure 1

20 pages, 3433 KiB  
Article
Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water
by Grégoire Le Brun, Margo Hauwaert, Audrey Leprince, Karine Glinel, Jacques Mahillon and Jean-Pierre Raskin
Biosensors 2021, 11(2), 57; https://doi.org/10.3390/bios11020057 - 21 Feb 2021
Cited by 12 | Viewed by 4373
Abstract
Paper substrates are promising for development of cost-effective and efficient point-of-care biosensors, essential for public healthcare and environmental diagnostics in emergency situations. Most paper-based biosensors rely on the natural capillarity of paper to perform qualitative or semi-quantitative colorimetric detections. To achieve quantification and [...] Read more.
Paper substrates are promising for development of cost-effective and efficient point-of-care biosensors, essential for public healthcare and environmental diagnostics in emergency situations. Most paper-based biosensors rely on the natural capillarity of paper to perform qualitative or semi-quantitative colorimetric detections. To achieve quantification and better sensitivity, technologies combining paper-based substrates and electrical detection are being developed. In this work, we demonstrate the potential of electrical measurements by means of a simple, parallel-plate electrode setup towards the detection of whole-cell bacteria captured in nitrocellulose (NC) membranes. Unlike current electrical sensors, which are mostly integrated, this plug and play system has reusable electrodes and enables simple and fast bacterial detection through impedance measurements. The characterized NC membrane was subjected to (i) a biofunctionalization, (ii) different saline solutions modelling real water samples, and (iii) bacterial suspensions of different concentrations. Bacterial detection was achieved in low conductivity buffers through both resistive and capacitive changes in the sensed medium. To capture Bacillus thuringiensis, the model microorganism used in this work, the endolysin cell-wall binding domain (CBD) of Deep-Blue, a bacteriophage targeting this bacterium, was integrated into the membranes as a recognition bio-interface. This experimental proof-of-concept illustrates the electrical detection of 107 colony-forming units (CFU) mL−1 bacteria in low-salinity buffers within 5 min, using a very simple setup. This offers perspectives for affordable pathogen sensors that can easily be reconfigured for different bacteria. Water quality testing is a particularly interesting application since it requires frequent testing, especially in emergency situations. Full article
Show Figures

Figure 1

Back to TopTop