Bioprotection of the Button Mushroom from Pests and Diseases
Abstract
:1. Introduction
2. Pests and Diseases of the Button Mushroom
3. Chemical Control of Mushroom Pests and Diseases
4. Bioprotection in the Management of Mushroom Pests and Diseases
4.1. Management of Mushroom Pests Using Bioprotection Agents
4.1.1. Invertebrates
Bioprotection Agents | Description | Examples of Products | Targets |
---|---|---|---|
Invertebrates | |||
Steinernema feltiae (Filipjev) | Nematode | Scia-Rid (Koppert) | Sciaridae, Phoridae |
Nemasys-M (BASF) | |||
Nemycel (E-nema) | |||
Stratiolaelaps scimitus (Womersley) | Mite | Entomite-M (Koppert) | Sciaridae |
Microorganisms/microbial biopesticides | |||
Bacillus thuringiensis Berliner | Bacterium | VectoBac WDG (Valent Biosciences) | Sciaridae |
subsp. israelensis | |||
Bacillus velezensis QST 713 | Bacterium | Serenade Max (Bayer CropScience) | T. harzianum |
T. aggresivum | |||
Bacillus amyloliquefaciens | Bacterium | Amylo-X (Certis) | T. aggresivum |
subsp. plantarum D747 | |||
Bacillus amyloliquefaciens MBI 600 | Bacterium | Serifel (BASF) | T. harzianum |
T. aggresivum | |||
Streptomyces griseoviridis K61 | Bacterium | Mycostop (Danstar Lallemand) | L. fungicola |
T. aggressivum | |||
Streptomyces lydicus WYEC 108 | Bacterium | Actinovate (Novozymes) | L. fungicola |
T. aggressivum | |||
Clonostachys rosea J1446 | Fungus | Prestop (Danstar Lallemand) | L. fungicola |
Biochemical biopesticides | |||
Azadirachtin | Plant-derived compound | AzaGuard (BioSafe Systems LLC) Azatin XL (Certis) | Sciaridae, Phoridae |
NeemAzal T/S 1.2 EC (EID Parry) | Nematodes | ||
Pyrethrum | Plant-derived compound | Pyganic (MGK) Biogard Pyrethrum Dust (Certis | Sciaridae, Phoridae |
Rosemary oil + geraniol + peppermint oil | Plant-derived compound | Ecotrol Plus (KeyPlex) | Sciaridae, Phoridae |
Abamectin | Microbial-derived compound | Sorcerer 36 (Adama) | Mites Nematodes |
Bioprotection Agent | Application Time | Concentration/Rate | Target | Efficacy (%) | References |
---|---|---|---|---|---|
Steinernema | At the casing time | 0.28–1.12 × 106 IJs m−2 | L. ingenua | 86–100 | [69] |
feltiae | 1 d before + 1 d after the casing time | 1 × 106 IJs m−2 | L. castanescens | 97 | [70] |
7 d after the casing time | 95 | ||||
At the casing time | 3 × 106 IJs m−2 | L. ingenua | 82 | [71] | |
At the spawn run | 3 × 106 IJs m−2 | L. ingenua | 85 | [72] | |
1 d after the casing time | 1 × 106 IJs m−2 | L. castanescens | 63 | [73] | |
Stratiolaelaps | At the spawn run | 700 mites m−2 | L. ingenua | 51–77 | [84] |
scimitus | At the spawn run + at the casing time | 69–80 | |||
At the spawn run | 710 mites m−2 | L. ingenua | 87 | [71] | |
At the casing time | 77 | ||||
At the spawn run | 700 mites m−2 | L. ingenua | 80 | [72] |
4.1.2. Microorganisms/Microbial Biopesticides
4.1.3. Biochemical Biopesticides
4.2. Management of Mushroom Diseases Using Bioprotection Agents
4.2.1. Microorganisms/Microbial Biopesticides
4.2.2. Biochemical Biopesticides
5. Combined and Integrated Use of Bioprotection Agents in Mushrooms
6. Conclusions
- Bioprotection agents, both biological control agents and biopesticides, are of growing importance in controlling pests and diseases of the button mushroom.
- Although the amount of research in this field has increased, there are currently not many commercialized agents intended for the use in A. bisporus cultivation.
- There are two main issues that need to be addressed in future research of bioprotection agents: (1) further evaluation of already commercialized agents, and (2) the search for novel agents.
- Further research is warranted in terms of discovering ecological interactions and compatibility between various bioprotection agents in mushroom cultivation, in order to enable their incorporation in IPDM programs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations Statistics Database. Available online: http://www.fao.org/faostat/en/#data (accessed on 27 March 2025).
- Singh, M.; Kamal, S.; Sharma, V. Status and trends in world mushroom production-III-World Production of Different Mushroom Species in 21st Century. Mushroom Res. 2021, 29, 75. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Y.; Yang, S.; Zhang, W.; Xu, M.; Ma, A.; Zhuang, G.; Chen, G.; Liu, W. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Biores. Technol. 2014, 170, 183–195. [Google Scholar] [CrossRef]
- Milijašević-Marčić, S.; Stepanović, M.; Todorović, B.; Duduk, B.; Stepanović, J.; Rekanović, E.; Potočnik, I. Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. Eur. J. Plant Pathol. 2017, 148, 509–519. [Google Scholar] [CrossRef]
- Pandin, C.; Le Coq, D.; Deschamps, J.; Védie, R.; Rousseau, T.; Aymerich, S.; Briandet, R. Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects Agaricus bisporus crops against the green mould disease. J. Biotechnol. 2018, 278, 10–19. [Google Scholar] [CrossRef]
- Potočnik, I.; Šantrić, L.; Luković, J.; Grujić, N.; Anđelković, N.; Majić, I.; Drobnjaković, T.; Marčić, D.; Milijašević-Marčić, S. Discovering ecological interactions between biocontrol bacterial strains and entomopathogenic nematodes in button mushroom production. Microorganisms 2025, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.J.; Carrasco, J.; Gea, F.J. The Role of Water Content in the Casing Layer for Mushroom Crop Production and the Occurrence of Fungal Diseases. Agronomy 2021, 11, 2063. [Google Scholar] [CrossRef]
- Savoie, J.; Mata, G. Growing Agaricus bisporus as a contribution to sustainable agricultural development. In Mushroom Biotechnology, Developments and Applications; Marian, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 69–91. [Google Scholar]
- Rinker, D.L. Insect, mite, and nematode pests of commercial mushroom production. In Edible and Medicinal Mushrooms: Technology and Applications, 1st ed.; Zied, D.C., Pardo-Giménez, A., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2017; pp. 221–237. [Google Scholar] [CrossRef]
- Shamshad, A. The development of integrated pest management for the control of mushroom sciarid flies, Lycoriella ingenua (Dufour) and Bradysia ocellaris (Comstock), in cultivated mushrooms. Pest Manag. Sci. 2010, 66, 1063–1074. [Google Scholar] [CrossRef]
- Navarro, M.J.; Lopez-Serrano, F.R.; Escudero-Colomar, L.A. Phoretic relationship between the myceliophagous mite Microdispus lambi (Acari: Microdispiddae) and mushroom flies in Spanish crops. Ann. Appl. Biol. 2019, 174, 277–283. [Google Scholar] [CrossRef]
- Coles, P.S.; Mazin, M.; Nogin, G. The association between mushroom sciarid flies, cultural techniques, and green mold disease incidence on commercial mushroom farms. J. Econ. Entomol. 2021, 114, 555–559. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.R. Phorid affecting mushroom production and their management—A review. Mushroom Res. 2000, 8, 55–69. [Google Scholar]
- Navarro, M.J.; Escudero-Colomar, L.A.; Carrasco, J.; Gea, F.J. Mushroom phorid flies—A review. Agronomy 2021, 11, 1958. [Google Scholar] [CrossRef]
- Kheradmand, K.; Kamali, K.; Fathipour, Y.; Goltapeh, E.M.; Nemati, A.R. Crop loss assessment of Pediculastes fletchmanni Wich (Acari: Pygmephoridae) on button mushroom. IOBC/WPRS Bull. 2006, 29, 109–114. [Google Scholar]
- Kheradmand, K.; Kamali, K.; Fathipour, Y.; Goltapeh, E.M. Development, life table and thermal requirement of Tyrophagus putrescentiae (Astigmata: Acaridae) on mushrooms. J. Stored Prod. Res. 2007, 43, 276–281. [Google Scholar] [CrossRef]
- Gao, J.R.; Zou, P. Biology, life table and host specificity of the mushroom pest, Brennandania lambi (Acari: Pygmephoroidea). Exp. Appl. Acarol. 2001, 25, 187–202. [Google Scholar] [CrossRef]
- Szafranek, P.; Lewandowski, M. Mite community on Polish mushroom farms. Int. J. Acarol. 2017, 43, 217–222. [Google Scholar] [CrossRef]
- Keshari, N.; Kranti, K. Integrated Management of Phytopathogenic Nematodes Infesting Mushroom. In Management of Phytonematodes: Recent Advances and Future Challenges; Ansari, R.A., Rizvi, R., Mahmood, I., Eds.; Springer Nature: Singapore, 2020; pp. 141–170. [Google Scholar] [CrossRef]
- Zare, R.; Gams, W. A revision of the Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycol. Res. 2008, 112, 811–824. [Google Scholar] [CrossRef]
- Fletcher, J.T.; Gaze, R.H. Mushroom Pest and Disease Control: A Colour Handbook, 1st ed.; Manson Publishing Ltd. Academic Press: San Diego, CA, USA, 2008; p. 192. [Google Scholar]
- Largeteau, M.L.; Savoie, J.-M. Microbially induced diseases of Agaricus bisporus: Biochemical mechanisms and impact on commercial mushroom production. Appl. Microbiol. Biotechnol. 2010, 86, 63–73. [Google Scholar] [CrossRef]
- Allaga, H.; Zhumakayev, A.; Büchner, R.; Kocsubé, S.; Szűcs, A.; Vágvölgyi, C.; Kredics, L.; Hatvani, L. Members of the Trichoderma harzianum species complex with mushroom pathogenic potential. Agronomy 2021, 11, 2434. [Google Scholar] [CrossRef]
- Geels, F.P.; Hessen, L.P.W.; Van Griensven, L.J.L.D. Brown discoloration of mushrooms caused by Pseudomonas agarici. J. Phytopathol. 2008, 140, 249–259. [Google Scholar] [CrossRef]
- Grogan, H.M.; Adie, B.A.T.; Gaze, R.H.; Chalen, M.P.; Mills, P.R. Double-stranded RNA elements associated with the MVX disease of Agaricus bisporus. Mycol. Res. 2003, 107, 147–154. [Google Scholar] [CrossRef]
- Hatvani, L.; Kredics, L.; Allaga, H.; Manczinger, L.; Vágvolgyi, C.; Kuti, K.; Geosel, A. First report of Trichoderma aggressivum f. aggressivum green mold on Agaricus bisporus in Europe. Plant Dis. 2017, 101, 1052. [Google Scholar] [CrossRef]
- Krupke, O.A.; Castle, A.J.; Rinker, D.L. The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol. Res. 2003, 107, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Grogan, H.M. Fungicide control of mushroom cobweb disease caused by Cladobotryum strains with different benzimidazole resistance profiles. Pest Manag. Sci. 2006, 62, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Luković, J.; Milijašević-Marčić, S.; Hatvani, L.; Kredics, L.; Szücs, A.; Vàgvölgyi, C.; Duduk, N.; Vico, I.; Potočnik, I. Sensitivity of Trichoderma strains from edible mushrooms to the fungicides prochloraz and metrafenone. J. Environ. Sci. Health B 2021, 56, 54–63. [Google Scholar] [CrossRef]
- Navarro, M.J.; Santos, M.; Dianez, F.; Gea, F.J. Chemical and biological control of wet bubble disease (Hypomyces perniciosus) in mushroom crops. Agronomy 2023, 13, 1672. [Google Scholar] [CrossRef]
- Clarke, J.; McGuinness, B.; Fitzpatrick, D.; Kavanagh, K.; Grogan, H. Response of the mushroom pathogen Cladobotryum mycophilum to the fungicides prochloraz and metrafenone and two Bacillus-based biological control agents in mushroom crop trials. Crop Prot. 2024, 177, 106530. [Google Scholar] [CrossRef]
- Kosanović, D.; Potočnik, I.; Duduk, B.; Vukojević, J.; Stajić, M.; Rekanović, E.; Milijašević-Marčić, S. Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Ann. Appl. Biol. 2013, 163, 218–230. [Google Scholar] [CrossRef]
- Smith, J.E.; White, P.F. Diazinon resistance in mushroom pests. HDC Proj. News 1996, 36, 12–15. [Google Scholar]
- Bartlett, G.R.; Keil, C.B.O. Identification and characterization of a permethrin resistance mechanism in populations of the fungus gnat Lycoriella mali (Fitch) (Diptera: Sciaridae). Pestic. Biochem. Physiol. 1997, 58, 173–181. [Google Scholar] [CrossRef]
- EC (European Commission). EU Pesticide Database—Active Substances, Safeners and Synergists. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances (accessed on 28 January 2025).
- Gea, F.K.; Navarro, M.J.; Santos, M.; Dianez, F.; Carrasco, J. Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A review. Microorganisms 2021, 9, 585. [Google Scholar] [CrossRef]
- Bonnen, A.M.; Hopkins, C. Fungicide resistance and population variation in Verticillium fungicola, a pathogen of the button mushroom, Agaricus bisporus. Mycol. Res. 1997, 101, 89–96. [Google Scholar] [CrossRef]
- Gea, F.J.; Tello, J.C.; Honrubia, M. In vitro sensitivity of Verticillium fungicola to selected fungicides. Mycopathologia 1996, 136, 133–137. [Google Scholar] [CrossRef]
- McKay, G.L.; Egan, D.; Morris, E.; Brown, A.E. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method. Mycol. Res. 1998, 102, 671–676. [Google Scholar] [CrossRef]
- Grogan, H.M.; Gaze, R.H. Fungicide resistance among Cladobotryum spp.—Causal agent of cobweb disease of the edible mushroom Agaricus bisporus. Mycol. Res. 2000, 104, 357–364. [Google Scholar] [CrossRef]
- Romaine, C.P.; Royse, D.J.; Schlagnhaufer, C. Emergence of benzimidazole-resistant green mould Trichoderma aggressivum, on cultivated Agaricus bisporus in North America. In Science and Cultivation of Edible and Medicinal Fungi: Mushroom Science XVII, Proceeding of the 17th Congress of the International Society for Mushroom Science (ISMS), Cape Town, South Africa, 20–24 May 2008; International Society for Mushroom Science: Maasbree, The Netherlands, 2008; pp. 510–523. [Google Scholar]
- Romaine, C.P.; Royse, D.J.; Schlagnhaufer, B. Superpathogenic Trichoderma resistant to Topsin M found in Pennsylvania and Delaware. Mushroom News 2005, 53, 6–9. [Google Scholar]
- Gea, F.J.; Navarro, M.J.; Tello, J.C. Reduced sensitivity of the mushroom pathogen Verticillium fungicola to prochloraz-manganese in vitro. Mycol. Res. 2005, 109, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Rinker, D.L.; Alm, G. Management of casing Trichoderma using fungicides. In Science and Cultivation of Edible and Medicinal Fungi: Mushroom Science XVII, Proceeding of the 17th Congress of the International Society for Mushroom Science (ISMS), Cape Town, South Africa, 20–24 May 2008; International Society for Mushroom Science: Maasbree, The Netherlands, 2008; pp. 496–509. [Google Scholar]
- Du, Y.; Shi, N.; Ruan, H.; Miao, J.; Yan, H.; Shi, C.; Chen, F.; Liu, X. Analysis of the prochloraz-Mn resistance risk and its molecular basis in Mycogone rosea from Agaricus bisporus. Pest Manag. Sci. 2021, 77, 4680–4690. [Google Scholar] [CrossRef]
- Gea, F.J.; Tello, J.C.; Navarro, M.J. Efficacy and effects on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite Mycogone perniciosa. Crop Prot. 2010, 29, 1021–1025. [Google Scholar] [CrossRef]
- Shi, N.; Ruan, H.; Jie, Y.; Chen, F.; Du, Y. Sensitivity and efficacy of fungicides against wet bubble disease of Agaricus bisporus caused by Mycogone perniciosa. Eur. J. Plant Pathol. 2020, 157, 873–885. [Google Scholar] [CrossRef]
- Pyck, N.; Sedeyn, P.; Demeulemeester, M.; Grogan, H. Evaluation of metrafenone against Verticillium and Cladobotryum spp.—Causal agents of dry bubble and cobweb disease. In Science and Cultivation of Edible and Medicinal Fungi—Mushroom Science XIX, Proceedings of the 19th International Congress on the Science and Cultivation of Edible and Medicinal Fungi, Amsterdam, The Netherlands, 30 May–2 June 2016; Wageningen University and Research Centre: Amsterdam, The Netherlands, 2016; pp. 82–85. [Google Scholar]
- Carrasco, J.; Navarro, M.J.; Santos, M.; Gea, F.J. Effect of five fungicides with different modes of action on mushroom cobweb disease (Cladobotryum mycophilum) and mushroom yield. Ann. Appl. Biol. 2017, 171, 62–69. [Google Scholar] [CrossRef]
- Carrasco, J.; Navarro, M.-J.; Gea, F.J. Cobweb, a serious pathology in mushroom crops: A review. Spanish J. Agric. Res. 2017, 15, e10R01. [Google Scholar] [CrossRef]
- Grogan, H.M. Challenges facing mushroom disease control in the 21st century. In Proceedings of the 6th International Conference on Mushroom Biology and Mushroom Products, Bonn, Germany, 29 September–3 October 2008; pp. 120–127. [Google Scholar]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B 2011, 366, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Björkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Dan, F.; Jensen, D.F.; et al. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021, 94, 665–676. [Google Scholar] [CrossRef]
- Collinge, D.B.; Jensen, D.F.; Rabiey, M.; Sarrocco, S.; Shaw, M.W.; Shaw, R.H. Biological control of plant diseases—What has been achieved and what is the direction? Plant Pathol. 2022, 71, 1024–1047. [Google Scholar] [CrossRef]
- Koul, O. Biopesticides: Commercial opportunities and challenges. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 1–23. [Google Scholar] [CrossRef]
- Eilenberg, J.; Hajek, A.; Lomer, C. Suggestions for unifying the terminology in biological control. BioControl 2001, 46, 387–400. [Google Scholar] [CrossRef]
- Galli, M.; Feldmann, F.; Vogler, U.V.; Kogel, K.H. Can biocontrol be the game-changer in integrated pest management? A review of definitions, methods and strategies. J. Plant Dis. Prot. 2024, 131, 265–291. [Google Scholar] [CrossRef]
- Van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl 2018, 63, 39–59. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations); WHO (World Health Organization). International Code of Conduct on Pesticide Management: Guidelines for the Registration of Miucrobial, Botanical and Semiochemical Pest Control Agents for Plant Protection and Public Health Issues; FAO & WHO: Rome, Italy, 2017; p. 76. [Google Scholar]
- EPA (United States Environmental Protection Agency). Biopesticides. Available online: https://www.epa.gov/pesticides/biopesticides (accessed on 28 January 2025).
- Karamaouna, F.; Economou, L.P.; Lykogianni, M.; Mantzoukas, S.; Eliopoulos, P.A. Biopesticides in the EU: State of play and perspectives after the Green Deal for agriculture. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 213–239. [Google Scholar] [CrossRef]
- Marrone, P.G. Pesticidal natural products—Status and future potential. Pest Manag. Sci. 2019, 75, 2325–2340. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides in the twenty-first century: Fulfilling the promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef]
- Van Lenteren, J.C. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Koppenhöfer, A.M.; Shapiro-Ilan, D.I.; Hiltpold, I. Entomopathogenic Nematodes in sustainable food production. Front. Sustain. Food Syst. 2020, 4, 125. [Google Scholar] [CrossRef]
- Tarasco, E.; Fanelli, E.; Salvemini, C.; El-Khoury, Y.; Troccoli, A.; Vovlas, A.; De Luca, F. Entomopathogenic nematodes and their symbiotic bacteria: From genes to field uses. Front. Insect Sci. 2023, 3, 1195254. [Google Scholar] [CrossRef] [PubMed]
- Matuska-Łyżwa, J.; Duda, S.; Nowak, D.; Kaca, W. Impact of abiotic and biotic environmental conditions on the development and infectivity of entomopathogenic nematodes in agricultural soils. Insects 2024, 15, 421. [Google Scholar] [CrossRef]
- Rinker, D.L.; Althof, T.H.A.; Dano, J.; Alm, G. Effect of entomopathogenic nematodes on control of a mushroom sciarid fly and on mushroom production. Biocontrol. Sci. Technol. 1995, 5, 109–119. [Google Scholar] [CrossRef]
- Scheepmaker, J.W.A.; Geels, F.P.; Smits, P.H.; Van Griensven, L.J.L.D. Control of the mushroom pests Lycoriella auripila (Diptera: Sciaridae) and Megaselia halterata (Diptera: Phoridae) by Steinernema feltiae (Nematoda: Steinernematidae) in field experiments. Ann. Appl. Biol. 1997, 131, 359–368. [Google Scholar] [CrossRef]
- Jess, S.; Kilpatrick, M. An integrated approach to the control of Lycoriella solani (Diptera: Sciaridae) during production of the cultivated mushroom (Agaricus bisporus). Pest Manag. Sci. 2000, 56, 477–485. [Google Scholar] [CrossRef]
- Jess, S.; Bingham, J.F.W. Biological control of sciarid and phorid pests of mushrooms with predatory mites from the genus Hypoaspis (Acari: Hypoaspidae) and the entomopathogenic nematode Steinernema feltiae. Bull. Entomol. Res. 2004, 94, 159–167. [Google Scholar] [CrossRef]
- Navarro, M.J.; Gea, F.J. Entomopathogenic nematodes for the control of phorid and sciarid flies in mushroom crops. Pesqui. Agropec. Brasileira 2014, 49, 11–17. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E. Microbial-based biopesticides: Commercialization and regulatory perspectives. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 103–118. [Google Scholar] [CrossRef]
- EPA (United States Environmental Protection Agency). Pesticide Product and Label System. Available online: https://ordspub.epa.gov/ords/pesticides/f?p=PPLS:1 (accessed on 28 January 2025).
- Erler, F.; Polat, E.; Demir, H.; Cetin, H.; Erdemir, T. Evaluation of microbial products for the control of the mushroom phorid fly, Megaselia halterata (Wood). J. Entomol. Sci. 2009, 44, 1–9. [Google Scholar] [CrossRef]
- Scheepmaker, J.W.A.; Geels, F.P.; Smits, P.H.; Rutjens, A.I.; Van Griensven, L.J.L.D. Comparison of the efficacy of entomopathogenic nematodes for the biological control of the mushroom pests Lycoriella auripila (Sciaridae) and Megaselia halterata (Phoridae). Biocontrol. Sci. Technol. 1998, 8, 277–288. [Google Scholar] [CrossRef]
- San-Blas, E.; Luzardo, M.; Larreal, J.; Portillo, E.; Bastidas, B. Biological control of the fungus gnats Bradysia difformis (Diptera, Mycetophilidae) in mushrooms with Heterorhabditis amazonensis in tropical conditions. Sci. Hort. 2017, 216, 120–125. [Google Scholar] [CrossRef]
- Chen, C.; Ma, H.; Ma, M.; Li, J.; Zheng, S.; Song, Q.; Gu, X.; Shapiro-Ilan, D.; Ruan, W. An innovative strategy for control of fungus gnats using entomopathogenic nematodes alone or in combination with waterlogging. J. Nematol. 2021, 52, e2020-57. [Google Scholar] [CrossRef]
- Matuska-Łyżwa, J.; Żarnowiec, P.; Kaca, W. Comparison of biological activity of field isolates of Steinernema feltiae with a commercial S. feltiae biopesticide product. Insects 2021, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Drobnjaković, T.; Grujić, N.; Luković, J.; Anđelković, N.; Potočnik, I.; Milijašević-Marčić, S.; Šantrić, L.; Popović, A.; Marčić, D. Potential of Steinernema feltiae (Nematoda: Steinernematidae) native populations in the biocontrol of Lycoriella ingenua (Diptera: Sciaridae) and their impact on mushroom production. Agriculture 2025, 15, 537. [Google Scholar] [CrossRef]
- Knapp, M.; van Houten, Y.; van Baal, E.; Groot, T. Use of predatory mites in commercial biocontrol: Current status and future prospects. Acarologia 2018, 58, 72–82. [Google Scholar] [CrossRef]
- Beretta, G.M.; Deere, J.A.; Messelink, G.J.; Muňoz-Cardenas, K.; Janssen, A. Review: Predatory soil mites as biocontrol agents of above and below-ground plant pests. Exp. Appl. Acarol. 2022, 87, 143–162. [Google Scholar] [CrossRef]
- Ali, O.; Dunne, R.; Brennan, P. Biological control of the sciarid fly, Lycoriella solani, by the predatory mite Hypoaspis miles (Acari: Laelapidae) in mushroom crops. Syst. Appl. Acarol. 1997, 2, 71–80. [Google Scholar] [CrossRef]
- Castilho, R.C.; de Moraes, G.J.; Silva, E.S.; Freire, R.A.P.; Da Eira, F.C. The predatory mite Stratiolaelaps scimitus as a control agent of the fungus gnat Bradysia matogrossensis in commercial production of the mushroom Agaricus bisporus. Int. J. Pest Manag. 2009, 55, 181–185. [Google Scholar] [CrossRef]
- Grosman, A.H.; Messelink, G.J.; de Groot, E. Combined use of a mulch layer and the soil-dwelling predatory mite Macrocheles robustulus (Berlese) enhance the biological control of sciarids in potted plants. IOBC/WPRS Bull. 2011, 68, 51–54. [Google Scholar]
- Al-Amidi, A.H.K.; Downes, M.J. Parasitus bituberosus (Acari: Parasitidae), a possible agent for biological control of Heteropeza pygmaea (Diptera: Cecidomyiidae) in mushroom compost. Exp. Appl. Acarol. 1990, 8, 13–25. [Google Scholar] [CrossRef]
- Al-Amidi, A.H.K.; Dunne, R.; Downes, M.J. Parasitus bituberosus (Acari: Parasitidae): An agent for control of Lycoriella solani (Diptera: Sciaridae) in mushroom crops. Exp. Appl. Acarol. 1991, 11, 159–166. [Google Scholar] [CrossRef]
- Szafranek, P.; Lewandowski, M.; Kozak, M. Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations. Exp. Appl. Acarol. 2013, 61, 53–67. [Google Scholar] [CrossRef]
- Sanchis, V. From microbial sprays to insect-resistant transgenic plants: History of the biospesticide Bacillus thuringiensis. A review. Agron. Sustain. Dev. 2011, 31, 217–231. [Google Scholar] [CrossRef]
- Keil, C.B. Field and laboratory evaluation of a Bacillus thuringiensis var. israelensis formulation for control of fly pests of mushrooms. J. Econ. Entomol. 1991, 84, 1180–1188. [Google Scholar] [CrossRef]
- Cloyd, R.A.; Dickinson, A. Effect of Bacillus thuringiensis subsp. israelensis and neonicotenoid insecticides on the fungus gnat, Bradysia sp., coprophila (Lintner) (Diptera: Sciaridae). Pest Manag. Sci. 2006, 62, 171–177. [Google Scholar] [CrossRef]
- Shamshad, A.; Clift, A.D.; Mansfield, S. Toxicity of six commercially formulated insecticides and biopesticides to third instar larvae of mushroom sciarid, Lycoriella ingenua Dufour (Diptera: Sciaridae), in New South Wales, Australia. Austral. J. Entomol. 2008, 47, 256–260. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Cloonan, K.R.; Bellicanta, G.S.; Paley, K.; Pecchia, J.; Jenkins, N.E. Efficacy of Beauveria bassiana formulations against the fungus gnat Lycoriella ingenua. Biol. Control 2016, 103, 165–171. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Cloonan, K.R.; Bellicanta, G.S.; Jenkins, N.E. Efficacy of BotaniGard® against the mushroom phorid fly Megaselia halterata. Biocontrol Sci. Technol. 2021, 31, 1098–1106. [Google Scholar] [CrossRef]
- Ajvad, F.T.; Madadi, H.; Michaud, J.P.; Zafari, D.; Khanjani, M. Combined applications of an entomopathogenic fungus and a predatory mite to control fungus gnats (Diptera: Sciaridae) in mushroom production. Biol. Control 2020, 141, 104101. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–425. [Google Scholar] [CrossRef]
- Rovesti, L.; Viccinelli, R.; Barbarossa, B. Biological contol of sciarid flies. IOBC/WPRS Bull. 1996, 19, 20–23. [Google Scholar]
- Erler, F.; Polat, E.; Demir, H.; Cetin, H.; Erdemir, T. Control of the mushroom phorid fly, Megaselia halterata (Wood), with plant extracts. Pest Manag. Sci. 2009, 65, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Drobnjaković, T.; Marčić, D.; Potočnik, I.; Rekanović, E.; Prijović, M.; Milijašević-Marčić, S.; Stepanović, M. Control of mushroom sciarid fly Lycoriella ingenua (Dufour) with an azadirachtin-based insecticide. Pestic. Phytomed. 2019, 34, 111–121. [Google Scholar] [CrossRef]
- Drobnjaković, T.; Luković, J.; Milijašević-Marčić, S.; Todorović, B.; Stepanović, M.; Potočnik, I.; Rekanović, E. Impact of neem cake amendment in the casing soil on control of Trichoderma aggressivum Samuels & W. Gams and Lycoriella ingenua (Dufour) and mushroom yield. Pestic. Phytomed. 2023, 38, 111–121. [Google Scholar] [CrossRef]
- Copping, L.G.; Menn, J.J. Biopesticides: A review of their action, applications and efficacy. Pest Manag. Sci. 2000, 56, 651–676. [Google Scholar] [CrossRef]
- Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 2007, 63, 524–554. [Google Scholar] [CrossRef]
- Babbar, M.H.; Ashfaq, M.; Afzal, M.; Bashir, M.H.; Ali, M.A. Efficacy of different insecticides against mushroom phorid fly, Megaselia halterata (Wood) in Punjab, Pakistan. Int. J. Biodvers. Conserv. 2012, 4, 183–188. Available online: http://www.academicjournals.org/IJBC (accessed on 28 January 2025).
- Babbar, M.H.; Ashfaq, M.; Afzal, M.; Bashir, M.H.; Ali, M.A. Efficacy of different insecticides against mushroom sciarid fly (Lycoriella auripila) in Punjab, Pakistan. Pak. J. Nutr. 2014, 13, 50–55. [Google Scholar] [CrossRef]
- Cawoy, H.; Bettiol, W.; Fickers, P.; Ongena, M. Bacillus-based biological control of plant diseases. In Pesticides in the Modern World—Pesticides Use and Management; Stoytcheva, M., Ed.; InTech: Rijeka, Croatia, 2011; pp. 273–302. [Google Scholar]
- Kumar, S.; Singh, A. Biopesticides: Present Status and the Future Prospects. J. Fertil. Pestic. 2015, 6, e129. [Google Scholar] [CrossRef]
- Stanojević, O.; Milijašević-Marčić, S.; Potočnik, I.; Stepanović, M.; Dimkić, I.; Stanković, S.; Berić, T. Isolation and identification of Bacillus spp. from compost material, compost and mushroom casing soil active against Trichoderma spp. Arch. Biol. Sci. 2016, 68, 845–852. [Google Scholar] [CrossRef]
- Stanojević, O.; Berić, T.; Potočnik, I.; Rekanović, E.; Stanković, S.; Milijašević-Marčić, S. Biological control of green mould and dry bubble diseases of cultivated mushroom (Agaricus bisporus L.) by Bacillus spp. Crop Prot. 2019, 126, 104944. [Google Scholar] [CrossRef]
- Védie, R.; Rousseau, T. Biofungicide Serenade: A major innovation in disease control against Trichoderma aggressivum, agent of compost green mold of button mushroom in France. Lett. CTC 2008, 21, 1–2. [Google Scholar]
- Potočnik, I.; Todorović, B.; Rekanović, E.; Luković, J.; Paunović, D.; Milijašević-Marčić, S. Impact of Bacillus subtilis QST713 mushroom grain spawn treatment on yield and green mould control. Pestic. Phytomed. 2018, 33, 205–211. [Google Scholar] [CrossRef]
- Pandin, C.; Le Coq, D.; Canette, A.; Aymerich, S.; Briandet, R. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microb. Biotechnol. 2017, 10, 719–734. [Google Scholar] [CrossRef]
- Pandin, C.; Darsonval, M.; Mayeur, C.; Le Coq, D.; Aymerich, S.; Briandet, R. Biofilm formation and synthesis of antimicrobial compounds by the biocontrol agent Bacillus velezensis QST713 in an Agaricus bisporus compost micromodel. Appl. Environ. Microbiol. 2019, 85, e00327-19. [Google Scholar] [CrossRef]
- Clarke, J.; Grogan, H.; Fitzpatrick, D.; Kavanagh, K. Characterizing the proteomic response of mushroom pathogen Lecanicillium fungicola to Bacillus velezensis QST 713 and Kos biocontrol agents. Eur. J. Plant Pathol. 2022, 163, 369–379. [Google Scholar] [CrossRef]
- Liu, C.; Sheng, J.; Chen, L.; Zheng, Y.; Lee, D.Y.W.; Yang, Y.; Xu, M.; Shen, L. Biocontrol activity of Bacillus subtilis isolated from Agaricus bisporus mushroom compost against pathogenic fungi. J. Agricul. Food Chem. 2015, 63, 6009–6018. [Google Scholar] [CrossRef]
- Büchner, R.; Vörös, M.; Allaga, H.; Varga, A.; Bartal, A.; Szekeres, A.; Varga, S.; Bajzát, J.; Bakos-Barczi, N.; Misz, A.; et al. Selection and characterization of a Bacillus strain for potential application in industrial production of white button mushroom (Agaricus bisporus). Agronomy 2022, 12, 467. [Google Scholar] [CrossRef]
- Kosanović, D.; Dyas, M.; Grogan, H.; Kavanagh, K. Differential proteomic response of Agaricus bisporus and Trichoderma aggressivum f. europaeum to Bacillus velezensis supernatant. Eur. J. Plant Pathol. 2021, 160, 397–409. [Google Scholar] [CrossRef]
- Jafaripour, E.M.; Ahmadzadeh, M.; Charkhabi, N.F.; Dousti, M.; Sadeghi, R. Bacteria antagonistic to Pseudomonas tolaasii and their control of brown blotch of the cultivated mushroom Agaricus bisporus. J. Plant Pathol. 2025, 107, 537–549. [Google Scholar] [CrossRef]
- Beyer, D.M.; Pecchia, J.A.; Paley, K. Evaluation of bio-fungicides for the control of fungal diseases on Agaricus bisporus. In Proceedings of the 19th International Society for Mushroom Science ISMS Conference, Amsterdam, The Netherlands, 30 May–2 June 2016; pp. 86–90. [Google Scholar]
- Šantrić, L.; Potočnik, I.; Radivojević, L.j.; Gajić Umiljendić, J.; Rekanović, E.; Duduk, B.; Milijašević-Marčić, S. Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus. J. Environ. Sci. Health B 2018, 53, 677–684. [Google Scholar] [CrossRef]
- Sahin, N. Antimicrobial activity of Streptomyces species against mushroom blotch disease pathogen. J. Basic Microbiol. 2005, 45, 64–71. [Google Scholar] [CrossRef]
- Potočnik, I.; Vukojević, J.; Stajić, M.; Rekanović, E.; Stepanović, M.; Milijašević, S.; Todorović, B. Toxicity of biofungicide Timorex 66 EC to Cladobotryum dendroides and Agaricus bisporus. Crop Prot. 2010, 29, 290–294. [Google Scholar] [CrossRef]
- Thoeming, G.; Poehling, H.M. Integrating soil-applied azadirachtin with Amblyseius cucumeris (Acari: Phytoseiidae) and Hypoaspis aculeifer (Acari: Laelapidae) for the management of Frankliniella occidentalis (Thysanoptera: Thripidae). Environ. Entomol. 2000, 35, 746–756. [Google Scholar] [CrossRef]
- Duarte, A.D.F.; de Bastos Pazini, J.; Duarte, J.L.P.; Da Silva, L.R.; Da Cunha, U.S. Compatibility of pesticides used in strawberry crops with predatory mites Stratiolaelaps scimitus (Womersley) and Cosmolaelaps brevistilis (Karg). Ecotoxicology 2020, 29, 148–155. [Google Scholar] [CrossRef]
- Saito, T.; Brownbridge, M. Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biol. Control 2016, 92, 92–100. [Google Scholar] [CrossRef]
- Laznik, Ž.; Trdan, S. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Manag. Sci. 2014, 70, 784–789. [Google Scholar] [CrossRef]
- Petrikovszki, R.; Doshi, P.; Turóczi, G.; Tóth, F.; Nagy, P. Investigating the side-effects of neem-derived pesticides on commercial entomopathogenic and slug-parasitic nematode products under laboratory conditions. Plants 2019, 8, 281. [Google Scholar] [CrossRef]
- Milijašević-Marčić, S.; Šantrić, L.; Luković, J.; Potočnik, I.; Grujić, N.; Drobnjaković, T.; Marčić, D. Altering microbial communities in substrate to stimulate the growth of healthy button mushrooms. Agriculture 2024, 14, 1152. [Google Scholar] [CrossRef]
- Khanna, P.K.; Sodhi, H.S.; Kapoor, S. Diseases of Agaricus bisporus and their management. Annu. Rev. Plant Pathol. 2003, 2, 163–205. [Google Scholar]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Sznyk-Basalyga, A.; Bodnarek, A. Effects of entomopathogenic nematodes and insecticides on Megaselia halterata mortality. IOBC/WPRS Bull. 2003, 26, 147–150. [Google Scholar]
- Sznyk-Basalyga, A.; Bodnarek, A. Integrated control of Lycoriella solani with entomopathogenic nematodes and insecticides. IOBC/WPRS Bull. 2003, 26, 189–192. [Google Scholar]
Latin Names | Description |
---|---|
Pests—Insects | |
Lycoriella ingenua (Diptera: Sciaridae) | Sciarid flies, dark-winged fungus gnats |
Lycoriella castanescens (Diptera: Sciaridae) | Sciarid flies, dark-winged fungus gnats |
Megaselia halterata (Diptera: Phoridae) | Phorid flies, scuttle flies |
Pathogens—Fungi | |
Lecanicillium fungicola (Hypocreomycetidae: Cordycipitaceae) | Dry bubble disease |
Hypomyces perniciosus (Hypocreales: Hypocreaceae) | Wet bubble disease |
Cladobotryum spp. (Hypocreales: Hypocreaceae) | Cobweb disease |
Trichoderma aggressivum (Hypocreales: Hypocreaceae) | Compost green mold disease |
Trichoderma harzianum (Hypocreales: Hypocreaceae) | Compost green mold disease |
Bioprotection Agent | Application Time | Concentration/Rate | Target | Efficacy (%) | References |
---|---|---|---|---|---|
Azadirachtin 1% | 9 d after the casing time | 2 g m−2 | Lycoriella sp. | 62 | [99] |
Azadirachtin 1% | At the casing time | 5 mL L−1 | M. halterata | 66–72 | [100] |
Azadirachtin 0.3% | 63–67 | ||||
Neem cake | At the casing time | 2.5% | L. ingenua | 84 | [102] |
Application Time | Concentration/Rate | Target | Efficacy (%) | References |
---|---|---|---|---|
4 d after the casing time | 8 × 109 CFU g−1 in 1 L H2O m−2 | T. aggressivum | 48 | [4] |
2 d after the casing time | 52–57 | [110] | ||
Spawn grain treatment | 50 | [112] | ||
4 d after casing time | T. harzianum | 56 | [4] | |
At the casing time | 44 | [32] | ||
2 d after the casing time | L. fungicola | 42–62 | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marčić, D.; Milijašević-Marčić, S.; Drobnjaković, T.; Luković, J.; Šantrić, L.; Grujić, N.; Potočnik, I. Bioprotection of the Button Mushroom from Pests and Diseases. Agronomy 2025, 15, 1323. https://doi.org/10.3390/agronomy15061323
Marčić D, Milijašević-Marčić S, Drobnjaković T, Luković J, Šantrić L, Grujić N, Potočnik I. Bioprotection of the Button Mushroom from Pests and Diseases. Agronomy. 2025; 15(6):1323. https://doi.org/10.3390/agronomy15061323
Chicago/Turabian StyleMarčić, Dejan, Svetlana Milijašević-Marčić, Tanja Drobnjaković, Jelena Luković, Ljiljana Šantrić, Nikola Grujić, and Ivana Potočnik. 2025. "Bioprotection of the Button Mushroom from Pests and Diseases" Agronomy 15, no. 6: 1323. https://doi.org/10.3390/agronomy15061323
APA StyleMarčić, D., Milijašević-Marčić, S., Drobnjaković, T., Luković, J., Šantrić, L., Grujić, N., & Potočnik, I. (2025). Bioprotection of the Button Mushroom from Pests and Diseases. Agronomy, 15(6), 1323. https://doi.org/10.3390/agronomy15061323