Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (530)

Search Parameters:
Keywords = wetting agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1410 KiB  
Article
Uptake, Distribution, and Activity of Pluronic F68 Adjuvant in Wheat and Its Endophytic Bacillus Isolate
by Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Astrid Jacobson, Joan E. McLean, Anne J. Anderson and David W. Britt
Agrochemicals 2025, 4(3), 12; https://doi.org/10.3390/agrochemicals4030012 - 23 Jul 2025
Viewed by 231
Abstract
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for [...] Read more.
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for direct biological activity in wheat. F68 binds to and inserts into lipid membranes, which may benefit crops under abiotic stress. F68’s interactions with Triticum aestivum (var Juniper) seedlings and a seed-borne Bacillus spp. endophyte are presented. At concentrations below 10 g/L, F68-primed wheat seeds exhibited unchanged emergence. Root-applied fluorescein-F68 (fF68) was internalized in root epidermal cells and concentrated in highly mobile endosomes. The potential benefit of F68 in droughted wheat was examined and contrasted with wheat treated with the osmolyte, glycine betaine (GB). Photosystem II activity of droughted plants dropped significantly below non-droughted controls, and no clear benefit of F68 (or GB) during drought or rehydration was observed. However, F68-treated wheat exhibited increased transpiration values (for watered plants only) and enhanced shoot dry mass (for watered and droughted plants), not observed for GB-treated or untreated plants. The release of seed-borne bacterial endophytes into the spermosphere of germinating seeds was not affected by F68 (for F68-primed seeds as well as F68 applied to roots), and the planktonic growth of a purified Bacillus spp. seed endophyte was not reduced by F68 applied below the critical micelle concentration. These studies demonstrated that F68 entered wheat root cells, concentrated in endosomes involved in transport, significantly promoted shoot growth, and showed no adverse effects to plant-associated bacteria. Full article
Show Figures

Figure 1

22 pages, 2047 KiB  
Article
Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders
by Baizak Isakulov, Abilkhair Issakulov and Agnieszka Dąbska
Infrastructures 2025, 10(7), 179; https://doi.org/10.3390/infrastructures10070179 - 10 Jul 2025
Viewed by 313
Abstract
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and [...] Read more.
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and impact, the mutual neutralization and detoxification methods of industrial waste toxic components through their mechanochemical treatment on the structures of ball mill LShM-750, were used to obtain iron-sulfur-containing binders. Pyrite cinders acted as oxidizing agents, and elementary technical sulfur had reduced properties. To determine the rate of creep strain growth, the load on prism samples was applied in the form of specially made spring units at stress levels of 0.15 Rbn, 0.44 Rbn, and 0.74 Rbn, where Rbn is the prism strength of iron-sulfur-containing arbolite concrete in compression. The strength and fracture formations of lightweight iron-sulfur concrete were studied using strain gauge apparatus and depth strain gauges glued on shredded reed fibers using adhesive, installed before concreting. It was revealed that the introduction of a sulfur additive within the range from 10 to 13% increases the compressive strength of iron-sulfur-containing concrete composites prepared with that of mortars at a water/solid ratio equal to 0.385 in wet and dry states. It is found that the deformations occurring under applied load growth proportionally to it, and deviation from this regularity was observed for lightweight iron-sulfur-containing concrete only at high compressive stresses. It was also proved that the destruction of iron-sulfur-containing arbolite occurs sequentially. First, the destruction of the mortar component is observed, and then the organic aggregate in the form of crushed reed fiber is destroyed. It was confirmed that arbolite concrete composite can be used as an effective wall material for civil engineering structure, especially in seismic regions of Kazakhstan. Full article
Show Figures

Figure 1

15 pages, 1481 KiB  
Article
Inhibitory Effects of Origanum vulgare Essential Oil on Mycogone perniciosa Growth in Agaricus bisporus Cultivation
by Jasmina Glamočlija, Marija Ivanov, Marina Soković, Ana Ćirić, Slavica Ninković, Danijela Mišić, Ivanka Milenković and Dejan Stojković
J. Fungi 2025, 11(7), 515; https://doi.org/10.3390/jof11070515 - 9 Jul 2025
Viewed by 457
Abstract
Mycogone perniciosa is the causative agent of wet bubble disease, which induces significant losses in the production of Agaricus bisporus, indicating the high importance of the development of novel inhibitory agents. The isolation, identification, and molecular characterization of five isolates of M. [...] Read more.
Mycogone perniciosa is the causative agent of wet bubble disease, which induces significant losses in the production of Agaricus bisporus, indicating the high importance of the development of novel inhibitory agents. The isolation, identification, and molecular characterization of five isolates of M. perniciosa from diseased fruit bodies of A. bisporus was done. Moreover, the study evaluated the in vitro and in situ potential of Origanum vulgare essential oil (EO) to limit M. perniciosa growth and provided chemical characterization of its volatile components. The obtained strains differed phenotypically and according to their molecular characteristics. O. vulgare EO has shown more promising antifungal activity than the commercial fungicide Prochloraz-Mn in the microatmospheric method. In the treatment of experimentally induced wet bubble disease on A. bisporus in the growing chambers with 2% of O. vulgare EO and simultaneous application of spore suspension of mycopathogen, O. vulgare EO totally inhibited the growth of M. perniciosa. Carvacrol, p-cymene, γ-terpinene, and thymol were dominant constituents of O. vulgare EO examined in this study. O. vulgare EO has shown promising potential to limit growth of M. perniciosa and should be further explored as a novel biofungicide. Full article
Show Figures

Figure 1

30 pages, 4387 KiB  
Article
The Potential of Zanthoxylum acanthopodium DC. as Immunomodulators: Formulation, Activity Testing, and Extract Profiling
by Damaris Br. Hutapea, Yasmiwar Susilawati, Muhaimin Muhaimin, Riezki Amalia, Aisyah Tri Mulyani and Anis Yohana Chaerunisaa
Pharmaceuticals 2025, 18(7), 1001; https://doi.org/10.3390/ph18071001 - 3 Jul 2025
Viewed by 396
Abstract
Background/Objectives: One of the plants found in Indonesian forests that has potential as an herbal medicine is andaliman (Zanthoxylum acanthopodium DC.). The fruit of Z. acanthopodium contains phenolic compounds that are known to modulate the immune response. The purpose of this [...] Read more.
Background/Objectives: One of the plants found in Indonesian forests that has potential as an herbal medicine is andaliman (Zanthoxylum acanthopodium DC.). The fruit of Z. acanthopodium contains phenolic compounds that are known to modulate the immune response. The purpose of this study is to determine the extract profile and immunomodulatory activity of Z. acanthopodium fruit and to develop a soft capsule formulation of the extract in the form of emulsion, which stabilizes and acts as an immunomodulatory candidate. Methods: Extract profiling was conducted by liquid chromatography UHPLC–HRMS, and the predicted molecular structure was then used to search for the name of the compound using the mzcloud database. Immunomodulatory activity of the extract and its emulsion was assessed using a lymphocyte viability assay. The extract emulsion to be encapsulated as a soft capsule was developed by employing different types of oil and solubilizer in the oil phase, and a water phase containing the extract and two types of emulsifiers. Results: The chemical composition of andaliman extract was analyzed, including total phenolic content (4%), total flavonoid content (0.35%), and quercetin content (0.13%). Based on LC-HRMS analysis, eleven compounds derived from the ethanolic extract of andaliman were identified as potential immunomodulatory agents. The F3.3F formulation, which contains 30% MCT oil phase with solubilizer lauroyl-PEG-32 glycerides and a water phase with 35% Polysorbat (Tween) 80 emulsifier, provided the most stability. This stability is attributed to the presence of the Tween 80 emulsifier, which has superior wetting and washing functions, strong detergency, and good emulsifying properties compared to the PEG emulsifier used in formulation F3.3E. The survival rates in the lymphocyte cell viability test results indicate that treatment with andaliman extract (173.697% at 15.625 ppm; 174.923% at 31.25 ppm; 168.457% at 62.5 ppm) was better than treatment with kojic acid (144.375% at 15.625 ppm; 137.891% at 31.25 ppm; 146.345% at 62.5 ppm), used as the immunomodulatory agent standard. Conclusions: This study highlights the potential of andaliman extract as an immunomodulatory agent to be developed as an emulsion in a soft capsule. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

15 pages, 2293 KiB  
Article
Preparing and Characterizing Nano Relative Permeability Improver for Low-Permeability Reservoirs
by Bo Li
Processes 2025, 13(7), 2071; https://doi.org/10.3390/pr13072071 - 30 Jun 2025
Viewed by 291
Abstract
Aiming at the problems of insufficient natural productivity and large seepage resistance in low-permeability oil and gas reservoirs, a nano relative permeability improver based on nano SiO2 was developed in this study. The nano relative permeability improver was prepared by the reversed-phase [...] Read more.
Aiming at the problems of insufficient natural productivity and large seepage resistance in low-permeability oil and gas reservoirs, a nano relative permeability improver based on nano SiO2 was developed in this study. The nano relative permeability improver was prepared by the reversed-phase microemulsion method, and the formula was optimized (nano SiO2 5.1%, Span-80 33%, isobutanol 18%, NaCl 2%), so that the minimum median particle size was 4.2 nm, with good injectivity and stability. Performance studies showed that the improvement agent had low surface tension (30–35 mN/m) and interfacial tension (3–8 mN/m) as well as significantly reduced the rock wetting angle (50–84°) and enhanced wettability. In addition, it had good temperature resistance, shear resistance, and acid-alkali resistance, making it suitable for complex environments in low-permeability reservoirs. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

17 pages, 2398 KiB  
Article
Mesoporous SBA-15-Supported Ceria–Cadmium Composites for Fast Degradation of Methylene Blue in Aqueous Systems
by Dănuţa Matei, Abubakar Usman Katsina, Diana-Luciana Cursaru and Sonia Mihai
Water 2025, 17(12), 1834; https://doi.org/10.3390/w17121834 - 19 Jun 2025
Viewed by 477
Abstract
A composite photocatalyst of ceria–cadmium supported on mesoporous SBA-15 silica was synthesized and employed for the aqueous methylene blue (MB) degradation. The composites were prepared using an incipient wetness impregnation technique and a conventional sol–gel approach with triblock copolymer P123 as a structure-directing [...] Read more.
A composite photocatalyst of ceria–cadmium supported on mesoporous SBA-15 silica was synthesized and employed for the aqueous methylene blue (MB) degradation. The composites were prepared using an incipient wetness impregnation technique and a conventional sol–gel approach with triblock copolymer P123 as a structure-directing agent for SBA-15 preparation, enabling the uniform dispersion of CeO2 and Cd species within the SBA-15 framework. The physicochemical properties of both CeO2/SBA-15 and Cd-CeO2/SBA-15 composites were analyzed using small-angle and wide-angle XRD, FT-IR spectroscopy, SEM, TEM, EDX spectroscopy, N2 physisorption at 77 K, and UV-Vis spectroscopy. The findings revealed that the SBA-15 support retained its well-ordered hexagonal mesostructure in both the ceria–SBA-15 and SBA-15-supported cadmium–ceria (Cd-CeO2) composites. The highest degradation efficiency of 96.40% was achieved under optimal conditions, and kinetic analysis using the Langmuir–Hinshelwood model indicated that the MB degradation process followed pseudo-first-order kinetics, with a strong correlation coefficient (R2 = 0.9925) and a rate constant (k) of 0.02532 min−1. Under irradiation, the Cd-CeO2/SBA-15 composites exhibited superior photocatalytic activity compared to the pristine components, owing to the synergistic interaction between ceria and cadmium, enhanced light absorption, and improved charge carrier separation. The recyclability test demonstrated that the degradation efficiency decreased slightly from 96.40% to 94.86% after three cycles, confirming the stability and reusability of Cd-CeO2/SBA-15 composites. The photocatalytic process demonstrated a favorable electrical energy per order (EE/O) value of 281.8 kWh m−3, indicating promising energy efficiency for practical wastewater treatment. These results highlight the excellent photocatalytic performance and durability of the synthesized Cd-CeO2/SBA-15 composites, making them promising candidates for facilitating the photocatalytic decomposition of MB and other dye molecules in water treatment applications. Full article
Show Figures

Figure 1

20 pages, 11096 KiB  
Article
Characterization of the Mechanical Behavior and Stabilization Mechanism of Soft Soil Treated with Xanthan Gum Biopolymer
by Qian-Feng Gao, Xue-Ke Shi, Ling Zeng, Hui-Cong Yu and Jun-Xia Hu
Polymers 2025, 17(11), 1532; https://doi.org/10.3390/polym17111532 - 30 May 2025
Viewed by 475
Abstract
Soft soil poses significant challenges in highway engineering due to its low strength and high compressibility. This study proposes using xanthan gum biopolymer as an environmentally friendly agent to improve the mechanical behavior of soft soil. Laboratory tests were conducted to analyze the [...] Read more.
Soft soil poses significant challenges in highway engineering due to its low strength and high compressibility. This study proposes using xanthan gum biopolymer as an environmentally friendly agent to improve the mechanical behavior of soft soil. Laboratory tests were conducted to analyze the unconfined compressive strength (UCS) and compressibility of xanthan-gum-stabilized soft soil under dry–wet cycles. Physicochemical analysis was performed to examine the pH value, electrical conductivity, and total dissolved solids (TDS) of the stabilized soil. Additionally, microscopic tests were performed to investigate the stabilization mechanism. The results demonstrate that the UCS of the stabilized soil consistently increases with curing age while it decreases under dry–wet cycles. Moreover, the UCS, durability, and modulus of compressibility of the stabilized soil initially increase significantly and then slightly decrease with increasing xanthan gum dosage. At the optimal xanthan gum dosage (1.5%), the UCS reaches 376.3 kPa at 28 d of curing and drops by only 24.1% even after ten dry–wet cycles, and the modulus of compressibility is enhanced to 37.13 MPa; meanwhile, the corresponding compression index and coefficient of compressibility are reduced to 0.082 and 0.061 MPa−1, respectively, indicating satisfactory performance of the stabilized soil as highway foundation material. The stabilization mechanism of xanthan-gum-treated soft soil primarily involves the bonding and filling effects of the hydrogel resulting from the hydration of xanthan gum. These findings suggest that xanthan gum is a promising and effective stabilizing agent for soft soil as it can significantly reduce soil water content and void ratio. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

17 pages, 2228 KiB  
Article
Formulation and In Vitro Characterization of Cellulose-Based Propranolol Hydrochloride Sustained Release Matrix Tablets
by Aashish Khadka, Bhupendra Raj Giri, Rishiram Baral, Shailendra Shakya and Ashwinee Kumar Shrestha
BioChem 2025, 5(2), 14; https://doi.org/10.3390/biochem5020014 - 30 May 2025
Viewed by 630
Abstract
Background/Objectives: Propranolol HCl (PPH), a nonselective beta-adrenergic receptor blocker, is employed as an anti-hypertensive, anti-anginal, anti-arrhythmic, and anti-migraine agent. Given its utility in chronic conditions, developing a sustained-release dosage form becomes imperative to optimize therapeutic outcomes while enhancing patient adherence and minimizing side [...] Read more.
Background/Objectives: Propranolol HCl (PPH), a nonselective beta-adrenergic receptor blocker, is employed as an anti-hypertensive, anti-anginal, anti-arrhythmic, and anti-migraine agent. Given its utility in chronic conditions, developing a sustained-release dosage form becomes imperative to optimize therapeutic outcomes while enhancing patient adherence and minimizing side effects. In this study, we employed a widely adopted matrix-based system to develop PPH sustained-release (PPH-SR) matrix tablets, ensuring the uniform dispersion of the drug within the polymeric matrix to regulate its release rate. Methods: Utilizing cellulose-based polymers, specifically HPMC K100M and ethyl cellulose (EC), as matrix formers, nine different formulations were prepared at varying drug-to-polymer ratios. We employed a wet granulation method, followed by compression of the dried granules, to fabricate round-shaped biconvex PPH-SR tablets. Results: Among these different formulations, formulation 2 (F2), comprising 40 mg PPH and 50 mg HPMC K100M (along with other excipients), showed excellent flowability, as evidenced by Carr’s index and angle of repose values of 12.50 and 28.50, respectively. Additionally, the mechanical properties of F2 tablets showed a hardness of 12.34 ± 0.91 KP, an average weight of 200.45 ± 1.87 mg, with a friability of 0.20%, and a content uniformity of 98.36%. Moreover, in vitro release characteristics of F2 tablets demonstrated a sustained-release behavior, with 94.3 ± 10.2% drug release over 24 h. A comparative analysis with marketed tablets yielded similarity and dissimilarity factors of 64 and 8, respectively. Furthermore, the release profile of F2 exhibited a high degree of linearity with the Korsmeyer–Peppas model (R2 of 0.977), showcasing its reliability and predictability. Conclusions: In essence, this in-house developed PPH sustained-release formulation can improve patient adherence, reduce side effects, and improve therapeutic outcomes. These results align with our objective of enhancing the therapeutic efficacy of PPH and affirm the broader relevance of innovative formulation strategies in addressing the challenges of chronic disease management. Full article
Show Figures

Figure 1

21 pages, 17256 KiB  
Article
Use of Magnetite Derived from Acid Mine Drainage in the Stabilization of Foam for Foamed Mortar
by Richard Thomas Lermen, Matheus Alexandre Pfluck, Thaís Letícia Pilotto, Elen Cristina Faustino Boff Fernandes, Alcindo Neckel, Rodrigo de Almeida Silva and Claudete Gindri Ramos
Sustainability 2025, 17(11), 4986; https://doi.org/10.3390/su17114986 - 29 May 2025
Viewed by 452
Abstract
Foam stabilization plays a critical role in the production of foamed mortar, a material widely applied in civil construction due to its thermal insulation and lightweight structural benefits. This study investigates the use of magnetite derived from acid mine drainage (AMD) as a [...] Read more.
Foam stabilization plays a critical role in the production of foamed mortar, a material widely applied in civil construction due to its thermal insulation and lightweight structural benefits. This study investigates the use of magnetite derived from acid mine drainage (AMD) as a sustainable foam-stabilizing agent. Magnetite’s magnetic properties enhance foam stability by improving air bubble distribution within the mortar. A total of 30 different mixtures were produced, varying the sand-to-cement ratio, type of cement and magnetite content. The compressive strength and tensile flexural strength of the foamed mortars ranged from 0.62 ± 0.04 MPa to 7.33 ± 0.30 MPa and from 0.44 ± 0.12 MPa to 2.82 ± 0.16 MPa, respectively; porosity ranged from 31.8% ± 1.86 to 75.6% ± 2.2; dry and wet bulk density ranged from 423 ± 23 kg.m−3 to 1576 ± 96 kg.m−3 and from 615 ± 9 kg.m−3 to 1828 ± 122 kg.m−3, respectively; water absorption ranged from 8.9% ± 0.9 to 45.8% ± 10.6; and thermal conductivity ranged from 0.54 ± 0.03 W·m−1·K−1 to 0.17 ± 0.03 W·m−1·K−1. Results demonstrated that increasing magnetite content led to greater foam stability and porosity but decreased mechanical strength and density. The sand-to-cement ratio significantly affected all measured properties, while the type of cement had minimal influence. These findings suggest that AMD-derived magnetite is a promising additive for optimizing the performance of lightweight, sustainable foamed mortars. Full article
Show Figures

Figure 1

22 pages, 1362 KiB  
Review
Bioprotection of the Button Mushroom from Pests and Diseases
by Dejan Marčić, Svetlana Milijašević-Marčić, Tanja Drobnjaković, Jelena Luković, Ljiljana Šantrić, Nikola Grujić and Ivana Potočnik
Agronomy 2025, 15(6), 1323; https://doi.org/10.3390/agronomy15061323 - 28 May 2025
Viewed by 548
Abstract
Commercial production of the button mushroom, Agaricus bisporus (Lange) Imbach, is threatened by various pests and mycopathogenic microorganisms. Sciarid flies (Sciaridae) of the genus Lycoriella are considered as major pests, while major pathogens include the fungi Lecanicillium fungicola (Preuss), Zare and Gams, Hypomyces perniciosus [...] Read more.
Commercial production of the button mushroom, Agaricus bisporus (Lange) Imbach, is threatened by various pests and mycopathogenic microorganisms. Sciarid flies (Sciaridae) of the genus Lycoriella are considered as major pests, while major pathogens include the fungi Lecanicillium fungicola (Preuss), Zare and Gams, Hypomyces perniciosus Magnus, Cladobotryum spp., and Trichoderma aggressivum Samuels & W. Gams, the causative agents of dry bubble, wet bubble, cobweb, and green mold diseases, respectively. Control of mushroom pests and diseases has long relied on synthetic chemical pesticides. Pesticide resistance and various health and environmental issues have created a need for sustainable and eco-friendly alternatives to the use of synthetic chemical pesticides for mushroom pest and disease control. The concept of bioprotection, which involves using biological control agents (BCAs) and biopesticide products, offers a viable alternative. The entomopathogenic nematode Steinernema feltiae (Filipjev) and predatory mite Stratiolaelaps scimitus (Womersley) are the most important invertebrate BCAs, while the bacteria Bacillus thuringiensis Berliner, B. amyloliquefaciens, and B. velezensis stand out as the most widely used microbial BCAs/biopesticides. Azadirachtin- and pyrethrum-based products are the most important biochemical biopesticides. Bioprotection agents require inclusion in the integrated pest and disease management (IPDM) programs in order to achieve their full effectiveness. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 3203 KiB  
Article
Cement–Industrial Waste Slag-Based Synergistic Preparation of Flowable Solidified Soil: Mechanisms and Process Optimization
by Hang Yu, Dongxing Wang and Yuhao Shi
Appl. Sci. 2025, 15(11), 5964; https://doi.org/10.3390/app15115964 - 26 May 2025
Viewed by 353
Abstract
In order to study the cement–industrial waste-based synergistic curing of silt soil, orthogonal design tests were used to prepare a new curing agent using cement, fly ash, blast furnace slag, and phosphogypsum as curing materials. In order to evaluate the cement–industrial waste-cured soils, [...] Read more.
In order to study the cement–industrial waste-based synergistic curing of silt soil, orthogonal design tests were used to prepare a new curing agent using cement, fly ash, blast furnace slag, and phosphogypsum as curing materials. In order to evaluate the cement–industrial waste-cured soils, unconfined compressive strength tests, fluidity tests, wet and dry cycle tests, and electron microscope scanning tests were carried out. The mechanical properties and microstructure of the cement–industrial slag were revealed and used to analyze the curing mechanism. The results showed that, among the cement–industrial wastes, cement and blast furnace slag had a significant effect on the unconfined compressive strength of the specimens, and the optimal ratio for early strength was cement–fly ash–slag–phosphogypsum = 1:0.11:0.44:0.06; the optimal ratio for late strength was cement–fly ash–slag–phosphogypsum = 1:0.44:0.44:0.06. In the case of a 140% water content, the 28d compressive strengths of curing agent Ratios I and II were 550.3 kPa and 586.5 kPa, respectively. When a polycarboxylic acid water-reducing agent was mixed at 6.4%, the mobilities of curing agent Ratios I and II increased by 32.1% and 35.8%, and the 28d compressive strengths were 504.1 kPa and 548.8 kPa, respectively. When calcium chloride was incorporated at 1.5%, the early strength of the cured soil increased by 33% and 29.1% compared to that of the unadulterated case year on year, and the mobility was almost unchanged. From microanalysis, it was found that the cement–industrial waste produced the expansion hydration products calcium alumina (AFt) and calcium silicate (C-S-H) during the hydration process. The results of this study provide a certain basis and reference value for the use of marine soft soil as a fluid filling material. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

13 pages, 3064 KiB  
Article
Isolation and Identification of Spoilage Fungi in Potato Fresh Wet Vermicelli and Inhibition Effect of Different Fungicides on Spoilage Fungi
by Feng Zhang, Mei Li, Jiachun Tian, Xia Ge, Shouqiang Li, Jianxin Chen, Yumei Li and Yaqian Zhang
J. Fungi 2025, 11(5), 367; https://doi.org/10.3390/jof11050367 - 8 May 2025
Viewed by 604
Abstract
Fresh wet vermicelli is highly susceptible to microbial contamination during storage as a result of its high moisture content and rich nutrients, which leads to spoilage and deterioration. In addition to exerting a great impact on the quality of the product, this results [...] Read more.
Fresh wet vermicelli is highly susceptible to microbial contamination during storage as a result of its high moisture content and rich nutrients, which leads to spoilage and deterioration. In addition to exerting a great impact on the quality of the product, this results in significant economic losses and potential food safety risks. This work aimed to identify spoilage microorganisms via traditional culturing methods and molecular biology techniques. The effects of environmental factors such as temperature and pH on the growth and development of the dominant spoilage fungi were investigated, and the inhibitory effects of both chemical (potassium sorbate) and natural antimicrobial agents (chitooligosaccharides, chitosan, tea polyphenols, citric acid, and ε-polylysine hydrochloride) were evaluated. The results indicated that Penicillium crustosum was the major spoilage microorganism in fresh wet vermicelli, whose optimal growth temperature and pH was 28 °C and 7, respectively. While conidial germination began at 7 h, hyphal formation was only observed after 12 h. Moreover, the findings suggest that both natural and chemical antimicrobial agents can effectively inhibit the growth of P. crustosum, with ε-polylysine hydrochloride being the strongest antimicrobial agent. Overall, the findings of this study provide a scientific foundation for improving the preservation of fresh wet vermicelli, which is of great significance for extending its shelf life and enhancing food safety. Full article
(This article belongs to the Special Issue Control of Postharvest Fungal Diseases, 2nd Edition)
Show Figures

Figure 1

14 pages, 3695 KiB  
Article
Synergistic Effects of SDS and Non-Ionic Surfactants on Ceramic Membrane Cleaning Performance Under Acidic Conditions
by Yang Deng, Mengkui Tian, Hai Liu, Yan An, Mingkun Wu and Hongpeng Lu
Separations 2025, 12(5), 112; https://doi.org/10.3390/separations12050112 - 28 Apr 2025
Viewed by 481
Abstract
To reinforce the cleaning agent’s wetting and cleaning capabilities on ceramic microfiltration membranes in acidic environments, the wetting properties of sodium dodecyl sulfate (SDS) in combination with multiple nonionic surfactants were examined in a systematic manner. The research findings suggested that there was [...] Read more.
To reinforce the cleaning agent’s wetting and cleaning capabilities on ceramic microfiltration membranes in acidic environments, the wetting properties of sodium dodecyl sulfate (SDS) in combination with multiple nonionic surfactants were examined in a systematic manner. The research findings suggested that there was a potential synergistic effect among SDS, isooctyl alcohol polyoxyethylene ether (JFC), and fatty alcohol polyoxyethylene ether (AEO-7). Moreover, atomic force microscopy (AFM) and infrared spectroscopy were utilized to assess the pre- and post-cleaning contamination levels. The research findings also demonstrated that using a compound cleaning agent conspicuously regenerated the structure and elevated the hydrophilicity of the ceramic membrane surface. The synergistic mechanism between JFC and SDS can be explained by the fact that the inclusion of JFC can lessen the electrostatic repulsion between the ionic groups of SDS and heighten their hydrogen bonding effect, which in turn enhances the dispersion of contaminants and lowers the surface tension of composite solution. Full article
Show Figures

Figure 1

16 pages, 2719 KiB  
Article
A Transcriptomic Study on the Toxic Effects of Iodide (I) Wet Deposition on Pepper (Capsicum annuum) Leaves
by Rui Yu, Zhu-Ling Ma, Min Wang and Jie Jin
Curr. Issues Mol. Biol. 2025, 47(5), 313; https://doi.org/10.3390/cimb47050313 - 28 Apr 2025
Viewed by 489
Abstract
Radioactive iodine (129I), released into the environment from human nuclear activities, poses significant health risks to the biosphere due to its long half-life and mobility. This study investigates the toxic effects of wet-deposited iodine on the growth of chili pepper seedlings [...] Read more.
Radioactive iodine (129I), released into the environment from human nuclear activities, poses significant health risks to the biosphere due to its long half-life and mobility. This study investigates the toxic effects of wet-deposited iodine on the growth of chili pepper seedlings (Capsicum annuum L.) under soil cultivation conditions. Using sodium iodide (NaI) as the exposure agent, transcriptomic analysis was conducted to evaluate the molecular responses of chili pepper leaves to iodine at concentrations of 2, 4, and 8 ppm. The study identified 2440 and 1543 differentially expressed genes (DEGs) in leaves exposed to 2 ppm vs. 4 ppm iodine and 2 ppm vs. 8 ppm iodine, respectively. GO enrichment analysis showed that DEGs at 4 ppm were significantly associated with protein–chromophore linkage, extracellular region, and iron ion binding, while those at 8 ppm were enriched in defense response, cell wall components, and iron ion binding. Iodine stress disrupted key pathways associated with photosynthesis, antioxidant defense, and cuticle biosynthesis. In particular, the downregulation of key genes related to protein–chromophore binding, lipid metabolism, and cell wall organization indicated reduced photosynthetic efficiency and weakened stress resistance. This study provides molecular-level insights into the ecological risks of iodine stress in plants and offers a scientific basis for managing iodine contamination and breeding iodine-tolerant chili pepper cultivars. Full article
Show Figures

Figure 1

16 pages, 3887 KiB  
Article
Enhancing the Performance of Ultra-High Performance Concrete Using Expansive Agent and Pre-Wetted Biochar to Produce a Synergistic Effect
by Congbin Huang, Zijian Zong and Peiyuan Chen
Buildings 2025, 15(8), 1348; https://doi.org/10.3390/buildings15081348 - 17 Apr 2025
Viewed by 598
Abstract
This study explores the impact of an expansive agent (EA) on the performance of internally cured ultra-high-performance concrete (UHPC) using pre-wetted biochar to achieve a synergistic effect in mitigating autogenous shrinkage. Here, the biochar provides internal curing water to mitigate self-desiccation, while the [...] Read more.
This study explores the impact of an expansive agent (EA) on the performance of internally cured ultra-high-performance concrete (UHPC) using pre-wetted biochar to achieve a synergistic effect in mitigating autogenous shrinkage. Here, the biochar provides internal curing water to mitigate self-desiccation, while the EA generates expansive products to compensate shrinkage, collectively improving hydration. The results revealed that a portion of the internal curing water was consumed by the EA to form expansive products, thereby shortening the prolonged setting time typically observed in UHPC with pre-wetted biochar. The incorporation of pre-wetted biochar markedly increased the internal relative humidity of UHPC, reducing its 7 d autogenous shrinkage by 35.7%. Furthermore, the addition of 1–4% EA further decreased the autogenous shrinkage by 6.8–30.3% compared to the internally cured baseline. Notably, the inclusion of pre-wetted biochar slightly enhanced the 7 d and 28 d compressive strengths of UHPC, with further improvements achieved by adding EA (up to 2%). This demonstrates the effectiveness of this internal curing approach, which maintained or improved the compressive strength of UHPC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop