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Abstract: Aliivibrio fischeri LuxR and Aliivibrio logei LuxR1 and LuxR2 regulatory proteins are quorum
sensing transcriptional (QS) activators, inducing promoters of luxICDABEG genes in the presence of
an autoinducer (3-oxo-hexanoyl-l-homoserine lactone). In the Aliivibrio cells, luxR genes are regulated
by HNS, CRP, LitR, etc. Here we investigated the role of the luxR expression level in LuxI/R QS
system functionality and improved the whole-cell biosensor for autoinducer detection. Escherichia
coli-based bacterial lux-biosensors were used, in which Photorhabdus luminescens luxCDABE genes
were controlled by LuxR-dependent promoters and luxR, luxR1, or luxR2 regulatory genes. We varied
either the dosage of the regulatory gene in the cells using additional plasmids, or the level of the
regulatory gene expression using the lactose operon promoter. It was shown that an increase in
expression level, as well as dosage of the regulatory gene in biosensor cells, leads to an increase in
sensitivity (the threshold concentration of AI is reduced by one order of magnitude) and to a two
to threefold reduction in response time. The best parameters were obtained for a biosensor with
an increased dosage of luxR A. fischeri (sensitivity to 3-oxo-hexanoyl-l-homoserine lactone reached
30–100 pM).

Keywords: whole-cell biosensor; LuxR; autoinducer; quorum sensing

1. Introduction

Quorum Sensing (QS) is a genetic mechanism enabling bacteria to determine popu-
lation density through the exchange of specific signaling molecules, called autoinducers
(AI). The first QS system discovered and described in detail was the LuxI/LuxR system of
marine luminescent bacteria Aliivibrio fischeri [1]. LuxI produces AI, predominantly a 3-oxo-
hexanoyl-l-homoserine lactone (3OC6-HSL), which passively penetrates the cell membrane
and serves for signal transmission between cells [2]. LuxR is a regulatory protein, an
AI-sensitive transcription activator. At a sufficient concentration of AI in the medium,
the LuxR-AI complex is formed and, by binding to the lux-box in the promoter region, it
induces the transcription of luxICDABEG genes [3]. In the closely related psychrophilic
bacteria Aliivibrio logei and Aliivibrio salmonicida the LuxI/LuxR QS system differs from that
in A. fischeri: the regulatory gene is represented by two homologues: luxR1 and luxR2 [4–6].
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Bacterial QS systems regulate biofilm formation, synthesis of virulence factors, bio-
luminescence, and antibiotic resistance [7]. Detection of signaling molecules can enable
early detection of a pathogen infection. The search for autoinducers is predominantly
carried out using mass spectrometry [8–10]; however, this approach requires rather la-
borious sample preparation and expensive equipment. Whole-cell bacterial biosensors
sensitive to AI are an alternative [11]; these can be used not only to search for AI and
AI-synthesizing microorganisms [12,13], but also to investigate compounds that could
block QS systems [14,15].

There are different reporter systems used to create whole-cell biosensors: fluores-
cent, luminescent, or colorimetric [16]. The first whole-cell biosensor sensitive to AI was
constructed on the base of the A. fischeri LuxI/LuxR system and lacZ reporter gene [17].
Additionally, AI-sensitive biosensors have been developed with luxCDABE reporter genes,
which provide a high rate of biosensor response [18], and the gfp-mut3 reporter gene,
which provides a decrease in the fluorescent signal following the disappearance of AI in
the medium [12]. All aforementioned whole-cell biosensors based on A. fischeri LuxR are
capable of detecting 3OC6-HSL at concentrations above 1 nM.

The process of the AI-dependent activation of transcription by a LuxR-type protein
can be described using dissociation equations as two sequential phenomena: the formation
of the LuxR-AI complex, and its binding to the lux-box in the promoter region [19]. This
model predicts an increase in sensitivity of the system to low concentrations of AI with a
concentration increase in the LuxR protein in the cell. Such an effect was described for the
TraR protein [20] when comparing Escherichia coli-based biosensors with the Agrobacterium
tumefacienstraR gene under control of PtetR and PT7 promoters. As expression of regulatory
luxR gene in Aliivibrio sp. cells depends on many intracellular factors (HNS, CRP, LitR,
GroEL/ES, Lon, etc.) [21–24], a natural question to be asked is how the expression level of
different luxR genes influence the corresponding QS systems. Though it is expected that QS
sensitivity would be dependent on LuxR concentration, this has not been demonstrated in
any prior experiments, and the enhanced luxR expression has had no practical use to date.
In this work, we investigated the sensitivity of LuxR-based biosensors to AI depending on
the regulatory gene dosage and the level of its transcription involving the following three
regulatory genes: luxR1 and luxR2 A. logei, and luxR A. fischeri.

2. Materials and Methods
2.1. Bacterial Strains and Plasmids

Bacterial strains and plasmids used in the study are listed in Table 1. Primers and detailed
descriptions of plasmids constructed in this study are presented in the supplementary file.

To study the effect of the dosage of the A. fischeri luxR and A. logei luxR1 and luxR2
genes on the sensitivity of QS systems to AI, we compared pairs of E. coli MG1655 based
biosensor strains carrying the following plasmids or combinations (enhanced luxR dosage
due to the presence of the gene in both introduced plasmids): pFR or (pFR, pSVRAF),
pIVA or (pIVA, pIV3), and pSV16 or (pSV16, pIV2) (Table 1). To investigate the role of
their expression level, regulatory genes were placed under control of Plac; E. coli MG1655
cells were transformed with the following plasmid combinations: pOM and pGEX-LuxR
(luxR A. fischeri under Plac); pR2 and p15Tc-luxR2 (luxR2 A. logei under Plac); and pR2 and
p15Tc-luxR1 (luxR1 A. logei under Plac). As a negative control, cells insensitive to AI and
IPTG with only the pR2 plasmid, without any luxR gene present, were used.
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Table 1. Bacterial strains and plasmids used in the study.

Strain Genotype Source

E. coli MG1655 F-, λ-, ilvG-, rfb-50, rph-1 [25]

Aeromonas spp. BCh1,
BCh2, BCh3, and BCh4 wild type fish intestine, Sea of Azov,

Taganrog Bay

Plasmid Description Source

pIVA
pDEW201 promoter-probe vector with luxR1 A. logei under control of

PluxR1 A. logei and luxCDABE P. luminescens under control of
PluxCDABEG A. logei, Apr

[22]

pSV16 pDEW201, luxR2 A. logei under control of PluxR2 A. logei, luxCDABE P.
luminescens under control of PluxI A. logei [26]

pR2 pDEW201, luxCDABE P. luminescens under control of PluxI A. logei This study

pVFR1 pDEW201, luxR A. fischeri under control of PluxR A. fischeri, luxCDABE
P. luminescens under control of PluxICDABEG A. fischeri [27]

pIV2 pACYC184, luxR2 A. logei under control of PluxR2 inserted into BamHI
site, Cmr [22]

pIV3 pACYC184, luxR1 A. logei under control of PluxR1 inserted into BamHI
site, Cmr [22]

pSVRAF pACYC184, luxR2 A. logei under control of PluxR inserted into BamHI
site, Cmr [23]

pGEX-luxR pGEX-KG vector containing the luxR A. fischeri gene under Ptac
promoter; Apr [27]

pOM
pACYC184 with a BamHI/NruI fragment of A. fischeri DNA from pF1
(luxICDABEG under the PluxICDABEG promoter and lux-regulatory DNA

between luxR and luxI [without luxR]); Cmr
[28]

p15Tc-lac
Gene-expression vector obtained by the ligation of the pGex-KG

plasmid fragment (lacI and Plac) with pACYC184 plasmid fragment (ori
p15A and TcR), Tcr

This study

p15Tc-luxR1 p15Tc-lac, luxR1 A. logei under control of Plac, Tcr

luxR1 was isolated from pIVA and cloned into p15Tc-lac This study

p15Tc-luxR2 p15Tc-lac, luxR2 A. logei under control of Plac, Tcr

luxR2 was isolated from pSV16 and cloned into p15Tc-lac This study

2.2. Culture Medium and Growth Conditions

E. coli cultures were grown in Lysogeny Broth (LB) at 37 ◦C. The LB medium was
composed of 1% tryptone, 0.5% yeast extract, and 1% NaCl. The medium was supple-
mented with 100 µg/mL ampicillin, 20 µg/mL chloramphenicol, or 20 µg/mL tetracycline.
Bacteria were grown on a solid medium (LB + 1.5% agar). Overnight cultures were used
to inoculate liquid LB. The resulting cultures were grown with continuous agitation. The
optical density (OD) of cell suspensions was measured with a KFK-3 photometer (ZOMP,
Russia). For experiments on determining the sensitivity of biosensors, E. coli MG1655 cells
carrying hybrid plasmids or combinations thereof were grown in liquid LB at 37 ◦C to OD
of approximately 0.1, then placed into a microwell plate for luminescence measurements.
For the induction of Plac, IPTG was added to the final concentration of 0.1 mM immediately
prior to the addition of AI. AI was added to the final concentrations of 10 pM to 1 mM with
tenfold dilutions. For cultivation of marine bacteria, the SWT medium was used (w/v, %:
tryptone 0.5, yeast extract 0.25, sea salt 1.5, glycerol 0.3, agar (for solid medium) 1.5).

2.3. Measurement of Bioluminescence

Bioluminescence intensities of 200 µL portions of cell culture were measured in 96 well
plates using SynergyHT (Biotek Instruments, Winooski, VT, USA), or in capeless micro-
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tubes using Biotox-7BM (BioPhysTech, Russia), which is 100 times more sensitive than
SynergyHT. Luminescence values were expressed in relative light units (RLU), specific to
each luminometer.

2.4. Determination of the Minimum Detectable Concentration

Minimum detectable concentration of AI is minimum concentration, which statistically
significantly induces luminescence of biosensor cells (mean of induction factor is above 1
with confidence level of 0.05, one-way t-test, 3 independent biological replicates).

2.5. Data Processing

Error bars on graphics correspond to standard deviations calculated for 3 replicates.
Luminescence induction factor (LIF) was calculated by dividing the luminescence of the
cell culture portion with added AI (Lum(AI)) by the luminescence of the same cell culture
portion without AI (Lum(Ctrl)).

LIF =
Lum(AI)

Lum(Ctrl)
(1)

2.6. DNA Manipulation

Plasmid DNA was isolated with use of GeneJET Plasmid Miniprep Kit (Thermo
Scientific, Waltham, MA, USA). Cell transformation with hybrid plasmids, agarose gel elec-
trophoresis, and isolation of DNA fragments from agarose gel were performed according
to [29]. Restriction and ligation reactions were carried out using enzymes from Promega
(Madison, WI, USA).

2.7. Chemicals

AI—3-oxo-hexanoyl-l-homoserine lactone (3OC6-HSL) was supplied by Sigma (USA).
IPTG—Isopropyl β-D-thiogalactopyranoside solution (Sigma, St. Louis, MO, USA).

3. Results
3.1. Influence of the Regulatory Gene Dosage on the Biosensor Sensitivity to AI

For each of the luxR, luxR1, and luxR2 genes, the effect on the nearest LuxR-regulated
promoter of the lux operon (e.g., PluxI for luxR2 A. logei) was investigated. The graphs of
dependence of the increase in luminescence on the concentration of AI in the medium
are shown in Figure 1. The luminescence measurement was carried out 2 h after the
AI addition.

We observed that a dosage increase in luxR A. fischeri and luxR2 A. logei genes (and
likely of LuxR and LuxR2 protein concentrations in cells) leads to an increase in the sensi-
tivity of biosensor cells and provides a decrease in the minimum detectable concentration
of AI by approximately one order of magnitude.

An increase in the dosage of the A. logei luxR1 gene did not lead to a significant
difference in the properties of the corresponding biosensors, which may be associated with
the regulation of luxR1 itself.
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Figure 1. Dependence of the luminescence induction factor on AI concentration. The cultures of biosensor strains E. coli
with a single copy of a regulatory gene on the pDEW201 vector (R for luxR A. fischeri, R1 and R2 for luxR1 and luxR2 A.
logei), and two copies of a regulatory gene on pDEW201 and pACYC184 vectors (R + R, R1 + R1, and R2 + R2, respectively)
were used. The graphs show the average of three independent replicates.

3.2. Influence of the luxR Genes Expression Level on the Sensitivity of the Biosensor

In view of the absence of any effect from increasing the luxR1 gene dosage on the QS
system sensitivity to the AI, the effect of the enhanced expression level of the luxR1 gene
under control of a promoter unrelated to the QS system was investigated. The possibility
of improving biosensor sensitivity to AI was tested for luxR, luxR1, and luxR2 genes.
Sensitivity of E. coli strains, which carry luxR, luxR1, or luxR2 under control of Plac to
AI, was compared (Figure 2) with that of strains with a different regulatory gene (luxRs)
dosage, which were described in the previous part.

The graph shows that the addition of 1 mM IPTG to the culture of E. coli MG1655 (pR2,
p15Tc-luxR1) cells leads to an increase in the sensitivity and makes it possible to detect
approximately 10 times lower concentrations of AI. Without IPTG addition, the minimum
detectable concentration of AI for E. coli MG1655 (pR2, p15Tc-luxR1) cells is 1 µM; the same
cells supplemented with IPTG are able to detect the AI at concentrations of 100 nM and
above. For luxR A. fischeri and luxR2 A. logei the effect is the opposite—an enhancement of
the regulatory gene expression by IPTG leads to a decrease in both the sensitivity to AI
and the AI-dependent induction amplitude of the biosensor. We assume this indicates the
existence of some optimal regulatory gene dosage and expression level (and, consequently,
the regulatory protein concentration in the cell) for the AI detection.
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Figure 2. AI-dependent induction of luminescence of biosensor cells E. coli MG1655 with luxCDABE P. luminescence under
control of LuxR-inducible promoter and luxR A. fischeri, luxR1, or luxR2 A. logei. Curves show the dependence of induction
by specific AI concentration on regulatory gene dosage and its expression level (regulated with IPTG). The following
plasmids were used: (A) pR2 (Ctrl, negative control without any luxR gene), pVFR1 (R, single luxR A. fischeri copy on
pDEW201 vector), pVFR1 and pSVRAF (R + R, additional copy of luxR A. fischeri on pACYC184 vector), or pOM and
pGEX-LuxR (Plac-R, luxR A. fischeri under Plac); (B) pR2 (Ctrl), pIVA (R1, single luxR1 A. logei copy on pDEW201), pIVA and
pIV3 (R1 + R1, additional copy of luxR1 A. logei on pACYC184), pR2 and p15Tc-luxR1 (Plac-R1, luxR1 A. logei under Plac);
(C) pR2 (Ctrl), pSV16 (R2, single luxR2 A. logei copy on pDEW201), pSV16 and pIV2 (R2 + R2, additional copy of luxR2 A.
logei on pACYC184), or pR2 and p15Tc-luxR2 (Plac-R2, luxR2 A. logei under Plac). The graphs show the average of three
independent replicates.

3.3. Influence of the luxR Dosage and Expression Level on the Base Luminescence of
Biosensor Cells

During the experiments with a set of constructed biosensors the variation of base
luminescence—luminescence intensity of cell culture in absence of AI in the medium—was
obtained. A comparison of background transcription (by luminescence) of LuxR-dependent
promoters in the absence of AI in dependence on both the A. fischeri luxR and A. logei luxR1
and luxR2 genes dosage, and their expression level, is shown in Figure 3.

An increase in the dosage, or an increase in the expression level of each of the in-
vestigated luxR genes, is accompanied by an increase in the biosensor cells background
luminescence value.
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Figure 3. Dependence of base luminescence of LuxR-based biosensors on regulatory gene dosage
and its expression level (without AI addition). Biosensor strains and corresponding signatures are
the same as in previous figures. Graph shows averages of three independent replicates.

3.4. Influence of the Dosage and Expression Level of luxR Genes on the Biosensor Response Time

For variants of biosensors with the greatest effects from enhancing the regulatory gene
dosage (luxR A. fischeri), and inducing regulatory gene expression level (luxR1 A. logei),
characteristic luminescence kinetic curves are given in Figure 4. For biosensors with luxR A.
fischeri (plasmid pVFR1), the kinetics of response to 10 nM AI is compared depending on the
dose of the luxR gene, i.e., with and without the additional pSVRAF plasmid (Figure 4A).
For the A. logei luxR1-based biosensor (a combination of pR2 and p15Tc-luxR1 plasmids), a
comparison of the response kinetics with and without 1 mM IPTG is shown, i.e., at different
levels of expression of the AI-sensitive regulator luxR1 (Figure 4B).
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An increase in the dose of the A. fischeri luxR gene in biosensor cells leads to a response
time reduction from 25 min to 7–10 min. There is significant difference between luxR, luxR1,
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and luxR2-based biosensors: enhancement of luxR1 expression with IPTG significantly
improves sensitivity of the biosensor, while luxR and luxR2-based biosensors are much
better in the case of the enhanced regulatory gene dosage. In terms of rate of response, extra
copies of luxR and luxR2 genes have nearly the same effect; in both cases time of response
shortens to approximately 8 min. Similarly, the induction of the luxR1 gene expression in
the cells of the biosensor strain E. coli MG1655 pR2 p15Tc-luxR1 led to a threefold response
reduction. Thus, an increase in the dosage of a regulatory gene, as well as an increase in
the level of its expression with the help of an inducible promoter, could lead not only to an
increase in the sensitivity of the biosensor, but also to a shorter response time.

3.5. Testing the Lux-Biosensor E. coli MG1655 pVFR1 pSVRAF in Expedition Conditions

The biosensor strain of E. coli MG1655 pVFR1 pSVRAF, which possesses the luxR
A. fischeri gene at an increased dosage and luxCDABE P. luminescens genes under control
of the A. fischeri PluxICDABEG promoter, was tested in expeditions to the White and Azov
Seas, namely with samples of seawater, sea salt, and the intestinal contents of various
fishes. This biosensor strain makes it possible to reliably detect the presence of 3OC6-
HSL in the medium at concentrations of approximately 0.1 nM and higher. Minimum
detectable concentration is about 0.03 nM, but samples are diluted during the measurement
process with cell culture. The addition of a sample to the biosensor cell culture at a
ratio of 1:1 or more makes results unstable. As a reference, the maximum achievable AI
concentration during the cultivation of A. salmonicida and A. logei cells is 10 µM [8] and
the concentration of AI, which significantly affects A. logei cells luminescence, is 100 nM
and above (unpublished data). Portions of samples of either 2 or 20 µL were introduced
into cuvettes with 200 µL of fresh culture of the biosensor strain grown in liquid LB to OD
~0.1. Furthermore, bioluminescence of the cultures with samples added was measured on a
Biotox-7BM device. As a positive control, 3OC6-HSL in concentrations of 1 to 100 nM was
used. On average, for 1 out of 10 samples of the intestinal content of fishes, an induction of
luminescence of biosensor cells was observed. By magnitude, it was comparable to that
with an addition of 3OC6-HSL at concentrations of 1–10 nM (see Supplementary Materials).
Bacterial strains BCh1, BCh2, BCh3, and BCh4 were isolated from AI-containing samples
and tested for their ability to synthesize AI by plating on one plate with the MG1655 pVFR1
pSVRAF biosensor strain (Figure 5). Near to the strains synthesizing AI, luminescence
of biosensor cells visible to the naked eye were observed. A sequence analysis of 16S
rRNA genes showed that isolated AI-synthesizing strains belong to the Aeromonas veronii
or Aeromonas hydrophila species, for which the presence of type I QS system is known [30].
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4. Discussion

The resulting E. coli MG1655 pVFR1 pSVRAF biosensor surpasses previously created
analogs in sensitivity to 3OC6-HSL due to the increased dosage of the regulatory gene
(the minimum detectable concentration is 0.1 nM versus 1 nM and 5 nM previously [5,12]).
These concentrations are close to the limitation determined by the cell volume and ability
of LuxR, and the cell to bind and accumulate AI. An average E. coli cell volume is about
1 µm3 [31]. When the AI concentration is 1 nM, and the AI molecules are evenly distributed
in the medium, only one AI molecule can be detected in the volume of one cell. For the
formation of the LuxR dimer and its association with DNA, at least two AI molecules are
required. At the same time, the minimum detectable AI concentration for our biosensor
is one AI molecule per 10 cell volumes. Thus, at extremely low concentrations of AI, the
activation of biosensor cells could occur either due to an accidental entry of several AI
molecules into the cell (an unlikely event) or an AI accumulation in the cell caused by the
AI binding to LuxR.

It was shown for all tested luxR genes that an increase in the regulatory gene dosage
causes an increase in the sensitivity of the biosensor to AI. At the same time, an increase
in the background luminescence of cells is observed; a similar effect was observed with
the traR A. tumefaciens regulatory gene [20]. The increase in the background luminosity
(Figures 2 and 3) could be explained by a partial degradation of LuxR proteins by proteases
with a subsequent AI-independent activation of transcription by their C-terminal fragments.
The AI-independent activation of luxCDABE and luxI promoters by the C-terminal domain
of LuxR was shown in [28,32,33]. The luxR1 protein is not subject to degradation by the
Lon protease and does not require GroEL/ES for assembly [22]. It is possible that this,
along with the negative regulation of its expression [23], leads to the fact that a change in
the dosage of the luxR1 gene does not affect sensitivity and background luminescence of
the biosensor. The cloning of luxR1 under the non-QS Plac promoter resulted in both an
increased sensitivity and an increased background luminescence (Figures 2 and 3). This
result suggests that the lack of a gene dosage effect for luxR1 is more likely associated with
PluxR1 regulation.

An increase in background luminescence values does not prevent the use of a biosensor
with an increased regulatory gene dosage for AI searching in environmental samples. This
is contrary to a biosensor with luxR under control of an independently inducible promoter—
any inductor of it will result in a luxR expression induction and a false positive signal of
the biosensor. During expeditions to the White and Azov Seas, while using an E. coli-based
biosensor with an increased dosage of the luxR A. fischeri gene, the presence of AI in the
intestines of approximately 10% of the fish was detected and three strains of the Aeromonas
genus, possessing a type I QS system, were isolated. Thus, this biosensor strain is suitable
for the HSLs search in complex environments, including content of fish intestine [34]. This
suggests its applicability for microflora monitoring on fish farms, in particular to control
population density of A. salmonicida bacteria, which are pathogenic for commercial fish
species [35].

5. Conclusions

In this work, we constructed a set of E. coli-based lux-biosensors for detection of
AI with the use of luxR genes from A. logei and A. fischeri. The AI molecules from the
medium could transit through the cell membrane, associate with LuxR transcriptional
activator, and induce expression of luxCDABE genes, resulting in enhanced luminescence
output (Figure 6). The mathematical model predicted an increase in sensitivity to AI of
QS system with raised LuxR concentration in the cell. Here it was shown that QS system
and, consequently, whole-cell biosensor sensitivity to AI, may be significantly improved
by increasing the regulatory gene dosage and its expression level. However, there is an
optimum in amount of LuxR in the cell, and an expression of regulatory genes that is too
intense could negatively affect the biosensor parameters.
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