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Abstract: In recent years, small-molecule biosensors have become increasingly important in synthetic
biology and biochemistry, with numerous new applications continuing to be developed through-
out the field. For many biosensors, however, their utility is hindered by poor functionality. Here,
we review the known types of mechanisms of biosensors within bacterial cells, and the types of
approaches for optimizing different biosensor functional parameters. Discussed approaches for
improving biosensor functionality include methods of directly engineering biosensor genes, consid-
erations for choosing genetic reporters, approaches for tuning gene expression, and strategies for
incorporating additional genetic modules.

Keywords: whole-cell biosensor; bacterial biosensor; biosensor engineering; protein engineering;
genetic engineering; genetic circuits

1. Introduction

The characterization of the bacterial Lac repressor lacI proved a watershed moment in
molecular biology. First detailed in 1961, these studies described how the Lac repressor
responds to lactose and isopropyl β-D-1-thiogalactoside (IPTG) to regulate the expression
of genes within the lac operon [1]. While this work is best known as an examination of the
mechanisms of genetic regulation [2,3], it also showed for the first time how a cell-based
system can be controlled through the addition of a small-molecule inducer. Since then, a
wide variety of additional bacterial biosensors have been identified, capable of producing a
genetic output in response to small molecule analytes [4,5]. Such microbial biosensors have
been shown to be capable of serving as a highly effective detection method and producing
highly sensitive and specific analyte detection while remaining cheap and easy to produce.

In recent years, biosensors have been used for an increasing number of applications.
Generally, we can classify these applications as relating to either industrial, medical, or
environmental detection. Within industry, biosensors provide a potent tool for protein and
metabolic engineering, allowing a pathway or nutrient to be monitored in real time [6,7] and
also enabling screening of large numbers of mutant variants [8]. Biosensors also provide
a useful tool for drug screening, providing both a rapid and highly specific response to a
library of candidate molecules [9,10]. In a medical context, bacterial biosensors can be used
either in situ or within a test tube to detect a variety of ailments, including cancer [11,12],
gut inflammation [13], and infection [14–16]. For example, the output of a biosensor within
bacteria can be tailored to not only detect but also respond to different disease states, to gen-
erate “living bacterial therapeutics” [11,12,16,17]. For environmental detection, biosensors
have been used to identify contaminants within soil samples, water samples, waste streams,
and a variety of other contexts [4,17–19]. Contaminant analytes that can be detected by
biosensors include heavy metals [20,21], organic contaminants [17,22,23], and pharmaceuti-
cals [9,24–26]. Whole-cell biosensors are often advantageous in environmental contexts, as
they often require relatively little instrumentation and thus enable “on-site” detection.
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For many existing biosensors, their use in practical applications can often be limited
by poor functionality. Generally, three attributes can be used to describe a genetic biosen-
sor’s function: (1) the operational range relative to its input, (2) the dynamic range of its
output, and (3) the chemical specificity of the analytes to which it responds (Figure 1).
A biosensor’s operational range is defined by the analyte concentrations that produce a
response, with relevant features including the lowest analyte concentration that yields
a detectable response, and the maximal analyte concentration that yields a saturated re-
sponse [27]. The dynamic range of a biosensor (also referred to as its fold-induction or
signal-to-noise ratio) evaluates the quantity of the output signal at the highest versus the
lowest detectable analyte concentration [28]. Lastly, a biosensor’s specificity pertains to
the range of analytes it can respond to, with less specific biosensors responding to a wider
range of chemicals [29,30]. To date, numerous techniques have been devised to improve
each of the above attributes. As the type of desired parameters depends upon the specific
application in question, it is frequently necessary to retune or engineer a biosensor to tailor
it to a given project. As these biosensor attributes are interdependent, they typically cannot
be tuned independently [31], with this feature often complicating engineering efforts.

Biosensors 2022, 12, x FOR PEER REVIEW 2 of 21 
 

in environmental contexts, as they often require relatively little instrumentation and thus 

enable “on-site” detection. 

For many existing biosensors, their use in practical applications can often be limited 

by poor functionality. Generally, three attributes can be used to describe a genetic biosen-

sor’s function: (1) the operational range relative to its input, (2) the dynamic range of its 

output, and (3) the chemical specificity of the analytes to which it responds (Figure 1). A 

biosensor’s operational range is defined by the analyte concentrations that produce a re-

sponse, with relevant features including the lowest analyte concentration that yields a 

detectable response, and the maximal analyte concentration that yields a saturated re-

sponse [27]. The dynamic range of a biosensor (also referred to as its fold-induction or 

signal-to-noise ratio) evaluates the quantity of the output signal at the highest versus the 

lowest detectable analyte concentration [28]. Lastly, a biosensor’s specificity pertains to 

the range of analytes it can respond to, with less specific biosensors responding to a wider 

range of chemicals [29,30]. To date, numerous techniques have been devised to improve 

each of the above attributes. As the type of desired parameters depends upon the specific 

application in question, it is frequently necessary to retune or engineer a biosensor to tailor 

it to a given project. As these biosensor attributes are interdependent, they typically can-

not be tuned independently [31], with this feature often complicating engineering efforts. 

 

Figure 1. Functional characteristics of genetic biosensors. (A) A biosensor’s operational range de-

scribes the input range of analyte concentrations over which the sensor produces a detectable 

change in output. The dynamic range of a biosensor in turn refers to the range of output signal over 

which the biosensor produces a detectable change in response to analyte ligands. Typically, a bio-

sensor’s dynamic range is described by its fold-induction (also known as the signal-to-noise ratio), 

which is calculated by dividing the biosensor’s highest measured output by its lowest measured 

output. (B) A biosensor’s specificity refers to the range of distinct analyte compounds to which it is 

capable of producing a response, with more specific biosensors responding to fewer ligands. 

While whole-cell microbial biosensors are the focus of this review, we note here that 

numerous other biosensors have been described that incorporate purified proteins or nu-

cleic acids in vitro [5,6]. These types of sensors often utilize an immobilized purified lig-

and-binding biological element, such as an antibody, aptamer, receptor, or lectin [32]. Pu-

rified enzymes can also be used in a similar fashion [33], as demonstrated by the landmark 

description of a glucose biosensor by Clark and Lyons [6]. The interaction between this 

immobilized element and an analyte ligand is then detected using a transducer element, 

which produces a readout signal. Many frequently used transducer modules detect lig-

and-induced changes within the electrical environment, for instance, monitoring electro-

chemical, amperometric, voltametric, conductometric, impedimetric, or potentiometric 

properties [34–37]. Transducers that monitor optical changes are also common, including 

interferometry, photonic resonance, and plasmonic resonance-type devices [34,38–40]. In 

additional to electrical and optical transducers, prior studies have also utilized acoustic, 

R
ep

o
rt

er
 S

ig
n

al
 (

O
u

tp
u

t)

A. Example Biosensor Response Curve

Analyte Concentration (Input)

Operational Range

Dynamic
Range

Available 
Ligands

More Specific Biosensor Less Specific Biosensor

B. Biosensor Ligand Specificity

Figure 1. Functional characteristics of genetic biosensors. (A) A biosensor’s operational range
describes the input range of analyte concentrations over which the sensor produces a detectable
change in output. The dynamic range of a biosensor in turn refers to the range of output signal
over which the biosensor produces a detectable change in response to analyte ligands. Typically, a
biosensor’s dynamic range is described by its fold-induction (also known as the signal-to-noise ratio),
which is calculated by dividing the biosensor’s highest measured output by its lowest measured
output. (B) A biosensor’s specificity refers to the range of distinct analyte compounds to which it is
capable of producing a response, with more specific biosensors responding to fewer ligands.

While whole-cell microbial biosensors are the focus of this review, we note here that
numerous other biosensors have been described that incorporate purified proteins or
nucleic acids in vitro [5,6]. These types of sensors often utilize an immobilized purified
ligand-binding biological element, such as an antibody, aptamer, receptor, or lectin [32].
Purified enzymes can also be used in a similar fashion [33], as demonstrated by the land-
mark description of a glucose biosensor by Clark and Lyons [6]. The interaction between
this immobilized element and an analyte ligand is then detected using a transducer ele-
ment, which produces a readout signal. Many frequently used transducer modules detect
ligand-induced changes within the electrical environment, for instance, monitoring elec-
trochemical, amperometric, voltametric, conductometric, impedimetric, or potentiometric
properties [34–37]. Transducers that monitor optical changes are also common, including
interferometry, photonic resonance, and plasmonic resonance-type devices [34,38–40]. In
additional to electrical and optical transducers, prior studies have also utilized acoustic, me-
chanical, thermal, and magnetic types of transducers [34,35]. The use of such sophisticated
analytical techniques enables detection without a dedicated biological reporter element,
and is in part facilitated by the purification of biological components from the complex
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cellular milieu. Compared to cell-based biosensors, the use of purified components can
thus prove particularly advantageous for instances where a biological recognition event
cannot readily be linked to a reporter gene. In contrast, detection of a cellular reporter gene
typically requires simpler and more commonplace laboratory equipment (see Section 3.3),
and thus may be preferable for projects in which engineering a genetic linkage is more
tractable. Notably, both types of biosensors are capable of highly specific and sensitive
detection, with sensitivity typically on the nanomolar scale (depending on the affinity of
the recognition element) [5].

2. Mechanistic Classes of Biosensors within Bacterial Cells
2.1. Known Mechanisms of Bacterial Biosensors

When developing a strategy to utilize or engineer a biosensor, it is often necessary
to consider its detection mechanism. Generally, genetically encoded biosensors function
by regulating the expression or activity of a reporter gene, which in turn produces a
detectable output signal. Although a wide variety of whole-cell biosensors have been
studied in bacteria, they can mostly be grouped within a small number of mechanistic
categories based upon how they respond to an analyte. To date, four types of biosensor
response mechanisms have been previously described: conformational change, induced
dimerization, conditional stabilization, and conditional enzymatic reaction (Figure 2).
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Figure 2. Known mechanisms of bacterial biosensors. (A) Some biosensors undergo an allosteric
conformational change after binding to a ligand. The biosensor’s adoption of the ligand-bound
conformation thereby results in activation of regulated genes. (B) For other biosensors, recognition
of an analyte by a ligand-binding domain can cause a normally monomeric sensor to dimerize.
Dimerization in turn results in activation of an effector domain, leading to activation of regulated
genes. (C) A third class of bacterial biosensor relies on an activator protein that is unstable and rapidly
degraded in the absence of ligand. After ligand binding, the stability of the biosensor is improved,
resulting in an increased steady-state protein concentration and greater activation of regulated genes.
(D) Enzymes can also be used as biosensors in bacteria. Enzymatic biosensors chemically convert
their otherwise undetectable substrate into a newly detectable compound.
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2.2. Biosensors Reliant on Conformational Change

Among bacterial biosensors, perhaps the most studied mechanism for regulating a
reporter gene is for the biosensor to undergo an allosteric or conformational change in the
presence of its ligand (Figure 2A). This mechanism is widely used by one-component bacte-
rial transcription factors, including sensors within the LacI family [41], TetR family [42],
GntR family [43], and IclR family [44]. In nature, these families of transcription factors all
control the expression of regulated genes through a mechanism of de-repression. In the
absence of ligand, the transcription factor binds a DNA operator site, blocking transcription
of downstream genes. When an inducer ligand is present, the transcription factor binds
the ligand and undergoes a conformational shift, leading to the release of DNA and the
activation of transcription. While the majority of biosensors using this mechanism have
been identified from nature, to date, several small-molecule biosensors relying on a confor-
mational shift have been developed in the lab. For many of these sensors, Förster resonance
energy transfer (FRET) is used as a detectable output [8,45]. These sensors often use two
fluorescent proteins, such as cyan fluorescent protein (CFP) and yellow fluorescent protein
(YFP), together as an FRET pair, relying on the conformational change of the biosensor
protein to bring both proteins into closer proximity in the presence of ligand [46–49]. In a
recent work by Juárez et al., a synthetic transcription factor biosensor was constructed in
the lab, linking ligand binding to DNA transcription through an engineered allosteric inter-
action [50]. Developing a new biosensor with a mechanism of this complexity represents a
significant challenge, and recent success in this area may represent a promising direction
for future work within the field.

In contrast to transcription factor proteins, riboswitches are instead composed of RNA;
however, they function as biosensors through a similar mechanism [51,52]. Upon the
addition of a ligand, the aptamer domain of a riboswitch binds to it. This binding event in
turn leads to a conformational change within the effector domain of the riboswitch, resulting
in the activation of downstream genetic elements. In nature, riboswitches typically regulate
promoters (controlling transcription) or ribosome-binding sites (controlling translation
initiation) [53,54], effectively blocking gene expression in the absence of ligand, while
allowing gene expression upon ligand binding. In recent years, artificial RNA sensors
(termed ‘aptazymes’) have been developed in the laboratory that instead link ligand binding
to the activity of a ribozyme [55,56]. Aptazymes can provide several advantages compared
to traditional riboswitches and represent an exciting avenue of biosensor research.

2.3. Biosensors Utilizing Inducible Dimerization

Inducible dimerization represents a second common biosensor mechanism in bacteria
(Figure 2B). For biosensors of this type, a ligand-binding domain binds an analyte as a
dimer, whereas in the absence of ligand, it is more likely to be present in a monomeric form.
This binding event also indirectly promotes the dimerization of a second effector domain,
which requires dimerization to mediate the activation of regulated genes. In bacteria, two-
component signaling systems provide the best-known example of this mechanism. Two-
component systems typically contain a transmembrane sensor protein and its associated
cytosolic response regulator protein [57,58]. When a ligand comes into contact with the cell,
it is recognized by the extracellular-facing ligand-binding domain of the sensor protein.
This event promotes dimerization of the sensor protein, resulting in activation of histidine
kinase activity and loss of phosphatase activity within its cytosolic-facing domain [57]. This
activation in turn leads to increased phosphorylation of the associated response regulator
protein, which then changes the conformation and stimulates the expression of regulated
genes [59]. Single-component bacterial biosensors using a similar mechanism have recently
been constructed in the laboratory, using inducible dimerization of a transmembrane
protein to build sensors that increase gene expression in response to caffeine [60] and bile
salts [61]. Nucleic acids can also be used to build biosensors that rely on ligand-dependent
dimerization, with various split aptamers [62,63], ribozymes [64,65], DNAzymes [66], and
aptazymes [67,68] having been built to date. However, despite the relative abundance of
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existing aptamers, reliably splitting an aptamer or a catalytic nucleic acid element without
abolishing its function remains a significant challenge [69].

2.4. Conditionally Stabilized Biosensors

Conditional stabilization provides a third biosensor mechanism commonly seen in
bacteria (Figure 2C). This type of biosensor typically functions as a transcriptional activator,
which, in the absence of ligand, is degraded quickly within the cell. Upon binding to its
ligand, the biosensor becomes stabilized, thereby increasing its steady-state concentration
and resulting in greater activation of transcription. The best-known natural examples of
this mechanism in bacteria lie within the LuxR family of quorum sensors [70]. Multiple
biosensors within this family have been shown to depend upon ligand binding for correct
protein folding, exhibiting poor solubility and rapid degradation in its absence compared
to improved stability and activity upon the addition of ligand [71–73]. In recent years,
researchers perhaps unintentionally mimicked the natural sensing strategy of LuxR proteins
in separate studies developing synthetic biosensors that utilize an analogous mechanism to
respond to macrolide antibiotics [74], progesterone [75], auxin [76], and fentanyl [26]. These
sensors each contain a ligand-binding domain that has been engineered to be destabilized
in the absence of ligand. These domains are then fused to transcriptional activator domains,
to enable reduced degradation of the fusion protein and increased activation activity in
the presence of ligand. While the first of these four studies was performed in E. coli, the
latter three studies were performed in yeast [75] and Arabidopsis [26,76], respectively,
demonstrating the versatility of this design strategy across different domains of life.

2.5. Enzymatic Biosensors

Lastly, chemical or enzymatic reaction of a biosensor with its ligand can be viewed as a
fourth type of bacterial sensor mechanism (Figure 2D), though such sensors are considerably
less common and their functionality less uniform than the three aforementioned types. Use
of this strategy was described in 2015 by Libis et al. [77] to detect several compounds of
interest. In this work, the authors added exogenous metabolic enzymes to Escherichia coli
cells that mediated the conversion of target analytes into detectable ligands for existing
biosensors, producing strains capable of sensing cocaine, nitroglycerin, chlorpropham,
2-chloro-4-nitrophenol, parathion, and hippurate [77]. Other groups have since utilized
metabolic enzymes in a similar fashion, producing biosensor strains to detect a variety of
compounds, including lignin [78], glycerate [79], phenylalanine [80], and methanol [81]. In
addition to metabolic enzymes, biosensors have also been constructed using aminoacyl
tRNA synthetase (aaRS) proteins, a class of enzyme that catalyzes ligation between an
amino acid ligand and its cognate tRNA, which leads to incorporation of the amino acid
into proteins. To date, aaRS enzymes have been used in E. coli cells to detect isoleucine [82],
pyrrolysine [83], and a wide variety of synthetic amino acid derivatives [84–87]. In prior
studies, both metabolic and aaRS enzymes have been used to link analyte ligands either to
reporter genes or directly to cell growth. In the latter approach, biosensing E. coli strains
are made to be auxotrophic for the analytes of interest, with this strategy having been
previously employed to detect both naturally occurring and xenobiotic compounds [88–90].

3. Methods for Improving Bacterial Biosensor Properties
3.1. Direct Engineering of Biosensor Genes

A common route for improving a biosensor’s properties is to directly engineer the
protein or RNA sensor component. While this approach often requires significant atten-
tion be devoted to individual biosensors, the plethora of available protein engineering
techniques makes it possible to improve any of the core properties detailed in Figure 1.
Among the protein engineering techniques, directed evolution provides a particularly
versatile approach for biosensors (Figure 3A). Directed evolution first entails making a
diversified library of a gene of interest, using either targeted or random mutagenic meth-
ods. This library is then subjected to a screen or selection to isolate mutant variants with
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improved properties [91]. While it can often be a challenge to link a gene of interest to a
screen or selection marker [92], biosensors often simplify this task as their intrinsic mech-
anism entails a detectable output. Directed evolution has previously been used to alter
the specificity profiles of several biosensors, including the arabinose biosensor AraC [93],
the lactose biosensor LacI [94], the erythromycin biosensor MphR [9], and the caffeine ri-
boswitch biosensor CaffRS [95]. Similarly, directed evolution has also been used to improve
the dynamic and operational range of biosensors, including the muconic acid biosensor
BenM [96], the aromatic aldehyde biosensor PcaV [97,98], and the vanillic acid biosensor
VanR [98]. This approach has also been used to improve RNA-based riboswitches [99],
including sensors for theophylline [100] and thiamine pyrophosphate [101]. In contrast
to rational engineering methods (discussed below), directed evolution can be performed
without the need for significant prior knowledge regarding a biosensor of interest. How-
ever, depending on the improvements desired and the tractability of a given biosensor
system, successful directed evolution projects can often require more significant effort
within the lab. Additionally, while directed evolution often readily allows improvement of
a biosensor’s dynamic and operational range, evolved extensions to a sensor’s specificity
are often limited to compounds that are chemically related to its original ligand.
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Figure 3. Common methods for direct engineering of biosensor genes. (A) Biosensor genes are
often improved using directed evolution. In this cyclical approach, a diverse mutant library is
first generated from an initial biosensor gene. A selection or screen is then used to measure the
activity of variants within the library, and mutants exhibiting improved properties are then isolated.
These mutants can then be used to seed subsequent rounds of evolution. (B) Prior data regarding a
biosensor’s structure or activity can also be used to guide engineering efforts. This approach relies on
introducing targeted mutations using an informed prediction of a protein’s properties. Computational
approaches and simulations can help guide these efforts. (C) Rational design efforts can also utilize
DNA sequence data to guide biosensor engineering. In this strategy, homologous or related protein
variants are typically identified within genome sequence databases using bioinformatic alignments.
This data is then used to guide the construction of mutant or chimeric variants of the gene of interest.



Biosensors 2022, 12, 64 7 of 21

Structure- and activity-guided protein design provides another route for engineering
biosensors (Figure 3B). These methods fall under the umbrella of rational design, wherein
detailed knowledge of a protein of interest is leveraged to make targeted mutations to
change a protein’s activity [102–104]. For structure-guided design, researchers must begin
by first obtaining a detailed protein structure. Traditionally, structures are determined
experimentally using X-ray crystallography or alternative methods, such as cryo-electron
microscopy (cryo-EM) and two-dimensional nuclear magnetic resonance (2D-NMR); how-
ever, the recent development of the AlphaFold algorithm raises the possibility of obtaining
highly accurate protein structures through computational prediction alone [105]. Once
elucidated, structures are used to predict how different mutations can alter a protein’s
activity, often aided by sophisticated computational models or simulations [106,107]. Labo-
ratory studies on a given protein’s activity provide a second source of useful information,
with researchers often making targeted mutations to identify important residues or test
predictions made using structural models. This strategy has been used in the develop-
ment of several small-molecule biosensors, including sensors for fentanyl [26], TNT [108],
and digoxigenin [109]. Structure and activity information can also be used to identify
targeted residues for directed evolution (termed semi-rational design), with prior appli-
cations of this approach including improvements to the cationic amino acid biosensor
LysG [110], the choline biosensor BetI [111], and the tetracycline biosensor TetR [112].
Compared to directed evolution, rationally guided methods can often be more adept at
generating new biosensor functionality by linking ligand-binding and output effector
domains. Conversely, directed evolution approaches can frequently provide a more effec-
tive or expedient route for optimizing an existing functional attribute, though rationally
guided methods may be preferable for optimizing systems that have previously undergone
extensive characterization.

Genomic mining and bioinformatically guided methods also serve as an effective
strategy for biosensor engineering (Figure 3C). Though genomic mining is also considered
a rational engineering strategy, this approach relies on DNA sequence information instead
of knowledge regarding protein structure–function properties. In genomic mining, DNA se-
quence databases are first queried to bioinformatically identify natural variants or homologs
of a protein of interest [113,114]. These variants can then be directly tested in the laboratory
or used to introduce mutations to or create chimeras with the original protein of interest.
The efficacy of this approach has benefited greatly from the advent of next-generation se-
quencing technologies, as the increasing number of available microbial genome sequences
enables the rapid identification of numerous testable homologs [113,114]. Genomic min-
ing has proven remarkably effective at identifying new biosensors in nature, enabling
the development of sensors for stilbenes [115], β-alanine [116], and progesterone [117].
Bioinformatic approaches have also been used to construct chimeras to combine properties
amongst biosensors within related families, with this approach having been applied to both
two-component systems [118,119] and allosteric transcription factors [120]. Compared with
directed evolution methods, genomic mining typically provides a more facile approach
for identifying biosensors with new functionality, and it can often provide a faster route
for significantly altering a biosensor’s specificity profile. Bioinformatic strategies also
provide a useful method of rational design for riboswitch engineering, as sequence infor-
mation for many such RNA elements is often available in instances where structural data
is unavailable [99]. Similar to other rational design approaches, however, improvements
garnered from genomic mining can be limited by the available data. Notably, while the
exploration of gene variants found within nature can often turn up surprising results,
genomic mining approaches can prove less suitable for projects concerned with synthetic
or non-natural analytes.
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3.2. Optimization of Gene Expression

In living cells, the activity of a gene product is greatly influenced by the steady-
state concentration it reaches following expression. In E. coli, multiple mechanisms for
controlling gene expression are well established, allowing the production of a gene of
interest to be tailored to suit an individual project’s needs (Figure 4). For biosensors,
functional properties can often be improved by optimizing the expression level of the
biosensor itself and the reporter gene it regulates. In contrast to methods involving the
direct engineering of biosensor genes, researchers need not develop a customized approach
to alter the expression level of a given gene. Improvements resulting from optimizing gene
expression alone can, however, be more limited, as this strategy can lead to improvements
in the dynamic and operational range but cannot change a sensor’s specificity profile.
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above are commonly used to control a given gene’s steady-state concentration. Altering multiple
parameters can change a gene’s expression level by several orders of magnitude.

In E. coli, optimization of gene expression typically considers the rates of four separate
processes: DNA replication, RNA transcription, protein translation, and protein degra-
dation. While E. coli cells, on average, contain only one copy of genomic DNA, plasmid
replication rates can span a much wider range [121]. Thus, by changing the origin of
replication regulating a biosensor gene, researchers can control its DNA copy number;
characterized origins range from relatively low copy (such as ~5 copies in the case of
pSC101) [122] to very high copy (~500–700 in the case of pUC) [123] per cell. Moving down
the molecular hierarchy, rates of RNA transcription can also vary widely in E. coli. As the
transcriptional strength of different promoters has been well studied in this organism, prior
investigations enable researchers to select from defined suites of promoters to test different
relative rates of transcription [124,125]. Following the production of RNA, one can also
control the rate of protein translation, with the most common approach entailing alterations
to a gene’s ribosome-binding site (RBS). Analogous to promoters, studies have also gen-
erated suites of RBS sequences with measured relative rates of translation initiation [126].
However, in addition to the RBS, a gene’s individual sequence can also affect the rate of
translation initiation. Thus, translation optimization can often benefit from empirically test-
ing different RBS variants and predicting their strengths [127]. Additionally, though a less
common method, the usage of different codons within a gene’s coding sequence can also be
used to alter rates of protein translational elongation [128]. Lastly, a protein’s degradation
rate can also be modulated after it is translated through the addition of a degradation tag,
which reduces a protein’s steady-state concentration. While several degradation tags have
been previously characterized in E. coli [129–131], this strategy may not prove viable for
every project as the addition of a tag may interfere with a given protein’s function. By
editing more than one of the processes discussed above, a given gene’s expression level can
be tuned across several orders of magnitude.
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To date, these approaches have been employed to improve the elements of numerous
biosensors, with the facile nature of expression tuning often allowing multiple sensors to be
optimized within the context of single studies. For instance, in one 2015 report, Rogers et al.
detailed the development of several biosensor systems in E. coli, deriving significant im-
provements from the optimization of plasmid origins [132]. A later study in 2018 similarly
worked to improve several biosensor systems in E. coli using multiple methods, including
the tuning of the promoter and RBS strength for each sensor [133]. Another investigation
by Chen et al. in 2018 more deeply explored the effects of promoter engineering, also
improving the efficacy of several E. coli biosensors [124]. While modulating protein degra-
dation is less common than the aforementioned strategies, multiple studies have appended
degradation tags to reporter proteins to improve biosensor functionality [134–137]. Apart
from using previously characterized regulatory elements, gene expression can also be
optimized using directed evolution [9,127]. Tuning gene expression is an effective route for
shifting biosensor dose–response curves, with most studies choosing either to maximize
the induced response or minimize leaky expression in the absence of ligand. However,
improvements of one attribute usually come at the expense of the other (e.g., reducing
leaky expression also reduces the induced signal). While this drawback limits the benefits
that can be derived solely from tuning gene expression, it nonetheless remains a popular
strategy for biosensor optimization, particularly in combination with other techniques.

3.3. Selection of Reporter System

A major benefit of using biosensors inside living cells for detection is that a single
sensor can often be linked to many distinct types of output signals, extending their utility
to a wide variety of applications. The type of output is typically dictated by the reporter
gene used, with many reporters having been well established in E. coli. Fluorescent
proteins remain a popular choice, enabling the detection of a fluorescent signal using
common laboratory spectroscopic equipment. While green fluorescent protein (GFP) was
the first such reporter to be described [138], researchers have since engineered proteins
that fluoresce at different wavelengths across the color spectrum, including blue, cyan,
green, green–yellow, yellow, orange, red, and far-red fluorescent proteins [139]. A smaller
number of fluorescent RNA aptamers have also been reported, capable of producing
green- or orange-colored signal. Colored pigments can also be produced using bacterial
reporter proteins, with a wide variety of accessible colors available, including red, orange,
yellow, green, blue, navy, and purple [140,141]. Luminescent light emission provides
another common reporter mechanism, with the activity of bacterial luciferase linked to the
expression of the lux operon [142]. Apart from spectroscopic reporters, biosensors can also
be linked to cell growth through selection markers. In bacteria, antibiotic resistance genes
are commonly selected for this purpose [143]; however, the use of auxotrophic markers has
also been described [144]. Outside of established systems, recent studies have continued
to develop new types of reporters, including genes producing electrical signal [145], gas
production [146], and targeted genome editing [147,148].

When deciding on a reporter gene, it is useful to consider the different aspects of the
intended application. Firstly, the choice of a reporter can affect the operational range of a
biosensor, with enzymatic reporters (such as luciferase or lacZ) allowing for more sensitive
detection of lower analyte concentrations compared to fluorescent reporters [149,150].
However, fluorescent reporters can sometimes exhibit a broader operational range, and
their use may be preferred in instances where a response to higher analyte concentrations
is desired [151]. Reporters that produce colored pigments may in turn be preferred for
applications spanning longer periods of time, as colored small molecules degrade less
rapidly and can accrue more readily compared to detectable proteins. For applications
spanning more unique environments outside of the laboratory, additional details of a
reporter may also need to be considered. For instance, applications inside living systems
often require tissue penetrance of a reporter’s signal. For these applications, luminescent
reporters are typically preferred [152], though near-infrared (NIR) fluorescent proteins



Biosensors 2022, 12, 64 10 of 21

can also be used [153]. In another example, certain applications (such as soil sample
contaminant detection) can require a biosensor to function under anaerobic conditions [154].
As oxygen is required for luciferase activity and for correct maturation of most fluorescent
proteins [155], reporters known to function normally within anaerobic environments (such
as lacZ) are preferred for these applications [154]. In studies using biosensors for metabolic
or genetic engineering, the use of selection markers as reporters is typically preferred,
although fluorescent proteins can also provide an effective choice particularly when paired
with fluorescence-activated cell sorting (FACS) methods [8,156]. When planning a project
entailing a novel application of a biosensor, ultimately the options for a reporter can include
any gene that can be expressed in bacteria while retaining measurable activity.

In addition to selecting a mechanistic reporter type, it is also useful to consider prior
engineering efforts towards improving specific reporter genes. For many of the common
reporters detailed above, prior studies have engineered mutant variants exhibiting im-
proved properties. GFP in particular has been subjected to extensive efforts, with improved
variants including proteins engineered for enhanced fluorescence [157], more robust protein
folding [158], increased thermostability [159], and reduced photobleaching [160]. Improved
bacterial luciferase variants have also been developed, with two successive studies yielding
variants with significantly brighter luminescent signal [161,162]. In addition to protein
engineering, biosensors can also be improved by developing synthetic analogs of their
natural substrates. A well-known example of this strategy is the development of X-gal, an
artificial substrate for lacZ that changes color after enzyme cleavage [163]. Though less com-
monly used compared to X-gal, alternative lacZ substrates have also been developed that
produce fluorescent signal following enzyme cleavage [164]. Artificial substrates for firefly
luciferase have also been developed to enable increased tissue penetrance of luminescent
signal [165], although this strategy has yet to be applied to the bacterial variant of luciferase.
Overall, the abundance of prior work to develop and improve genetic reporter systems
has made reporter selection an effective route for optimizing many biosensor systems.
However, a limitation of this approach is that it cannot be extended to systems where the
biosensor and reporter are part of the same protein (such as FRET-based biosensors).

For cellular biosensors, the choice of reporter gene also dictates the instrumentation
required for detection. Among the bacterial reporters discussed above, the most com-
monly used systems each require relatively simple equipment to detect their output signal
(Figure 5). For instance, a common absorbance spectrophotometer can be used to quantify
colorimetric reporters, such as lacZ or colored pigments (Figure 5A), and a similar device
without an added light source can also be used to detect luminescent reporters (Figure 5B).
A fluorimeter can in turn be used to quantify signal from fluorescent proteins (Figure 5C).
Notably, all three of these spectroscopic functions can be performed across many samples
in multiplex using a laboratory plate reader, the use of which is increasingly prevalent in
biological labs. For reporters linked to cell growth, bacterial growth can be quantified either
by counting colonies on solid agar or by measuring the absorbance of liquid cultures at
600 nm (Figure 5D). When using less common reporter genes, however, more complex or
specialized equipment can be required. For example, reporters producing electroactive sig-
nal can require a bioelectronic sensing system [145]. In previous work using reporters that
function through gas production, a gas chromatograph-mass spectrometer (GC-MS) was
required [146]. Consequently, the availability of laboratory equipment is also an important
consideration when selecting a biosensor reporter gene.
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Figure 5. Diagrams of common instrumentation used in bacterial biosensor detection. (A) Absorbance
spectrophotometers are often used to detect changes of colored dyes, such as the appearance of blue
color following cleavage of X-gal by the reporter lacZ. (B) Luminescence detectors are used to monitor
the activity of different types of luciferase reporter genes. (C) Fluorimeters are used to monitor the
presence of fluorescent proteins (such as GFP). (D) Cell growth can be assessed either by counting
colonies on solid agar plates or by measuring the absorbance at 600 nm of liquid cultures.

3.4. Incorporation of Additional Genetic Modules

In addition to biosensors and their associated reporters, additional genes can also be
introduced into bacteria to improve sensor function. These added elements can typically be
divided in two categories: genes that alter analyte concentrations within the cell (changing
biosensor input), and genetic circuits that alter the relationship between the biosensor and
its reporter (changing biosensor output). Regarding the first category, changing the steady-
state concentration of an analyte inside cells provides a method for shifting a biosensor’s
operational range (Figure 6A). In one example, Raman et al. reduced the sensitivity of the
tetracycline biosensor tetR through the addition of the transmembrane pump tetA [137]. In
a later work, Johnston et al. reduced the sensitivity of a Rho-based bicyclomycin biosensor
in a similar fashion, utilizing the efflux pump bcmT [166]. To shift the operational range in
the other direction (Figure 6B), Tang et al. incorporated the transporter fucP to improve
cellular uptake of D-arabinose, thereby increasing the sensitivity of the biosensor araC [93].
Miller et al. later used a different strategy to increase the sensitivity of the macrolide
biosensor mphR by adding the phosphotransferase mphA into cells, with phosphorylation
of macrolide analytes increasing their concentration inside the cells by preventing their
outward diffusion [167]. As these examples illustrate, modifying the analyte concentrations
inside cells can be used to significantly alter a biosensor’s operational range. However,
prior applications of this strategy have each leveraged prior knowledge of characterized
proteins that recognize specific analytes. This requirement may consequently limit the use
of this approach across other biosensor systems.
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Figure 6. Additional genetic modules for improving biosensor function. (A) Genes can be introduced
to modify the concentration of ligand compounds inside cells, mediating either increased efflux or
(B) increased intracellular accrual of analytes. These approaches result in changes to a biosensor’s
operational range. (C) Activator genes can also be placed between the biosensor and its reporter to
construct a gene cascade. The addition of an activator results in an increased biosensor signal and an
extended dynamic range. (D) Leak dampener genes can also be introduced to regulate reporter genes
using a type-1 coherent feed-forward loop. This strategy leads to reduced leaky reporter signal in the
absence of analyte ligands, and also extends a biosensor’s dynamic range. (E) Additional genes can
also be used to change the logic associated with a biosensor’s response. This approach can not only
be applied to individual biosensors but can also be applied to link more than one sensor together
through a multi-input logic gate.

Engineered gene cascades provide a versatile method for increasing a biosensor’s
output and extending its dynamic range. To construct a cascade, a biosensor is first linked
to an activator gene, which is in turn linked to the reporter (Figure 6C). For an activator to
be viable for use in a cascade, the production of one activator gene copy must lead to the
production or activation of more than one copy of downstream-regulated genes [168]. T7
RNA polymerase provides one such viable activator, with this gene having been incorpo-
rated into biosensor-linked cascades both in vitro [169] and in living E. coli cells [85,170]. In
a recent study, Wan et al. demonstrated that three additional activators (RinA, ECF11, and
HrpRS) are effective within bacterial genetic cascades [171]. In this work, the authors linked
together all three activators in a single cascade to improve the signal produced by biosensors
for lead and mercury [171]. For RNA sensors, ribozymes are similarly used as amplifiers
during the construction of aptazymes. While riboswitches directly link a small-molecule
ligand to the expression of a reporter, aptazymes instead link ligand binding to the activity
of a ribozyme, which is in turn linked to the reporter [172,173]. Genetic cascades provide a
highly modular approach for significantly extending a biosensor’s dynamic range, and for
shifting the operational range towards increased sensitivity. However, the incorporation
of activator cascades often requires additional tuning of expression levels to ensure that
the input-output levels of each module fall within their linear regime, thereby avoiding
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early saturation. Another drawback of this approach is that amplifiers also amplify leaky
expression in the absence of analyte signal, though this can be partially offset by decreasing
reporter gene expression.

Leaky expression is indeed a significant issue for many biosensor systems, and can of-
ten limit many desired applications. The incorporation of a leak dampener circuit provides
a modular strategy to help remedy this issue. Leak dampener components are typically
introduced as part of a type 1 coherent feed-forward loop, wherein the leak dampener
regulates a reporter gene, and a biosensor regulates both the reporter gene and the leak
dampener (Figure 6D). To function as a leak dampener, a gene must be able to regulate a
reporter through an independent mechanism compared to the biosensor, with lower levels
of leak dampener expression resulting in reduced reporter activity [174]. In one example,
Ho et al. used the leucine amber suppressor tRNA supP as a leak dampener to improve
lactate detection using the biosensor lldR [174]. This work introduced conditionally silent
leucine-to-amber mutations into reporter genes to make their correct translation dependent
upon supP expression, and notably used a toxic mutagenic reporter system to demonstrate
that this approach can achieve undetectable levels of leaky expression in the absence of an
inducer [174]. In another study, Greco et al. used a toehold switch (THS) translational regu-
lator as well as a small transcription activating RNA (STAR) as leak dampeners to improve
IPTG detection using lacI [175]. Expression of the THS and STAR elements was linked to
correct translation initiation and transcription initiation, respectively, of the reporter gene,
with the structured RNA elements preventing these processes from occurring in the absence
of ligand [175]. Another strategy detailed by Fernandez-Rodriguez et al. uses multiple
plant proteases as leak dampeners, improving the output of an AND gate built from the
biosensors tetR and lacI [176]. In this work, a cleavable degradation tag was appended
to the reporter gene, and expression of the protease led to increased reporter signal via
removal of the degradation tag [176]. Similarly to genetic amplifiers, the incorporation of
leak dampeners can also increase a biosensor’s dynamic range, and often require additional
expression level tuning to ensure that the input-output levels of each module lie within
their linear range. In contrast to amplifiers, however, the use of leak dampeners tends to
shift the operational range towards reduced sensitivity [174]. Additionally, the use of leak
dampeners can often lead to reduced maximum signal [171,174], although this drawback
can also be partially remedied by optimizing reporter gene expression levels.

Lastly, additional genetic modules can be introduced to alter the logic associated with
a biosensor’s output (Figure 6E). One such genetic part is termed a signal inverter, typically
constructed from a constitutive repressor, which is inserted between a biosensor and a
reporter within a genetic circuit [177]. The incorporation of this component inverts the logic
associated with a biosensor’s output, acting as a single-input NOT gate. To give an example,
while the arabinose biosensor araC typically produces signal in the presence of arabinose,
the addition of an inverter instead results in the production of signal in the absence of
this ligand [178]. For a more complex response to analyte ligands, multiple biosensors can
also be connected to multi-input logic gates. One such example of an AND logic gate is
detailed in a study by Shis and Bennett [179], wherein a split T7 RNA polymerase system
is used to make the production of a reporter protein dependent upon the presence of both
ligands for two biosensors (lacI and araC). The same two biosensors were also used by
Wang et al. to develop NAND gated logic [180]. In this work, the hrpRS system was first
used to connect both sensors to form an AND gate. The hrpRS genes were subsequently
linked to an inverter (the cI repressor) that was linked to a reporter, resulting in NAND
logic [180]. In addition to the examples discussed above, other types of multi-input logic
gates have also been previously described in E. coli [181]. Single-input logic inverters allow
for researchers to control whether biosensors produce a response in the presence versus the
absence of a ligand, regardless of the original logic of the sensor. The use of a multi-input
logic gate can allow for more precise detection of the phenomena of interest, provided,
however, that such phenomena are associated with more than one detectable ligand [182].
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4. Conclusions

The plethora of available engineering approaches provide researchers with consider-
able latitude for constructing and improving bacterial biosensors, with multiple techniques
often combined within the same project for maximal efficacy. Looking ahead, continued
advancements in synthetic biology are expected to expand available techniques for biosen-
sor engineering. Advances in continuous directed evolution methods provide one such
recent development, with researchers able to rapidly perform numerous cycles of directed
evolution by linking them to natural life cycles [183]. Future methods for structure-guided
engineering also hold considerable promise, as algorithms for protein structure prediction
continue to rapidly improve [184]. Several of the genetic circuit topologies and components
described in this review also represent very recent advances [171,174,175], with these ap-
proaches being of particular note due to their high modularity and applicability to many
biosensor systems.

Improvements in our capacity to optimize bacterial biosensors continue to bring
these proteins closer to realizing their potential across many diverse applications. The
use of biosensors to improve the biosynthetic yields of biosynthetic pathways is one
notable horizon. While yields from bacterial production of many high-value compounds
remain below industrially viable levels, biosensors have been used to improve yields by
linking pathways to selectable markers for directed evolution [137] and to enable metabolic
feedback process control [7]. Bacterial biosensors continue to show promise for the detection
of environmental contaminants, and their high specificity and relative ease of use allows
for applications in the field [22,185]. The use of biosensors in bacterial cancer therapies
demonstrates another exciting application, with multiple sensors shown to enable bacteria
to detect and respond to tumors [12]. As effective use of biosensors requires multiple
functional properties to be finely tuned, effective methods for biosensor engineering remain
essential for realizing the promise of this versatile sensory approach.
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