Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,820)

Search Parameters:
Keywords = wetting effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1282 KB  
Article
Acclimation of Young Plants of Opuntia spp. to the Heightened Night Temperature
by Claudia Reyes Buendía, Cecilia Beatriz Peña-Valdivia, Daniel Padilla-Chacón, Amalio Santacruz Varela and Monserrat Vázquez Sánchez
Horticulturae 2026, 12(2), 167; https://doi.org/10.3390/horticulturae12020167 - 30 Jan 2026
Abstract
Increases in global temperatures, due to the climate change, are generating stress in most plant species. We hypothesize that young plants of Opuntia spp. adjust their Crassulacean acid metabolism (CAM) to the increase in nighttime temperature, allowing them to continue growing. The study [...] Read more.
Increases in global temperatures, due to the climate change, are generating stress in most plant species. We hypothesize that young plants of Opuntia spp. adjust their Crassulacean acid metabolism (CAM) to the increase in nighttime temperature, allowing them to continue growing. The study was carried out in a greenhouse and laboratory of the Colegio de Postgraduados, Montecillo, Mexico. Three-month-old greenhouse-grown plants remained in a control environment with an average day/night temperature of 19.1/12.3 °C or were maintained in a chamber with increased nighttime temperatures averaging 19.1/18.9 °C day/night for 70 days. The experimental design was completely randomized with two treatments (control and high nighttime temperatures). After 70 days of high nighttime temperatures (HNT), at dawn (end of CAM phase I), plants had a 45% decrease in glucose (2.9 to 1.5 mg/100 mg dry tissue; dt) concentration and doubled and tripled fructose (0.43 to 0.95 mg/100 mg dt) and sucrose (0.47 to 0.09 mg/100 mg dt) concentrations. Glucose consumption may be related to the plant’s metabolic energy expenditure to overcome stress. The significant increase in fructose and sucrose is explainable by their function as signaling molecules among others. In contrast, photosynthetic efficiency, i.e., increased compared to the control, but the difference of acidity (end of phase I less phase III), the concentration of starch (1 mg/100 mg dt), free amino acids and soluble protein (1.2 mg/100 mg dt), wet and dry matter, stem height (60 cm) and width of the stem at dawn were not significantly affected. The adjustments in C and N metabolism and the non-significant effect on growth promoted by 70 HNT days may be related to adjustments in enzyme activities without changes in protein concentration. Young Opuntia spp. plants adjust their metabolism in response to increased nighttime temperatures, allowing them to maintain growth similar to that of the control. The results confirm the great potential of using the Opuntia genus in agriculture and genetic improvement in the face of the challenges posed by climatic change. Full article
Show Figures

Figure 1

21 pages, 3333 KB  
Article
Workability, Strength, and Durability of Wet-Mix Shotcrete Incorporating a Viscosity-Enhancing and Early-Strength Agent
by Jitao Dai, Yuting Xiang, Shengnian Wang, Leilei Gu, Yanzhao Sun, Mingwei Li and Kefei Fan
Buildings 2026, 16(3), 584; https://doi.org/10.3390/buildings16030584 - 30 Jan 2026
Abstract
This study investigates viscosity-enhancing and early-strength wet-mix shotcrete (VE-ESWS) incorporating a self-developed viscosity-enhancing and early-strength agent (VE-ES). Indoor tests combined with on-site spraying were performed to quantify the effects of the water/cement ratio (W/C) and VE-ES dosage on workability, strength, and durability. VE-ES [...] Read more.
This study investigates viscosity-enhancing and early-strength wet-mix shotcrete (VE-ESWS) incorporating a self-developed viscosity-enhancing and early-strength agent (VE-ES). Indoor tests combined with on-site spraying were performed to quantify the effects of the water/cement ratio (W/C) and VE-ES dosage on workability, strength, and durability. VE-ES had little influence on pumpability but substantially enhanced sprayability, reducing rebound rate to below 8%. Compressive and splitting tensile strengths peaked at W/C = 0.43–0.44 and a sand rate of 55%, whereas sand rates of 50% or 60% caused noticeable reductions. Durability (water permeability, freeze–thaw resistance, wet–dry sulfate attack, and carbonation resistance) of VE-ESWS was superior to that of the reference wet-mix shotcrete. Water penetration height could be controlled to about 5 cm when W/C was 0.42–0.43. During freeze–thaw cycling, mass loss rate increased initially and then decreased; slight apparent mass gains at later cycles were attributed to moisture uptake. VE-ES effectively reduced the compressive strength loss of VE-ESWS after sulfate attack, although the mass loss rate increased rather than decreased after 100 wet–dry sulfate attack cycles. The carbonation rate of VE-ESWS decreased with increasing VE-ES dosage. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results corroborated accelerated hydration and pore-structure refinement. Based on combined indices, the recommended values are W/C = 0.42–0.44, and the VE-ES dosage = 7.5 kg/m3 within the studied ranges. This study could provide theoretical and technical support for the application of VE-ESWS in engineering practices. Full article
22 pages, 8173 KB  
Article
Span Value as a Critical Quality Attribute for PLGA Microspheres: Controlling Burst Release and Enhancing Therapeutic Efficacy via Wet Sieving
by Lele Wang, Wenqiang Liu, Qiqi Jiang, Xin Wang, Dongdong Xu, Ying Fang, Simeng Wang and Jihui Tang
Pharmaceutics 2026, 18(2), 180; https://doi.org/10.3390/pharmaceutics18020180 - 30 Jan 2026
Abstract
Background/Objectives: Poly(lactic-co-glycolic acid) (PLGA) microspheres offer sustained drug delivery but often suffer from broad particle size distribution (PSD), leading to inconsistent release profiles. This study investigates wet sieving as a post-processing strategy to precisely control PSD, quantified by the Span value, and evaluates [...] Read more.
Background/Objectives: Poly(lactic-co-glycolic acid) (PLGA) microspheres offer sustained drug delivery but often suffer from broad particle size distribution (PSD), leading to inconsistent release profiles. This study investigates wet sieving as a post-processing strategy to precisely control PSD, quantified by the Span value, and evaluates its impact on the performance of triamcinolone acetonide (TA)-loaded PLGA microspheres. Methods: Triamcinolone acetonide-loaded PLGA microspheres were prepared via emulsification-solvent evaporation. Wet sieving was employed as a post-processing strategy to obtain distinct particle size fractions and groups with defined polydispersity (Span values). The microspheres were characterized for particle size distribution, drug loading, surface morphology, and in vitro release kinetics. To establish the in vivo relevance of polydispersity control, the pharmacokinetic profiles of different Span groups were first determined using LC-MS/MS following intra-articular injection in rats. Subsequently, their therapeutic efficacy was evaluated in a rat model of knee osteoarthritis, with outcomes assessed by joint swelling measurement and histopathological analysis. Results: Microspheres were prepared, fractionated into distinct size groups (0–20, 20–28, 28–40, 40–50, >50 μm) and polydispersity groups (Span = 1.4, 0.8, 0.5). We identified Span as a dominant factor independent of mean particle size. Reducing the Span from 1.4 to 0.5 significantly decreased burst release (24.15% to 14.51%), prolonged mean residence time (MRT 88.52 to 123.53 h), and enhanced anti-inflammatory and cartilage-protective effects in a rat model of knee osteoarthritis. Conclusions: This work establishes Span ≤ 0.5 as a critical quality attribute and presents wet sieving as a simple, effective method to ensure batch-to-batch consistency and predictable in vivo performance for PLGA microsphere products. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

30 pages, 16791 KB  
Article
Assessment of Remote Sensing Precipitation Products for Improved Drought Monitoring in Southern Tanzania
by Vincent Ogembo, Erasto Benedict Mukama, Ernest Kiplangat Ronoh and Gavin Akinyi
Climate 2026, 14(2), 36; https://doi.org/10.3390/cli14020036 - 30 Jan 2026
Abstract
In regions lacking sufficient data, remote sensing (RS) offers a reliable alternative for precipitation estimation, enabling more effective drought management. This study comprehensively evaluates four commonly used RS datasets—Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS), Tropical Applications of Meteorology using Satellite [...] Read more.
In regions lacking sufficient data, remote sensing (RS) offers a reliable alternative for precipitation estimation, enabling more effective drought management. This study comprehensively evaluates four commonly used RS datasets—Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS), Tropical Applications of Meteorology using Satellite data (TAMSAT), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), and Multi-Source Weighted-Ensemble Precipitation (MSWEP) against ground-based data—with respect to their performance in detecting precipitation and drought patterns in the Great Ruaha River Basin (GRRB), Tanzania (1983–2020). Statistical metrics including the Pearson correlation coefficient (r), mean error (ME), root mean square error (RMSE), and bias were employed to assess the performance at daily, monthly, seasonal (wet/dry), and annual timescales. Most of the RS products exhibited lower correlations (r < 0.5) at daily timestep and low RMSE, bias, and ME. Monthly performance improved substantially (r > 0.8 at most stations) particularly during the wet season (r = 0.52–0.82) while annual and dry-season performance declined (r < 0.5 and r < 0.3, respectively). Performance under RMSE, bias, and ME declined at higher timescales, particularly during the wet season and annually. CHIRPS, MSWEP, and PERSIANN generally overestimated precipitation while TAMSAT consistently underestimated it. Spatially, CHIRPS and MSWEP reproduced coherent basin-scale patterns of drought persistence, with longer dry-spells concentrated in the northern, central, and western parts of the basin and shorter dry-spells in the eastern and southern regions. Trend analysis further revealed that most products captured consistent large-scale changes in dry-spell characteristics, although localized drought events were more variably detected. CHIRPS and MSWEP showed superior performance especially in capturing monthly precipitation patterns and major drought events in the basin. Most products struggled to detect extreme dry conditions with the exception of CHIRPS and MSWEP at certain stations and periods. Based on these findings, CHIRPS and MSWEP are recommended for drought monitoring and water resource planning in the GRRB. Their appropriate use can help water managers make informed decisions, promote sustainable resource use, and strengthen resilience to extreme weather events. Full article
(This article belongs to the Special Issue Extreme Precipitation and Responses to Climate Change)
Show Figures

Figure 1

28 pages, 3661 KB  
Article
A Hybrid Ionic Liquid–HPAM Flooding for Enhanced Oil Recovery: An Integrated Experimental and Numerical Study
by Mohammed A. Khamis, Omer A. Omer, Faisal S. Altawati and Mohammed A. Almobarky
Polymers 2026, 18(3), 359; https://doi.org/10.3390/polym18030359 - 29 Jan 2026
Abstract
Declining recovery factors from mature oil fields, coupled with the technical challenges of recovering residual oil under harsh reservoir conditions, necessitate the development of advanced enhanced oil recovery (EOR) techniques. While promising, chemical EOR often faces economic and technical hurdles in high-salinity, high-temperature [...] Read more.
Declining recovery factors from mature oil fields, coupled with the technical challenges of recovering residual oil under harsh reservoir conditions, necessitate the development of advanced enhanced oil recovery (EOR) techniques. While promising, chemical EOR often faces economic and technical hurdles in high-salinity, high-temperature environments where conventional polymers like hydrolyzed polyacrylamide (HPAM) degrade and fail. This study presents a comprehensive numerical investigation that addresses this critical industry challenge by applying a rigorously calibrated simulation framework to evaluate a novel hybrid EOR process that synergistically combines an ionic liquid (IL) with HPAM polymer. Utilizing core-flooding data from a prior study that employed the same Berea sandstone core plug and Saudi medium crude oil, supplemented by independently measured interfacial tension and contact angle data for the same chemical system, we built a core-scale model that was history-matched with RMSE < 2% OOIP. The calibrated polymer transport parameters—including a low adsorption capacity (~0.012 kg/kg-rock) and a high viscosity multiplier (4.5–5.0 at the injected concentration)—confirm favorable polymer propagation and effective in -situ mobility control. Using this validated model, we performed a systematic optimization of key process parameters, including IL slug size, HPAM concentration, salinity, temperature, and injection rate. Simulation results identify an optimal design: a 0.4 pore volume (PV) slug of IL (Ammoeng 102) reduces interfacial tension and shifts wettability toward water-wet, effectively mobilizing residual oil. This is followed by a tailored HPAM buffer in diluted formation brine (20% salinity, 500 ppm), which enhances recovery by up to 15% of the original oil in place (OOIP) over IL flooding alone by improving mobility control and enabling in-depth sweep. This excellent history match confirms the dual-displacement mechanism: microscopic oil mobilization by the IL, followed by macroscopic conformance improvement via HPAM-induced flow diversion. This integrated simulation-based approach not only validates the technical viability of the hybrid IL–HPAM flood but also delivers a predictive, field-scale-ready framework for heterogeneous reservoir systems. The work provides a robust strategy to unlock residual oil in such challenging reservoirs. Full article
(This article belongs to the Special Issue Application of Polymers in Enhanced Oil Recovery)
Show Figures

Figure 1

17 pages, 3623 KB  
Article
Characterizing the Spatiotemporal Distribution of Water Quality and Pollution Sources in Mountainous Watershed
by Wenting Qiu, Wei Wang, Xingyue Tu, Zehua Xu, Biao Wang, Zhimiao Zhang, Ying Wang and Baiyin Liu
Water 2026, 18(3), 328; https://doi.org/10.3390/w18030328 - 28 Jan 2026
Viewed by 28
Abstract
The precise identification of pollution sources constitutes a cornerstone for effective water environment management in mountainous watersheds. This study employed principal component analysis–absolute principal component scores–multiple linear regression (PCA-APCS-MLR) receptor modeling to analyze monthly water quality indicators across the Longxi River Basin. Results [...] Read more.
The precise identification of pollution sources constitutes a cornerstone for effective water environment management in mountainous watersheds. This study employed principal component analysis–absolute principal component scores–multiple linear regression (PCA-APCS-MLR) receptor modeling to analyze monthly water quality indicators across the Longxi River Basin. Results revealed comparable water quality between the main stream and its tributaries, with no statistically significant differences identified. Water quality exhibited a distinct spatial pattern, with superior conditions in the upstream and downstream segments compared to the middle reaches. Water quality parameters exhibited significant seasonal variations. During the wet period, the degradation of water quality was primarily driven by diffuse agricultural sources, contributing 42.9%, followed by watershed background levels and surface runoff. In the dry season, rural domestic wastewater (39.3%) was the leading pollution source. For Permanganate index (CODMn) exceedance, basin background and agricultural non-point sources in the wet season were the main contributors (46.8% and 44.7%, respectively). For ammonium nitrogen (NH3-N), wet season agricultural non-point sources (44.4%) and dry season rural domestic pollution (71.8%) were key contributors. Agricultural non-point sources were the dominant pollution source for total nitrogen (TN) in the wet season (84.2%). Effective water quality improvement in the Longxi River Basin hinges on targeted strategies—to mitigate diffuse agricultural sources through optimized fertilization, and to enhance the collection and treatment of rural domestic sewage. This study not only enhances the understanding of pollution source distribution and quantification in mountainous watersheds, but also serves as a vital reference for formulating targeted water environment management strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

14 pages, 1237 KB  
Proceeding Paper
Fuzzy-Logic-Based Intelligent Control of a Cabinet Solar Dryer for Plantago major Leaves Under Real Climatic Conditions in Tashkent
by Komil Usmanov, Noilakhon Yakubova, Shakhnoza Sultanova and Zafar Turakulov
Eng. Proc. 2025, 117(1), 35; https://doi.org/10.3390/engproc2025117035 - 28 Jan 2026
Viewed by 101
Abstract
Solar drying is an energy-efficient and environmentally friendly method for dehydrating agricultural and medicinal products; however, its performance is strongly affected by fluctuating climatic conditions and nonlinear heat and mass transfer processes. In cabinet-type solar dryers, maintaining the drying air temperature and relative [...] Read more.
Solar drying is an energy-efficient and environmentally friendly method for dehydrating agricultural and medicinal products; however, its performance is strongly affected by fluctuating climatic conditions and nonlinear heat and mass transfer processes. In cabinet-type solar dryers, maintaining the drying air temperature and relative humidity within optimal ranges is particularly critical for medicinal plants such as Plantago major leaves, which are sensitive to overheating and non-uniform drying. In this study, a Mamdani-type fuzzy logic-based intelligent control system is developed and experimentally validated for a cabinet solar dryer operating under real summer climatic conditions in Tashkent, Uzbekistan. The proposed controller regulates fan speed using drying air temperature and relative humidity as inputs. To evaluate its effectiveness, the fuzzy logic controller is benchmarked against a conventionally tuned Proportional–Integral–Derivative (PID) controller under identical operating and climatic conditions. A coupled thermodynamic–hygrometric dynamic model of the drying process is implemented in MATLAB/Simulink (R2024a) to support controller design and analysis. Experimental results demonstrate that the fuzzy logic controller maintains the drying air temperature within the optimal range of 45–50 °C despite significant fluctuations in solar irradiance (650–900 W/m2), whereas the PID-controlled system exhibits noticeable overshoot and oscillations. Compared with PID control, the fuzzy-controlled dryer achieves a smoother reduction in relative humidity, a reduction of approximately 22% in total drying time for the same final moisture content (8–10% wet basis), and an 18% decrease in auxiliary electrical energy consumption. In addition, tray-wise moisture measurements indicate improved drying uniformity under fuzzy control, with moisture variation remaining within ±4%. Overall, the results confirm that fuzzy-logic-based intelligent control provides a robust and energy-efficient solution for cabinet solar dryers operating under hot continental climatic conditions, offering clear advantages over conventional PID control in terms of stability, drying performance, and uniformity. Full article
Show Figures

Figure 1

20 pages, 5061 KB  
Article
Phosphorus Tailings Sand Synergized with Multiple Solid Wastes for the Preparation of Cementitious Materials: Properties and Mechanisms
by Zhaoshan Wang, Yongfu He, Hui Luo, Qi Wang, Haiqian Sun, Huanqing Song, Xuehui Zhao and Bao-Jie He
Buildings 2026, 16(3), 521; https://doi.org/10.3390/buildings16030521 - 27 Jan 2026
Viewed by 112
Abstract
In this study, phosphorus tailings sand (PTS) was ground into fine powder and incorporated with slag and fly ash to formulate a cementitious material composed solely of solid wastes. The current research aimed to promote the high-value utilization of local solid waste resources [...] Read more.
In this study, phosphorus tailings sand (PTS) was ground into fine powder and incorporated with slag and fly ash to formulate a cementitious material composed solely of solid wastes. The current research aimed to promote the high-value utilization of local solid waste resources in Lianyungang and to explore their potential application in soil stabilization and ground improvement. Through optimization of component dosage and the proportions of alkaline activators, the effects on workability, mechanical properties, drying shrinkage, wet–dry cycles, microstructural evolution, and heavy-metal leaching behavior were comprehensively examined. The findings revealed that at the optimal ratio of PTS–slag powder–fly ash = 5:2.5:2.5, the developed cementitious material demonstrated a 28-day compressive strength of 33.8 MPa, along with 4.5 MPa flexural strength, and 168 mm flow spread. Moreover, the 28-day drying shrinkage reached a minimal value of 0.038%, with reduced mass loss of 6.7% after wet–dry cycling. Furthermore, under non-freezing conditions, the leaching content of Zn, Mn, Pb, and Cu from the PTS-based multi-solid-waste cementitious system remained below the permissible limits for non-hazardous discharge established by Chinese environmental regulations. These findings provide an innovative pathway for the resource-efficient application of phosphorus tailings sand and several solid wastes while offering technical guidance for silt stabilization and ecological restoration efforts in the Lianyungang region, highlighting promising engineering application prospects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 5390 KB  
Article
Multi-Year Assessment of Soil Moisture Dynamics Under Nature-Based Vineyard Floor Management in the Oltrepò Pavese (Northern Italy)
by Antonio Gambarani, Massimiliano Bordoni, Matteo Giganti, Valerio Vivaldi, Matteo Gatti, Stefano Poni, Alberto Vercesi and Claudia Meisina
Agriculture 2026, 16(3), 316; https://doi.org/10.3390/agriculture16030316 - 27 Jan 2026
Viewed by 137
Abstract
Nature-based Solutions (NbS) such as rolled cover crops are increasingly adopted in rainfed vineyards to reduce soil degradation and drought risk, but their effectiveness depends on local soil physical conditions. We compared spontaneous inter-row vegetation managed by mowing (Control) with a cereal-based rolled [...] Read more.
Nature-based Solutions (NbS) such as rolled cover crops are increasingly adopted in rainfed vineyards to reduce soil degradation and drought risk, but their effectiveness depends on local soil physical conditions. We compared spontaneous inter-row vegetation managed by mowing (Control) with a cereal-based rolled cover crop (C-R) in two vineyards of the Oltrepò Pavese (Northern Italy) with contrasting texture, structure, and slope: Canevino (CNV) and Santa Maria della Versa (SMV). From 2021 to 2025, continuous soil moisture monitoring was combined with field measurements of saturated hydraulic conductivity (Ks) and bulk density, interpreted using temporal indicators (MRD, ITS) and a drought index (SWDI) calibrated to field moisture thresholds. During wet phases, average saturation at 50 cm was consistently higher at SMV (about 78 to 84 percent) than at CNV (about 68 to 75 percent). Under water-limited conditions, management contrasts were most evident at SMV: at 50 cm during the post-termination dry phase, saturation remained around 70 percent under C-R versus about 64 percent under the Control, and Ks was higher under C-R (8.32 × 10−6 m/s in topsoil) than under the Control (7.39 × 10−6 m/s). At CNV, SWDI at 50 cm indicated a moderate improvement in one agronomic year (median −1.2 under C-R versus −5.3 under the Control in 2021 to 2022), while a full tillage operation in 2024 defined a disturbed phase that was interpreted separately. SWDI occasionally suggested severe drought levels not fully matching field evidence, highlighting the need for site-calibrated reference thresholds in structured fine-textured soils. Overall, soil physical properties set the hydrological envelope, while rolled cover management can enhance buffering and preserve conductive pathways during dry phases; therefore, NbS performance should be evaluated with site-adapted monitoring and cautious inference from temporally autocorrelated time series. Full article
Show Figures

Figure 1

41 pages, 4627 KB  
Review
Research Progress in Chitin/Chitosan-Based Biomass Adhesives: Extraction Processes, Composite and Chemical Modification
by Yizhang Luo, Ziying Zhang, Jiachen Zuo and Libo Zhang
Polymers 2026, 18(3), 337; https://doi.org/10.3390/polym18030337 - 27 Jan 2026
Viewed by 102
Abstract
Traditional fossil-based adhesives, hindered by issues such as formaldehyde emission, dependence on fossil resources, and poor biodegradability, struggle to meet the global demand for low-carbon green development. Biomass-based adhesives have thus emerged as a core alternative. Among them, chitin/chitosan derived from biomass waste [...] Read more.
Traditional fossil-based adhesives, hindered by issues such as formaldehyde emission, dependence on fossil resources, and poor biodegradability, struggle to meet the global demand for low-carbon green development. Biomass-based adhesives have thus emerged as a core alternative. Among them, chitin/chitosan derived from biomass waste such as shrimp and crab shells demonstrates significant potential in the adhesive field due to its renewability, controllable structure, biocompatibility, and inherent antibacterial properties. However, mainstream biomass adhesives like soy protein and starch adhesives suffer from poor water resistance and insufficient wet adhesion strength. Pure chitin/chitosan-based adhesive systems also exhibit low wet strength retention. Furthermore, the overall development faces challenges including high extraction costs, insufficient performance synergy, poor industrial compatibility, and a lack of standardized systems. This review follows the framework of “resource–extraction–modification–performance–application–challenges” to systematically summarize relevant research progress. It clarifies the molecular structure and intrinsic advantages of chitin/chitosan, outlines extraction processes such as acid/alkali and enzymatic methods, and characterization techniques including FT-IR and XRD. The review focuses on analyzing modification strategies such as composite modification, chemical modification, biomineralization, and biomimetic design, and verifies the application potential of these adhesives in wood processing, biomedicine, paper-based packaging, and other fields. Research indicates that chitin/chitosan-based adhesives provide an effective pathway for the green transformation of the adhesive industry. Future efforts should concentrate on developing green extraction processes, designing multifunctional integrated systems, and achieving full resource utilization of biomass. Additionally, establishing comprehensive standardized systems and promoting the translation of laboratory research into industrial applications are crucial to driving the industry’s green transition. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

12 pages, 2723 KB  
Article
Graphene Oxide (GO) Impregnation of Polyamide-Based Composites Enhances Thermal Conductivity After Selective Laser Sintering
by Viktoria A. Koshlakova, Andrey A. Stepashkin, Valter Maurino and Dmitry S. Muratov
Nanomaterials 2026, 16(3), 170; https://doi.org/10.3390/nano16030170 - 27 Jan 2026
Viewed by 108
Abstract
Selective laser sintering (SLS) is an additive manufacturing method that enables the creation of complex-shaped polymer-based structures with great control over the desired properties. In this study, polyamide 12 (PA12)–based powders containing 0.8 wt.% graphene oxide (GO), introduced via a wet-mixing impregnation method, [...] Read more.
Selective laser sintering (SLS) is an additive manufacturing method that enables the creation of complex-shaped polymer-based structures with great control over the desired properties. In this study, polyamide 12 (PA12)–based powders containing 0.8 wt.% graphene oxide (GO), introduced via a wet-mixing impregnation method, were processed by selective laser sintering (SLS). Implementation of a double laser scanning strategy increased the tensile strength of the composites by 2.5% relative to pristine SLS-processed PA12 and enhanced the thermal conductivity to 0.74 W·m−1·K−1. The results indicate that the laser sintering process is an effective approach to produce low filler content polymer-matrix composites with enhanced thermal properties while preserving mechanical integrity and maintaining electrical insulation behavior. Full article
(This article belongs to the Special Issue A Sustainable Future Using 2D and 1D Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

21 pages, 3861 KB  
Article
A Five-Year Field Investigation of Conservation Tillage on Soil Hydrothermal Regimes and Crop Yield Stability in Semi-Arid Agroecosystems
by Fahui Jiang, Jia Xu, Hao Zhang, Chunlei Hao, Wei Zheng, Yanyan Zuo, Liyan Zhang, Zhe Dong, Limei Bian, Yuhan Yao, Yanhua Ci, Qinglin Li and Fansheng Meng
Agriculture 2026, 16(3), 312; https://doi.org/10.3390/agriculture16030312 - 27 Jan 2026
Viewed by 142
Abstract
The sustainable management of Northern China’s vulnerable agro-pastoral ecotone requires a clearer understanding of how tillage systems affect crop productivity through local soil-climate interactions. Therefore, this study was conducted to quantify and compare the long term effects of different tillage practices on soil [...] Read more.
The sustainable management of Northern China’s vulnerable agro-pastoral ecotone requires a clearer understanding of how tillage systems affect crop productivity through local soil-climate interactions. Therefore, this study was conducted to quantify and compare the long term effects of different tillage practices on soil hydrothermal regimes, resource use efficiency, and maize yield stability in a semi-arid agroecosystem. A long term five-year field experiment with maize was conducted in this ecotone to assess three tillage methods: no tillage (NT), deep ploughing (DP), and conventional rotary tillage (RT). Seasonal monitoring included soil moisture, temperature, bulk density, and straw cover. Analyses focused on soil water use efficiency (WUE), the production efficiency per soil thermal unit (PEsoil), and pathways affecting theoretical calculated yield. Results show that relative to RT and DP, NT consistently elevated soil water content within the 0–30 cm profile during the growing season, with the most marked increases from pre-sowing to the V12 stage. This water-conserving effect was stronger in wet years, highlighting the role of precipitation in NT’s performance. DP also retained more soil water than RT, particularly in deeper layers, though its effect was less pronounced than NT’s. Regarding temperature, NT lowered the daily mean soil temperature and accumulated growing degree days (GDD) in early growth phases, a result of residue cover buffering thermal changes. Despite reduced heat accumulation, NT achieved the greatest efficiencies for both heat and water use (PEsoil and WUE), showing increases of 62.03% and 16.64% over RT, respectively, without yield penalty. Key mechanisms include permanent straw mulch under NT, which curtails evaporation, promotes water infiltration, and stabilizes soil structure, thereby modulating hydrothermal dynamics. Structural equation modeling indicated that soil water content, ear number per hectare, and hundred-kernel weight directly and positively determined final yield. Tillage methods exerted indirect effects on yield by modifying soil physical traits and microclimatic conditions. In this semi-arid setting, both NT and DP outperformed RT in conserving soil water, moderating soil temperature, and boosting resource use efficiency. These practices present viable strategies for strengthening crop resilience and sustaining productivity amid climatic variability. Full article
Show Figures

Graphical abstract

25 pages, 18096 KB  
Article
Evaluation of the Drug–Polymer Compatibility and Dissolution Behaviour of Fenbendazole–Soluplus® Solid Dispersions Prepared by Hot-Melt Extrusion
by Amirhossein Karimi, Gilberto S. N. Bezerra, Clement L. Higginbotham and John G. Lyons
Polymers 2026, 18(3), 333; https://doi.org/10.3390/polym18030333 - 26 Jan 2026
Viewed by 259
Abstract
Fenbendazole is an important anti-parasitic medicine widely used in the veterinary field and has recently been considered as a possible anti-cancer agent in humans by some researchers. Fenbendazole encounters challenges in its usage due to its limited aqueous solubility, which consequently impacts its [...] Read more.
Fenbendazole is an important anti-parasitic medicine widely used in the veterinary field and has recently been considered as a possible anti-cancer agent in humans by some researchers. Fenbendazole encounters challenges in its usage due to its limited aqueous solubility, which consequently impacts its therapeutic efficacy. In this work, an in vitro mechanistic investigation was conducted to evaluate the compatibility, amorphization behaviour and dissolution profile of fenbendazole dispersed in Soluplus® using the solid dispersion approach via hot-melt extrusion. Three different fenbendazole/Soluplus® ratios were formulated and characterised through systematic experimentation. Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray (EDX) and Fourier Transform Infrared Spectroscopy (FTIR) were employed for thermal, physical, chemical and morphological analyses. The solubility of the drug formulation during a dissolution test was investigated using Ultraviolet–Visible (UV–Vis) spectrophotometric measurements. In vitro dissolution testing in acidic and neutral media was employed as a controlled environment to compare dissolution behaviour among different loadings. The extrudates demonstrated markedly enhanced apparent solubility compared to neat fenbendazole, with the 5% formulation showing the highest dissolution rate (approximately 85% after 48 h). This improvement can be attributed to better wetting properties and drug dispersion within the Soluplus® matrix. This innovative strategy holds promise in surmounting fenbendazole’s solubility limitations, presenting a comprehensive solution to enhance its therapeutic effectiveness. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

25 pages, 2186 KB  
Review
Bio-Oil from Phototrophic Microorganisms: Innovative Technologies and Strategies
by Kenzhegul Bolatkhan, Ardak B. Kakimova, Bolatkhan K. Zayadan, Akbota Kabayeva, Sandugash K. Sandybayeva, Aliyam A. Dauletova and Tatsuya Tomo
BioTech 2026, 15(1), 11; https://doi.org/10.3390/biotech15010011 - 26 Jan 2026
Viewed by 91
Abstract
The transition to low-carbon energy systems requires scalable and energy-efficient routes for producing liquid biofuels that are compatible with existing fuel infrastructures. This review focuses on bio-oil production from phototrophic microorganisms, highlighting their high biomass productivity, rapid growth, and inherent capacity for carbon [...] Read more.
The transition to low-carbon energy systems requires scalable and energy-efficient routes for producing liquid biofuels that are compatible with existing fuel infrastructures. This review focuses on bio-oil production from phototrophic microorganisms, highlighting their high biomass productivity, rapid growth, and inherent capacity for carbon dioxide fixation as key advantages over conventional biofuel feedstocks. Recent progress in thermochemical conversion technologies, particularly hydrothermal liquefaction (HTL) and fast pyrolysis, is critically assessed with respect to their suitability for wet and dry algal biomass, respectively. HTL enables direct processing of high-moisture biomass while avoiding energy-intensive drying, whereas fast pyrolysis offers high bio-oil yields from lipid-rich feedstocks. In parallel, catalytic upgrading strategies, including hydrodeoxygenation and related hydroprocessing routes, are discussed as essential steps for improving bio-oil stability, heating value, and fuel compatibility. Beyond conversion technologies, innovative biological and biotechnological strategies, such as strain optimization, stress induction, co-cultivation, and synthetic biology approaches, are examined for their role in tailoring biomass composition and enhancing bio-oil precursors. The integration of microalgal cultivation with wastewater utilization is briefly considered as a supporting strategy to reduce production costs and improve overall sustainability. Overall, this review emphasizes that the effective coupling of advanced thermochemical conversion with targeted biological optimization represents the most promising pathway for scalable bio-oil production from phototrophic microorganisms, positioning algal bio-oil as a viable contributor to future low-carbon energy systems. Full article
Show Figures

Figure 1

25 pages, 8880 KB  
Article
On the Peculiar Hydrological Behavior of Sediments Trapped Behind the Terraces of Petra, Jordan
by Catreena Hamarneh and Nizar Abu-Jaber
Land 2026, 15(2), 212; https://doi.org/10.3390/land15020212 - 26 Jan 2026
Viewed by 171
Abstract
The archaeological terraces of Petra (southern Jordan) have long been recognized for their role in agriculture and flood mitigation. Despite the dominance of fine-grained sediments behind many terrace walls, these systems exhibit high infiltration capacity and remarkable resistance to erosion. This study investigates [...] Read more.
The archaeological terraces of Petra (southern Jordan) have long been recognized for their role in agriculture and flood mitigation. Despite the dominance of fine-grained sediments behind many terrace walls, these systems exhibit high infiltration capacity and remarkable resistance to erosion. This study investigates the hydrological behavior of terrace-trapped sediments through detailed soil texture, aggregate stability, salinity, and chemical analyses across eight representative sites in and around Petra. Grain-size distributions derived from dry and wet sieving, supplemented by laser diffraction, reveal that dry sieving substantially overestimates sand content due to aggregation of fine particles into unstable peds. Wet analyses demonstrate that many terrace soils are clay- or sandy-clay-dominated yet remain highly permeable. Chemical indicators (nitrate, phosphate, potassium, pH, and salinity) further suggest that terracing enhances downward water movement and salt leaching irrespective of clay content. The nature of the terrace settings and their sediment structure (especially the coarse-grained framework) exerts a stronger control on hydrological functioning than texture alone. The results have direct implications for understanding ancient land management in Petra and for informing sustainable terracing practices in modern arid and semi-arid landscapes, as they are effective both in harvesting water and reducing sediment mobilization. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement (Third Edition))
Show Figures

Figure 1

Back to TopTop