Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (209)

Search Parameters:
Keywords = welded contact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2146 KiB  
Article
Method for Determining the Contact and Bulk Resistance of Aluminum Alloys in the Initial State for Resistance Spot Welding
by Andreas Fezer, Stefan Weihe and Martin Werz
J. Manuf. Mater. Process. 2025, 9(8), 266; https://doi.org/10.3390/jmmp9080266 - 7 Aug 2025
Abstract
In resistance spot welding (RSW), the total electrical resistance (dynamic resistance) as the sum of bulk and contact resistance is a key variable. Both of these respective resistances influence the welding result, but the exact ratio to the total resistance of a real [...] Read more.
In resistance spot welding (RSW), the total electrical resistance (dynamic resistance) as the sum of bulk and contact resistance is a key variable. Both of these respective resistances influence the welding result, but the exact ratio to the total resistance of a real existing sheet is not known. Due to the high scatter in the RSW of aluminum alloys compared to steel, it is of interest to be able to explicitly determine the individual resistance components in order to gain a better understanding of the relationship between the initial state and the lower reproducibility of aluminum welding in the future. So far, only the total resistance and the bulk resistance could be determined experimentally. Due to the different sample shapes, it was not possible to consistently determine the contact resistance from the measurements. In order to realize this, a method was developed that contains the following innovations with the aid of simulation: determination of the absolute bulk resistance at room temperature (RT), determination of the absolute contact resistance at RT and determination of the ratio of bulk and contact resistance. This method makes it possible to compare the resistances of the bulk material and the surface in the initial state quantitatively. This now allows the comparison of batches regarding the surface resistance, especially for welding processes. For the aluminum sheets (EN AW-5182-O, EN AW-6014-T4) investigated, the method showed that the contact resistance dominates and the bulk resistance is less than 20%. These data can also be used to make predictions about the weldability of the alloy using artificial intelligence (AI). If experimental data are available, the method can also be applied to higher temperatures. Full article
(This article belongs to the Special Issue Recent Advances in Welding and Joining Metallic Materials)
Show Figures

Figure 1

19 pages, 2616 KiB  
Article
Structural Analysis of Joints Made of Titanium Alloy TI-6AL-4V and Stainless Steel AISI 321 with Developed Conical Contact Surfaces Obtained by Diffusion Welding
by Olena Karpovych, Ivan Karpovych, Oleksii Fedosov, Denys Zhumar, Yevhen Karakash, Miroslav Rimar, Jan Kizek and Marcel Fedak
Materials 2025, 18(15), 3596; https://doi.org/10.3390/ma18153596 - 31 Jul 2025
Viewed by 208
Abstract
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate [...] Read more.
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate Electrolytic Tough Pitch Copper (Cu-ETP) copper layer, was solved. The joints were studied using micro-X-ray spectral analysis, microstructural analysis, and mechanical tests. High mutual diffusion of copper and titanium, along with increased concentrations of Cr and V in copper, was detected. The shear strength of the obtained welded joints is 250 MPa and 235 MPa at 30 min and 15 min, respectively, which is higher than the copper layer’s strength (180 MPa). The obtained results are explained by the dislocation diffusion mechanism in the volume of grains and beyond, due to thermal deformations during welding. Under operating conditions of internal pressure and cryogenic temperatures, the strength of the connection is ensured by the entire two-layer structure, and tightness is ensured by a vacuum-tight diffusion connection. The obtained strength of the connection (250 MPa) is sufficient under the specified operating conditions. Analysis of existing solutions in the literature review indicates that industrial application of technology for manufacturing bimetallic adapters from AISI 321 stainless steel and Ti-6Al-4V titanium alloy is limited to butt joints with small geometric dimensions. Studies of the transition zone structure and diffusion processes in bimetallic joints with developed conical contact surfaces enabled determination of factors affecting joint structure and diffusion coefficients. The obtained bimetallic adapters, made of Ti-6Al-4V titanium alloy and AISI 321 stainless steel, can be used to connect titanium high-pressure vessels with stainless steel pipelines. Full article
Show Figures

Figure 1

21 pages, 3340 KiB  
Article
Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models
by Yihong Lv, Jingqin Wang, Yuxuan Wang, Yancai Zhu and Ying Zhang
Coatings 2025, 15(8), 885; https://doi.org/10.3390/coatings15080885 - 29 Jul 2025
Viewed by 267
Abstract
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of [...] Read more.
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of doped AgSnO2 based on first-principles calculations initiated from the atomic structures of constituent materials, subsequently computing electronic structure parameters. The results indicate that doping effectively enhances the interfacial stability and bonding strength of AgSnO2 and thereby predicted improved electrical contact performance. Doped SnO2 powders were prepared experimentally using the sol–gel method, and AgSnO2 contacts were fabricated using high-energy ball milling and powder metallurgy. Testing of wettability and electrical contact properties revealed reductions in arc energy, arcing time, contact resistance, and welding force post-doping. Three-dimensional profilometry and scanning electron microscopy (SEM) were employed to characterize electrical contact surfaces, elucidating the arc erosion mechanism of AgSnO2 contact materials. Among the doped variants, La-doped electrical contact materials exhibited optimal performance (the lowest interfacial energy was 1.383 eV/Å2 and wetting angle was 75.6°). The mutual validation of experiments and simulations confirms the feasibility of the theoretical calculation method. This study provides a novel theoretical method for enhancing the performance of AgSnO2 electrical contact materials. Full article
Show Figures

Figure 1

15 pages, 7193 KiB  
Article
Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis
by Gang Wang, Runbo Zhang, Xiangyu Xu, Ren Yuan, Xuteng Lv and Chenglei Fan
Materials 2025, 18(14), 3390; https://doi.org/10.3390/ma18143390 - 19 Jul 2025
Viewed by 251
Abstract
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed [...] Read more.
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed with base material. The defocus distance of the femtosecond laser predominantly influences the depth and phase composition of the WZ, while the weld spacing influences the crack distribution in the joint region. The maximum shear strength of 14.4 MPa was achieved at a defocusing distance of +0.1 mm (below the interface) and a weld spacing of 40 μm. The XRD stress measurements indicate that the defocusing distance mainly affects the stress along the direction of laser impact (DLI), whereas the weld spacing primarily influences the stress along the direction of spacing (DS). GPA results demonstrate that when the spacing is less than 30 μm, the non-uniform shrinkage inside the WZ induces tensile stress in the joint, leading to significant fluctuations in DS residual stress and consequently affecting the joint’s shear strength. This study investigates the effects of process parameters on the mechanical properties of dissimilar joints and, for the first time, analyzes the relationship between joint residual strain and femtosecond laser weld spacing, providing valuable insights for optimizing femtosecond laser welding processes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

25 pages, 15207 KiB  
Article
Study of the Effects of Hardfacing Modes Carried out by FCAW-S with Exothermic Addition of MnO2-Al on Non-Metallic Inclusions, Grain Size, Microstructure and Mechanical Properties
by Bohdan Trembach, Illia Trembach, Aleksandr Grin, Nataliia Makarenko, Olha Babych, Sergey Knyazev, Yuliia Musairova, Michal Krbata, Oleksii Balenko, Oleh Vorobiov and Anatoliy Panchenko
Eng 2025, 6(6), 125; https://doi.org/10.3390/eng6060125 - 10 Jun 2025
Viewed by 1148
Abstract
This paper investigates self-shielded flux-cored wires with an exothermic MnO2-Al addition and the effect of hardfacing modes on the deposited alloy of the Fe-C-Mn system for the first time. Additionally, the paper proposes a new experimental research methodology using an orthogonal [...] Read more.
This paper investigates self-shielded flux-cored wires with an exothermic MnO2-Al addition and the effect of hardfacing modes on the deposited alloy of the Fe-C-Mn system for the first time. Additionally, the paper proposes a new experimental research methodology using an orthogonal experimental design with nine experiments and three levels. At the first stage, it is proposed to use the Taguchi plan (L9) method to find the most significant variables. At the second stage, for the development of a mathematical model and optimization, a factorial design is recommended. The studied parameters of the hardfacing mode were travel speed (TS), set voltage on the power source (Uset), contact tip to work distance (CTWD), and wire feed speed (WFS). The following parameters were studied: welding thermal cycle parameters, microstructure, grain size, non-metallic inclusions, and mechanical properties. The results of the analysis showed that the listed parameters of the hardfacing modes have a different effect on the characteristics of the hardfacing process with self-shielded flux-cored wires with an exothermic addition in the filler. It was determined that for flux-cored wires with an exothermic addition, the size of the deposited metal grain size is most affected by the contact tip to work distance (CTWD). The research results showed that the travel speed (TS) had the main influence on the thermal cycle parameters (heat input, cooling time) and hardness. The analysis of the deposited metal samples showed that an increase in the travel speed had a negative impact on the number of non-metallic inclusions (NMIs) in the deposited metal. While the size of NMIs was influenced by the wire feed speed and the set voltage on the power source. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

14 pages, 6282 KiB  
Article
Influence of Jointing Methods on the Mechanical Properties of CFRTP Structure Under Bending Load
by Yi Wan, Linshu Meng, Hirokuni Wataki and Jun Takahashi
J. Compos. Sci. 2025, 9(6), 291; https://doi.org/10.3390/jcs9060291 - 6 Jun 2025
Viewed by 521
Abstract
Jointing is inevitable for CFRTP (carbon fiber reinforced thermoplastic) component applications in the automotive industry. In this study, commonly used jointing methods were applied to fasten CFRTP components. Three types of jointing methods. Ultrasonic welding, bolted joints, and adhesive joining, and three types [...] Read more.
Jointing is inevitable for CFRTP (carbon fiber reinforced thermoplastic) component applications in the automotive industry. In this study, commonly used jointing methods were applied to fasten CFRTP components. Three types of jointing methods. Ultrasonic welding, bolted joints, and adhesive joining, and three types of CFRTP materials, conventional cross-ply, ultra-thin prepreg cross-ply, and sheet molding compounds, were selected. The influence of the jointing methods on mechanical properties and damage patterns under bending load has been investigated. The finite element models were developed to predict the hazardous area and structural stiffness of jointed structures; the simulation results showed good agreement with experimental ones. The results indicate that the ultrasonic welding could reach similar bending stiffness compared to adhesive joining, whereas the stiffness of bolt jointed structures is relatively lower due to the contact separation induced by the bending deformation. Overall, the finite element model results correlated well with the experimental data. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

31 pages, 7884 KiB  
Article
Magnetic Pulse Welding of Dissimilar Materials: Weldability Window for AA6082-T6/HC420LA Stacks
by Mario A. Renderos Cartagena, Edurne Iriondo Plaza, Amaia Torregaray Larruscain, Marie B. Touzet-Cortina and Franck A. Girot Mata
Metals 2025, 15(6), 619; https://doi.org/10.3390/met15060619 - 30 May 2025
Viewed by 675
Abstract
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the [...] Read more.
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the need for additional filler materials or fluxes. MPW offers several advantages, such as minimal heat input, no distortion or warping, and excellent joint strength and integrity. The process is highly efficient, with welding times typically ranging from microseconds to milliseconds, making it suitable for high-volume production applications in sectors including automotive, aerospace, electronics, and various other industries where strong and reliable joints are required. It provides a cost-effective solution for joining lightweight materials, reducing weight and improving fuel efficiency in transportation systems. This contribution concerns an application for the automotive sector (body-in-white) and specifically examines the welding of AA6082-T6 aluminum alloy with HC420LA cold-rolled micro-alloyed steel. One of the main aspects for MPW optimization is the determination of the process window that does not depend on the equipment used but rather on the parameters associated with the physical mechanisms of the process. It was demonstrated that process windows based on contact angle versus output voltage diagrams can be of interest for production use for a given component (shock absorbers, suspension struts, chassis components, instrument panel beams, next-generation crash boxes, etc.). The process window based on impact pressures versus impact velocity for different impact angles, in addition to not depending on the equipment, allows highlighting other factors such as the pressure welding threshold for different temperatures in the impact zone, critical transition speeds for straight or wavy interface formation, and the jetting/no jetting effect transition. Experimental results demonstrated that optimal welding conditions are achieved with impact velocities between 900 and 1200 m/s, impact pressures of 3000–4000 MPa, and impact angles ranging from 18–35°. These conditions correspond to optimal technological parameters including gaps of 1.5–2 mm and output voltages between 7.5 and 8.5 kV. Successful welds require mean energy values above 20 kJ and weld specific energy values exceeding 150 kJ/m2. The study establishes critical failure thresholds: welds consistently failed when gap distances exceeded 3 mm, output voltage dropped below 5.5 kV, or impact pressures fell below 2000 MPa. To determine these impact parameters, relationships based on Buckingham’s π theorem provide a viable solution closely aligned with experimental reality. Additionally, shear tests were conducted to determine weld cohesion, enabling the integration of mechanical resistance isovalues into the process window. The findings reveal an inverse relationship between impact angle and weld specific energy, with higher impact velocities producing thicker intermetallic compounds (IMCs), emphasizing the need for careful parameter optimization to balance weld strength and IMC formation. Full article
(This article belongs to the Topic Welding Experiment and Simulation)
Show Figures

Figure 1

21 pages, 7528 KiB  
Article
Thermal–Electrical Optimization of Lithium-Ion Battery Conductor Structures Under Extreme High Amperage Current
by Jingdi Guo, Yiran Wang, He Liu, Yahui Liu and Xiaokang Yang
Appl. Sci. 2025, 15(10), 5338; https://doi.org/10.3390/app15105338 - 10 May 2025
Viewed by 635
Abstract
This study addresses the critical challenges of conductor structure fusing, thermal management failure, and thermal runaway risks in lithium-ion batteries under extreme high-amperage discharge conditions. By integrating theoretical analysis, multiphysics coupling simulations, and experimental validation, the research systematically investigates the overcurrent capability of [...] Read more.
This study addresses the critical challenges of conductor structure fusing, thermal management failure, and thermal runaway risks in lithium-ion batteries under extreme high-amperage discharge conditions. By integrating theoretical analysis, multiphysics coupling simulations, and experimental validation, the research systematically investigates the overcurrent capability of lithium battery conductor structures. A novel current–thermal structure coupled finite element model was developed to analyze the dynamic relationship between key parameters, specifically overcurrent cross-sectional area and contact area, and their influence on temperature gradient distribution. Experimental results confirm the model’s accuracy, revealing that under extreme high-amperage conditions, increasing the conductor cross-sectional area by 50% only marginally extends the battery’s current-carrying duration from 0.75 s to 0.8 s. This limited enhancement is attributed to rapid heat generation, which restricts the effectiveness of increasing the cross-sectional area alone. Instead, optimizing the conductor structure by modifying the heat conduction path, which involves a similar increase in the cross-sectional area and an additional 60% increase in contact area through the addition of a welding reinforcement structure, achieves thermal equilibrium. The optimized design achieves a current-carrying duration of 1.73 s, which is 230% of the duration of the traditional configuration. This work establishes a scalable framework for enhancing the thermal–electrical performance of lithium-ion batteries, providing a theoretical foundation for structural optimization and offering significant methodological support for advancing research in high-power battery design, with potential applications in electric vehicles, renewable energy systems, and industrial robotics. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

26 pages, 6349 KiB  
Article
Upset Resistance Welding of a Microcomposite Cu-Nb Conductor for Pulsed Power Applications
by Nikolaj Višniakov, Paulius Beinoras and Oleksandr Kapustynskyi
Metals 2025, 15(4), 394; https://doi.org/10.3390/met15040394 - 1 Apr 2025
Viewed by 552
Abstract
The present study offers an experimental investigation into the welding of Cu–Nb wire using upset resistance welding. The aim is to examine the structure, as well as the electrical and mechanical properties, of Cu–Nb conductor joints produced by this method, which are intended [...] Read more.
The present study offers an experimental investigation into the welding of Cu–Nb wire using upset resistance welding. The aim is to examine the structure, as well as the electrical and mechanical properties, of Cu–Nb conductor joints produced by this method, which are intended for use in coils in pulsed magnetic systems. Analysis of the joint structure revealed that it was free from welding defects. The welded joint demonstrated a negligible change in electrical resistance while retaining sufficient ultimate strength and plasticity comparable to the base material. The tensile strength of the welded sample was found to be 620 MPa. The heat-affected zone is narrow, and the heating temperature is lower than the melting point of the composite material. Therefore, welding occurs in the solid phase without remelting the Cu–Nb composite wire or destroying its unique microstructure. Thus, upset welding is a promising technology for use in solenoid terminal connections with external electrical circuits that are not directly exposed to the high magnetic or tensile forces generated inside a solenoid of a pulsed magnet system. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

20 pages, 11957 KiB  
Article
Improving Simulation Model Accuracy for Friction Stir Welding of AA 2219
by Kennen Brooks, Bryan Ramos, David J. Prymak, Tracy W. Nelson and Michael P. Miles
Materials 2025, 18(5), 1046; https://doi.org/10.3390/ma18051046 - 27 Feb 2025
Viewed by 809
Abstract
Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature (typically between 450 and 500 °C in aluminum alloys) that must be accounted for in the constitutive law of the material being joined. Constitutive [...] Read more.
Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature (typically between 450 and 500 °C in aluminum alloys) that must be accounted for in the constitutive law of the material being joined. Constitutive laws are most often calibrated using flow stresses from hot compression or hot torsion testing, where strain rates are much lower than those seen in the stir zone of the FSW process. As such, the current work employed a recently developed method to measure flow stresses at high strain rates and temperatures in AA 2219-T67, and these data were used in the development of a finite element (FE) simulation of FSW. Because heat generation during FSW is primarily a function of friction between the rapidly spinning tool and the plate, the choice of friction law and associated parameters were also studied with respect to FE model predictions. It was found that the Norton viscoplastic friction law provided the most accurate modeling results, for both the transient and steady-state phases of an FSW plunge experiment. It is likely that the superior performance of the Norton law was its ability to account for temperature and rate sensitivity of the plate material sheared by the tool, while the Tresca-limited Coulomb law favored contact pressure, with essentially no temperature or rate dependence of the local material properties. With optimized friction parameters and more accurate flow stresses for the weld zone, as measured by a high-pressure shear test, a 65% overall reduction in model error was achieved, compared to a model that employed a material law calibrated with hot compression or hot torsion test results. Model error was calculated as an equally weighted comparison of temperatures, torques, and forces with experimentally measured values. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 7073 KiB  
Article
Additive Manufacturing of Vapor Chambers
by Kuan-Lin Chen, Shao-Chi Hsu and Shung-Wen Kang
Materials 2025, 18(5), 979; https://doi.org/10.3390/ma18050979 - 23 Feb 2025
Cited by 2 | Viewed by 1315
Abstract
The increasing power density of high-performance electronic devices poses significant thermal management challenges. Vapor chambers (VCs) offer efficient heat dissipation, but traditional manufacturing methods limit their structural precision and performance. This study investigates the thermal performance of VCs fabricated with additive manufacturing (AM), [...] Read more.
The increasing power density of high-performance electronic devices poses significant thermal management challenges. Vapor chambers (VCs) offer efficient heat dissipation, but traditional manufacturing methods limit their structural precision and performance. This study investigates the thermal performance of VCs fabricated with additive manufacturing (AM), featuring triply periodic minimal surface (TPMS) Gyroid capillary structures at two fill ratios under varying thermal loads. Enhanced thermal stability and performance were observed in the higher fill ratio, particularly under higher heat loads, whereas the lower fill ratio excelled under low-heat conditions, achieving a thermal resistance as low as 0.3688 K/W at an 80 W heat load. Additionally, the research explored the advantages and challenges of horizontal and vertical printing techniques in VC fabrication. Horizontal printing was found to compromise cavity volume due to necessary support structures, whereas vertical printing enhanced mass production feasibility and maintained effective vapor circulation. This study proposes a novel approach using AM to manufacture VCs as a monolithic structure. By eliminating the need for welding, this method ensures seamless integration of the capillary structure with the housing, thereby avoiding issues related to poor contact or welding-induced damage. The study confirmed a 75% reduction in thermal resistance in VCs with capillary structures compared to those without under similar conditions, highlighting the significant potential of integrating precisely designed capillary structures and additive manufacturing in improving vapor chamber performance for advanced thermal management applications. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing and Application)
Show Figures

Figure 1

15 pages, 5045 KiB  
Article
Effect of Pulse Energy on the Microstructure and Mechanical Properties of the Non-Optical Contact Femtosecond Laser Welding of Quartz Glass and the TC4 Alloy
by Xin Li, Runbo Zhang, Xian Tang, Ming Liu, Sijie Li, Gang Wang and Luyu Li
Metals 2025, 15(2), 159; https://doi.org/10.3390/met15020159 - 5 Feb 2025
Cited by 1 | Viewed by 891
Abstract
Currently, the quartz glass–TC4 dissimilar joint has been applied in fields such as radiation environment testing, reactor engineering, and other areas. However, the high brittleness of the quartz glass and thermal mismatch during the welding process limit require further development. Thus, a femtosecond [...] Read more.
Currently, the quartz glass–TC4 dissimilar joint has been applied in fields such as radiation environment testing, reactor engineering, and other areas. However, the high brittleness of the quartz glass and thermal mismatch during the welding process limit require further development. Thus, a femtosecond laser was employed to perform the direct joining of these materials under non-optical contact conditions, with the aid of a well-designed clamp and optimized process, and the effect of pulse energy on the microstructure and mechanical properties was analyzed. It was revealed that a lot of welding zones form at the interface through the diffusion of Si, O, and Ti and, thus, consist of a stable joint. Element distribution is related to pulse energy, which can affect the composition of secondary phases in the weld zones. The maximum shear strength of joints was 10.4 MPa with laser pulses of 0.3 mJ, while a further increase in the pulse energy led to more defects and stress unevenness. These findings provide valuable insights into enhancing the reliability of metal–glass welding joints and the promotion of femtosecond laser technology. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

18 pages, 5797 KiB  
Article
Numerical Fatigue Analysis of Dissimilar Lap Joints Fabricated by Dimple Spot Welding for Automotive Application
by Paolo Livieri and Michele Bortolan
Materials 2025, 18(3), 627; https://doi.org/10.3390/ma18030627 - 30 Jan 2025
Cited by 1 | Viewed by 721
Abstract
This paper presents a numerical analysis of dimple spot welding (DSW) as an innovative joining technique for dissimilar materials, namely steel and aluminium alloys. Employing a finite element (FE) model, the study simulates the fatigue performance of DSW joints, considering crucial factors such [...] Read more.
This paper presents a numerical analysis of dimple spot welding (DSW) as an innovative joining technique for dissimilar materials, namely steel and aluminium alloys. Employing a finite element (FE) model, the study simulates the fatigue performance of DSW joints, considering crucial factors such as contact friction and cyclic loading conditions. While various numerical models are proposed, the simulation incorporating friction and fatigue loading appears to offer the highest accuracy. The research highlights that the fatigue behaviour of DSW joints can be effectively investigated through the non-local theory of the implicit gradient approach by utilising the fatigue curve of arc-welded structures composed of steel or aluminium alloys. Specifically, simulations incorporating friction and fatigue loading demonstrate that the steel spot weld does not represent the weakest point within the joints. Full article
Show Figures

Figure 1

17 pages, 6271 KiB  
Article
Investigation into the Prediction of the Service Life of the Electrical Contacting of a Wheel Hub Drive
by Markus Hempel, Niklas Umland and Matthias Busse
World Electr. Veh. J. 2025, 16(2), 68; https://doi.org/10.3390/wevj16020068 - 25 Jan 2025
Viewed by 758
Abstract
This article examines contacting by means of ultrasonic welding between a cast aluminum winding and a copper conductor of a wheel hub drive for a passenger car. The effect of thermal stress on the formation and growth of intermetallic phases (IMC) in the [...] Read more.
This article examines contacting by means of ultrasonic welding between a cast aluminum winding and a copper conductor of a wheel hub drive for a passenger car. The effect of thermal stress on the formation and growth of intermetallic phases (IMC) in the contact is analyzed. By using microscopy, the growth constant under the specific load conditions can be identified with the help of the parabolic time law and offer a possibility for predicting the service life of the corresponding contacts. As a result, it can be stated that the increase in electrical resistance of the present contact at load temperatures of 120 °C, 150 °C, and 180 °C does not reach a critical value. The growth rates of the IMC also show no critical tendencies at the usual operating temperatures (120 °C and 150 °C, e.g., at 150 °C = 4.59 × 10−7 μm2/s). The activation energy calculated using the Arrhenius plot of 155 kJ/mol (1.61 eV) can be classified as high in comparison to similar studies. In addition, it was found that future investigations of the IMC growth of corresponding electrical contacts should rather be carried out with electric current. The 180 °C sample series were carried out in the oven and with electric current; the samples in the oven did not show clear IMC, while the samples exposed to electric current already showed IMC under the microscope. Full article
Show Figures

Figure 1

15 pages, 4648 KiB  
Article
Investigation of Emissivity and Junction Contacting Status of C-Type Thermocouples Using Rich Hencken Flames
by Linqing Zhang, Yingrong Lu, Qinghuang Huang, Peiyong Wang and Juntao Chang
Energies 2025, 18(3), 468; https://doi.org/10.3390/en18030468 - 21 Jan 2025
Viewed by 797
Abstract
C-type thermocouples are widely used to measure rich combustions; however, the measured temperature, i.e., the thermocouple junction temperature, is not equal to the gas temperature. The junction temperature results from the junction energy balance, including radiation with environments, conduction with thermocouple wires, and [...] Read more.
C-type thermocouples are widely used to measure rich combustions; however, the measured temperature, i.e., the thermocouple junction temperature, is not equal to the gas temperature. The junction temperature results from the junction energy balance, including radiation with environments, conduction with thermocouple wires, and convection with gas. A correction based on the junction energy conservation can derive the gas temperature from the measured temperature. Two C-type thermocouples are used to measure the core region of the standard flames with known gas velocity, composition, and temperature. By matching the CFD-simulated junction temperature with the measured temperature, the emissivity of the thermocouples is obtained. In the temperature range of 1190–1542 K, the emissivity of both thermocouples is close to 0.4. Since the junctions of the C-type thermocouple are large, the area ratios of the wire cross-section to the junction surface are small, and the wire conduction effect is minimal. CFD simulations show that the junction temperatures only decrease by 3.9 K and 8.1 K without wire conduction when the 0.5 mm and 1.0 mm thermocouples measure the Hencken flame with the temperature of 2023.5 K. With the CFD simulation of the measurement of the diffusion region of the Hencken flame, where a strong gas temperature gradient exists, the junction contacting status is judged for the 0.5 mm thermocouple. The simulated temperature of the welding point is consistent with the measured temperature, indicating no wire contact inside the junction. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

Back to TopTop