Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,080)

Search Parameters:
Keywords = weak signal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8119 KiB  
Article
A Novel Scheme for High-Accuracy Frequency Estimation in Non-Contact Heart Rate Detection Based on Multi-Dimensional Accumulation and FIIB
by Shiqing Tang, Yunxue Liu, Jinwei Wang, Shie Wu, Xuefei Dong and Min Zhou
Sensors 2025, 25(16), 5097; https://doi.org/10.3390/s25165097 (registering DOI) - 16 Aug 2025
Abstract
This paper proposes a novel heart rate detection scheme to address key challenges in millimeter-wave radar-based vital sign monitoring, including weak signals, various types of interference, and the demand for high-precision and super-resolution frequency estimation under practical computational constraints. First, we propose a [...] Read more.
This paper proposes a novel heart rate detection scheme to address key challenges in millimeter-wave radar-based vital sign monitoring, including weak signals, various types of interference, and the demand for high-precision and super-resolution frequency estimation under practical computational constraints. First, we propose a multi-dimensional coherent accumulation (MDCA) method to enhance the signal-to-noise ratio (SNR) by fully utilizing both spatial information from multiple receiving channels and temporal information from adjacent range bins. Additionally, we are the first to apply the fast iterative interpolated beamforming (FIIB) algorithm to radar-based heart rate detection, enabling super-resolution frequency estimation with low computational complexity. Compared to the traditional fast Fourier transform (FFT) method, the FIIB achieves an improvement of 1.08 beats per minute (bpm). A reordering strategy is also introduced to mitigate potential misjudgments by FIIB. Key parameters of FIIB, including the number of frequency components L and the number of iterations Q, are analyzed and recommended. Dozens of subjects were recruited for experiments, and the root mean square error (RMSE) of heart rate estimation was less than 1.12 bpm on average at a distance of 1 meter. Extensive experiments validate the high accuracy and robust performance of the proposed framework in heart rate estimation. Full article
(This article belongs to the Section Radar Sensors)
22 pages, 3057 KiB  
Article
A Novel Hyperbolic Unsaturated Bistable Stochastic Resonance System and Its Application in Weak Signal Detection
by Yifan Wang, Yao Li, Li Wang, Yiting Lu and Zheng Zhou
Appl. Sci. 2025, 15(16), 8970; https://doi.org/10.3390/app15168970 - 14 Aug 2025
Abstract
Stochastic resonance (SR) systems possess the remarkable ability to enhance weak signals by transferring noise energy into the signal, and thus have significant application prospects in weak signal detection. However, the classic bistable SR (CBSR) system suffers from the output saturation problem, which [...] Read more.
Stochastic resonance (SR) systems possess the remarkable ability to enhance weak signals by transferring noise energy into the signal, and thus have significant application prospects in weak signal detection. However, the classic bistable SR (CBSR) system suffers from the output saturation problem, which limits its weak signal enhancement ability. To address this limitation, this paper proposes an under-damped unsaturated SR system called the UDHQSR system. This SR system overcomes the output saturation problem through a piecewise potential function constructed by combining hyperbolic sine functions and quadratic functions. Additionally, by introducing a damping term, its weak signal detection performance is further improved. Furthermore, the theoretical output SNR of this proposed SR system is derived to quantitatively represent its weak signal detection performance. The particle swarm optimization (PSO) algorithm is used to dynamically optimize the parameters of the UDHQSR system. Finally, the simulated signal and different real bearing fault signals from public datasets are used to verify the effectiveness of the proposed UDHQSR system. Experimental results demonstrate that this UDHQSR system has better abilities for both weak signal enhancement and noise suppression compared with the CBSR system. Full article
Show Figures

Figure 1

23 pages, 7894 KiB  
Article
Bearing-Weak-Fault Signal Enhancement and Diagnosis Based on Multivariate Statistical Hilbert Differential TEO
by Zhiqiang Liao, Renchao Cai, Zhijia Yan, Peng Chen and Xuewei Song
Machines 2025, 13(8), 722; https://doi.org/10.3390/machines13080722 - 13 Aug 2025
Viewed by 71
Abstract
The enhancement of weak-fault signal characteristics in rolling bearings under strong background noise interference has always been a challenging problem in rotating machinery fault diagnosis. Research indicates that multivariate statistical indicators such as skewness and kurtosis can characterize the fault features of vibration [...] Read more.
The enhancement of weak-fault signal characteristics in rolling bearings under strong background noise interference has always been a challenging problem in rotating machinery fault diagnosis. Research indicates that multivariate statistical indicators such as skewness and kurtosis can characterize the fault features of vibration signals. However, when the fault features in the signal are weak and severely affected by noise, the characterization capability of these indicators diminishes, significantly compromising diagnostic accuracy. To address this issue, this paper proposes a novel multivariate statistical filtering (MSF) method for multi-band filtering, which can effectively screen the target fault information bands in vibration signals during bearing faults. The core idea involves constructing a multivariate matrix of fused-fault multidimensional features by integrating fault and healthy signals, and then utilizing eigenvalue distance metrics to significantly characterize the spectral differences between fault and healthy signals. This enables the selection of frequency bands containing the most informative fault features from the segmented frequency spectrum. To address the inherent in-band residual noise in the MSF-processed signals, this paper further proposes the Hilbert differential Teager energy operator (HDTEO) based on MSF to suppress the filtered in-band noise, thereby enhancing transient fault impulses more effectively. The proposed method has been validated using both public datasets and laboratory datasets. Results demonstrate its effectiveness in accurately identifying fault characteristic frequencies, even under challenging conditions such as incipient bearing faults or severely weak vibration signatures caused by strong background noise. Finally, comparative experiments confirm the superior performance of the proposed approach. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

19 pages, 4920 KiB  
Article
NCD-Pred: Forecasting Multichannel Shipboard Electrical Power Demand Using Neighborhood-Constrained VMD
by Paolo Fazzini, Giuseppe La Tona, Marco Montuori, Matteo Diez and Maria Carmela Di Piazza
Forecasting 2025, 7(3), 44; https://doi.org/10.3390/forecast7030044 - 13 Aug 2025
Viewed by 131
Abstract
This paper introduces Neighborhood-Constrained Decomposition-based Prediction (NCD-Pred), the first system to leverage Neighborhood-Constrained Variational Mode Decomposition (NCVMD) for multichannel forecasting by integrating time series decomposition and neural networks. NCD-Pred leverages NCVMD to decompose a multichannel signal into simpler, band-limited components—referred to as intrinsic [...] Read more.
This paper introduces Neighborhood-Constrained Decomposition-based Prediction (NCD-Pred), the first system to leverage Neighborhood-Constrained Variational Mode Decomposition (NCVMD) for multichannel forecasting by integrating time series decomposition and neural networks. NCD-Pred leverages NCVMD to decompose a multichannel signal into simpler, band-limited components—referred to as intrinsic mode functions or simply modes—by prioritizing the most informative channel (the main channel) over less informative ones (the auxiliary channels) and bringing their central frequencies into alignment up to a tunable extent. This frequency synchronization provides a framework for cooperative mode forecasting, where predictions of signal components are recombined to produce the original signal prediction. For mode-level forecasting, Long Short-Term Memory (LSTM) networks are utilized. NCD-Pred’s performance is evaluated against similarly designed mode-level forecasting systems using a multichannel dataset with weak cross-correlation, representing power load on a large vessel. The results show that NCD-Pred outperforms benchmark methods, demonstrating its practical utility in real signal processing scenarios. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2025)
Show Figures

Figure 1

19 pages, 7157 KiB  
Article
Fault Diagnosis Method of Micro-Motor Based on Jump Plus AM-FM Mode Decomposition and Symmetrized Dot Pattern
by Zhengyang Gu, Yufang Bai, Junsong Yu and Junli Chen
Actuators 2025, 14(8), 405; https://doi.org/10.3390/act14080405 - 13 Aug 2025
Viewed by 165
Abstract
Micro-motors are essential for power drive systems, and efficient fault diagnosis is crucial to reduce safety risks and economic losses caused by failures. However, the fault signals from micro-motors typically exhibit weak and unclear characteristics. To address this challenge, this paper proposes a [...] Read more.
Micro-motors are essential for power drive systems, and efficient fault diagnosis is crucial to reduce safety risks and economic losses caused by failures. However, the fault signals from micro-motors typically exhibit weak and unclear characteristics. To address this challenge, this paper proposes a novel fault diagnosis method that integrates jump plus AM-FM mode decomposition (JMD), symmetrized dot pattern (SDP) visualization, and an improved convolutional neural network (ICNN). Firstly, we employed the jump plus AM-FM mode decomposition technique to decompose the mixed fault signals, addressing the problem of mode mixing in traditional decomposition methods. Then, the intrinsic mode functions (IMFs) decomposed by JMD serve as the multi-channel inputs for symmetrized dot pattern, constructing a two-dimensional polar coordinate petal image. This process achieves both signal reconstruction and visual enhancement of fault features simultaneously. Finally, this paper designed an ICNN method with LeakyReLU activation function to address the vanishing gradient problem and enhance classification accuracy and training efficiency for fault diagnosis. Experimental results indicate that the proposed JMD-SDP-ICNN method outperforms traditional methods with a significantly superior fault classification accuracy of up to 99.2381%. It can offer a potential solution for the monitoring of electromechanical structures under complex conditions. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

34 pages, 1262 KiB  
Review
Deep Learning-Based Fusion of Optical, Radar, and LiDAR Data for Advancing Land Monitoring
by Yizhe Li and Xinqing Xiao
Sensors 2025, 25(16), 4991; https://doi.org/10.3390/s25164991 - 12 Aug 2025
Viewed by 187
Abstract
Accurate and timely land monitoring is crucial for addressing global environmental, economic, and societal challenges, including climate change, sustainable development, and disaster mitigation. While single-source remote sensing data offers significant capabilities, inherent limitations such as cloud cover interference (optical), speckle noise (radar), or [...] Read more.
Accurate and timely land monitoring is crucial for addressing global environmental, economic, and societal challenges, including climate change, sustainable development, and disaster mitigation. While single-source remote sensing data offers significant capabilities, inherent limitations such as cloud cover interference (optical), speckle noise (radar), or limited spectral information (LiDAR) often hinder comprehensive and robust characterization of land surfaces. Recent advancements in synergistic harmonization technology for land monitoring, along with enhanced signal processing techniques and the integration of machine learning algorithms, have significantly broadened the scope and depth of geosciences. Therefore, it is essential to summarize the comprehensive applications of synergistic harmonization technology for geosciences, with a particular focus on recent advancements. Most of the existing review papers focus on the application of a single technology in a specific area, highlighting the need for a comprehensive review that integrates synergistic harmonization technology. This review provides a comprehensive review of advancements in land monitoring achieved through the synergistic harmonization of optical, radar, and LiDAR satellite technologies. It details the unique strengths and weaknesses of each sensor type, highlighting how their integration overcomes individual limitations by leveraging complementary information. This review analyzes current data harmonization and preprocessing techniques, various data fusion levels, and the transformative role of machine learning and deep learning algorithms, including emerging foundation models. Key applications across diverse domains such as land cover/land use mapping, change detection, forest monitoring, urban monitoring, agricultural monitoring, and natural hazard assessment are discussed, demonstrating enhanced accuracy and scope. Finally, this review identifies persistent challenges such as technical complexities in data integration, issues with data availability and accessibility, validation hurdles, and the need for standardization. It proposes future research directions focusing on advanced AI, novel fusion techniques, improved data infrastructure, integrated “space–air–ground” systems, and interdisciplinary collaboration to realize the full potential of multi-sensor satellite data for robust and timely land surface monitoring. Supported by deep learning, this synergy will improve our ability to monitor land surface conditions more accurately and reliably. Full article
Show Figures

Figure 1

13 pages, 1351 KiB  
Article
Applying Machine Learning Algorithms to Classify Digitized Special Nuclear Material Obtained from Scintillation Detectors
by Sai Kiran Kokkiligadda, Cathleen Barker, Emily Gunger, Jalen Johnson, Brice Turner and Andreas Enqvist
J. Nucl. Eng. 2025, 6(3), 31; https://doi.org/10.3390/jne6030031 - 11 Aug 2025
Viewed by 188
Abstract
The capability to discriminate among nuclear fuel properties is essential for a successful nuclear safeguard and security program. Accurate nuclear material identification is hindered due to challenges such as differing levels of enrichments, weak radiation signals in the case of fresh nuclear fuel, [...] Read more.
The capability to discriminate among nuclear fuel properties is essential for a successful nuclear safeguard and security program. Accurate nuclear material identification is hindered due to challenges such as differing levels of enrichments, weak radiation signals in the case of fresh nuclear fuel, and complex self-shielding effects. This study explores the application of supervised machine learning algorithms to digitized radiation detector data for classifying signatures of special nuclear materials. Three scintillation detectors, an EJ-309 liquid scintillator, a CLYC crystal scintillator, and an EJ-276 plastic scintillator, were used to measure gamma-ray and neutron data from special nuclear material at the National Criticality Experiments Research Center (NCERC) at the National Nuclear Security Site (NNSS), at Nevada, USA. Radiation detector pulse data was extracted from the collected digitized data and applied to three separate supervised learning models: Random Forest, XGBoost, and a feedforward Deep Neural Network, chosen for their wide-spread use and distinct data ingest and processing analytics. Through model refinement, such as adding an additional parameter feature, an accuracy of greater than 95% was achieved. Analysis on model parameter feature importance revealed Countrate, which is the overall gamma-ray and neutron incidents for each detector, was the most influential parameter and essential to include for improved classification. Initial model versions not including the Countrate parameter feature failed to classify. Supervised learning models allow for measured gamma-ray and neutron pulse data to be used to develop effective identification and discrimination between material compositions of different fuel assemblies. The study demonstrated that traditional pulse shape parameters alone were insufficient for discriminating between special nuclear materials; the addition of Countrate markedly improved model accuracy but all models were heavily dependent on this specific feature, thus illustrating the need for alternative, more distinct parameter features. The machine learning development framework captured in this study will be beneficial for future applications in discriminating between different fuel enrichments and additives such as burnable poisons. Full article
Show Figures

Figure 1

24 pages, 14429 KiB  
Article
Full-Field Dynamic Parameters and Tension Identification of Stayed Cables Using a Novel Holographic Vision-Based Method
by Shuai Shao, Gang Liu, Zhongru Yu, Dongzhe Ren, Guojun Deng and Zhixiang Zhou
Sensors 2025, 25(16), 4891; https://doi.org/10.3390/s25164891 - 8 Aug 2025
Viewed by 160
Abstract
Due to the slender geometry and low-amplitude vibrations of stayed cables, existing vision-based methods often fail to accurately identify their full-field dynamic parameters, especially the higher-order modes. This paper proposes a novel holographic vision-based method to accurately identify the high-order full-field dynamic parameters [...] Read more.
Due to the slender geometry and low-amplitude vibrations of stayed cables, existing vision-based methods often fail to accurately identify their full-field dynamic parameters, especially the higher-order modes. This paper proposes a novel holographic vision-based method to accurately identify the high-order full-field dynamic parameters and estimate the tension of the stayed cables. Particularly, a full-field optical flow tracking algorithm is proposed to obtain the full-field dynamic displacement information of the stayed cable by tracking the changes in the optical flow field of the continuous motion signal spectral components of holographic feature points. Frequency-domain analysis is applied to extract the natural frequencies and damping ratios, and the vibration frequency method is used to estimate the tension. Additionally, an Eulerian-based amplification algorithm—holographic feature point video magnification (HFPVM)—is proposed for enhancing weak visual motion signals of the stayed cables, so that the morphological motion information of the stayed cables can be visualized. The effectiveness of the proposed method has been validated through experiments on the stayed cable models. Compared with the results obtained using contact sensors, the proposed holographic vision-based method can accurately identify the first five natural frequencies with overall errors below 5% and a maximum deviation of 6.86% in cable tension estimation. The first three normalized holographic mode shapes and dynamic displacement vectors are successfully identified, with the MAC value reaching up to 99.51%. This entirely non-contact vision-based method offers a convenient and low-cost approach for cable tension estimation, and this is also the first study to propose a comprehensive, visual, and quantifiable strategy for periodic or long-term monitoring of cable-supported structures, highlighting its strong potential in practical applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

31 pages, 2334 KiB  
Article
Weak Fault Feature Extraction for AUV Thrusters with Multi-Input Signals
by Dacheng Yu, Feng Yao, Yan Gao, Xing Liu and Mingjun Zhang
J. Mar. Sci. Eng. 2025, 13(8), 1519; https://doi.org/10.3390/jmse13081519 - 7 Aug 2025
Viewed by 131
Abstract
This paper investigates weak fault feature extraction in AUV thrusters under multi-input signal conditions. Conventional methods often rely on insufficient input signals, leading to a non-monotonic mapping between fault features and fault severity. This, in turn, makes accurate fault severity identification infeasible. To [...] Read more.
This paper investigates weak fault feature extraction in AUV thrusters under multi-input signal conditions. Conventional methods often rely on insufficient input signals, leading to a non-monotonic mapping between fault features and fault severity. This, in turn, makes accurate fault severity identification infeasible. To overcome this limitation, this paper increases the number of input signals by utilizing all available measurable signals. To address the problems arising from the expanded signal set, a signal denoising method that combines Feature Mode Decomposition and wavelet denoising is proposed. Furthermore, a signal enhancement technique that integrates energy operators and the Modified Bayes method. Additionally, distinct technical approaches for noise reduction and enhancement are specifically designed for different input signals. Unlike conventional methods that extract features directly from raw input signals, for fault feature extraction and fusion, this study transforms the signals into the time, frequency, and time–frequency domains, extracting diverse fault features across these domains. A sensitivity factor selection method is then employed to identify the sensitive features. These selected features are subsequently fused using Dempster–Shafer evidence theory to construct the final fault feature. Finally, fault severity identification is carried out using the classical grey relational analysis. Pool experiments using the “Beaver II” AUV prototype validate the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Intelligent Measurement and Control System of Marine Robots)
Show Figures

Figure 1

13 pages, 2457 KiB  
Article
Equivalent Self-Noise Suppression of Distributed Hydroacoustic Sensing System Using SDM Signals Based on Multi-Core Fiber
by Jiabei Wang, Hongcan Gu, Peng Wang, Gaofei Yao, Junbin Huang, Wen Liu, Dan Xu and Su Wu
Sensors 2025, 25(15), 4877; https://doi.org/10.3390/s25154877 - 7 Aug 2025
Viewed by 282
Abstract
To address the demand of equivalent self-noise suppression in a distributed hydroacoustic sensing system, this study proposes a method to enhance the acoustic sensitivity and signal-to-noise ratio (SNR) using space division multiplexed (SDM) technology based on multi-core fiber (MCF). Specifically, a dual-channel demodulation [...] Read more.
To address the demand of equivalent self-noise suppression in a distributed hydroacoustic sensing system, this study proposes a method to enhance the acoustic sensitivity and signal-to-noise ratio (SNR) using space division multiplexed (SDM) technology based on multi-core fiber (MCF). Specifically, a dual-channel demodulation system for distributed acoustic sensing is designed using MCF. The responses of different cores in MCF are almost consistent under external acoustic pressure, while their self-noise is inconsistent. Accordingly, the acoustic pressure phase sensitivity (APPS) and SNR gain based on the accumulation of dual-channel signals are analyzed, which are verified by experiments. It is shown that the self-noise correlation coefficient between the two cores is 0.11, increasing the noise power by 3.46 dB. The APPS is increased by 5.97 dB re 1 rad/μPa after the accumulation of two-core signals, which is close to the theoretical value (6 dB). The equivalent self-noise is reduced by 2.54 dB. The experimental results reveal that the enhancement of acoustic pressure phase shift sensitivity and SNR can be achieved by the space division multiplexing (SDM) of multi-core signals, which is of great significance for suppressing the equivalent self-noise of the system and realizing the acoustic pressure detection of weak underwater signals. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

27 pages, 5228 KiB  
Article
Detection of Surface Defects in Steel Based on Dual-Backbone Network: MBDNet-Attention-YOLO
by Xinyu Wang, Shuhui Ma, Shiting Wu, Zhaoye Li, Jinrong Cao and Peiquan Xu
Sensors 2025, 25(15), 4817; https://doi.org/10.3390/s25154817 - 5 Aug 2025
Viewed by 494
Abstract
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical [...] Read more.
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical vision pipelines or recent deep-learning paradigms, struggle to simultaneously satisfy the stringent demands of industrial scenarios: high accuracy on sub-millimeter flaws, insensitivity to texture-rich backgrounds, and real-time throughput on resource-constrained hardware. Although contemporary detectors have narrowed the gap, they still exhibit pronounced sensitivity–robustness trade-offs, particularly in the presence of scale-varying defects and cluttered surfaces. To address these limitations, we introduce MBY (MBDNet-Attention-YOLO), a lightweight yet powerful framework that synergistically couples the MBDNet backbone with the YOLO detection head. Specifically, the backbone embeds three novel components: (1) HGStem, a hierarchical stem block that enriches low-level representations while suppressing redundant activations; (2) Dynamic Align Fusion (DAF), an adaptive cross-scale fusion mechanism that dynamically re-weights feature contributions according to defect saliency; and (3) C2f-DWR, a depth-wise residual variant that progressively expands receptive fields without incurring prohibitive computational costs. Building upon this enriched feature hierarchy, the neck employs our proposed MultiSEAM module—a cascaded squeeze-and-excitation attention mechanism operating at multiple granularities—to harmonize fine-grained and semantic cues, thereby amplifying weak defect signals against complex textures. Finally, we integrate the Inner-SIoU loss, which refines the geometric alignment between predicted and ground-truth boxes by jointly optimizing center distance, aspect ratio consistency, and IoU overlap, leading to faster convergence and tighter localization. Extensive experiments on two publicly available steel-defect benchmarks—NEU-DET and PVEL-AD—demonstrate the superiority of MBY. Without bells and whistles, our model achieves 85.8% mAP@0.5 on NEU-DET and 75.9% mAP@0.5 on PVEL-AD, surpassing the best-reported results by significant margins while maintaining real-time inference on an NVIDIA Jetson Xavier. Ablation studies corroborate the complementary roles of each component, underscoring MBY’s robustness across defect scales and surface conditions. These results suggest that MBY strikes an appealing balance between accuracy, efficiency, and deployability, offering a pragmatic solution for next-generation industrial quality-control systems. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 7143 KiB  
Article
A Refined Multipath Correction Model for High-Precision GNSS Deformation Monitoring
by Yan Chen, Ran Lu, Xingyu Zhou, Mingkun Su and Mingyuan Zhang
Remote Sens. 2025, 17(15), 2694; https://doi.org/10.3390/rs17152694 - 4 Aug 2025
Viewed by 315
Abstract
In deformation monitoring, the severe GNSS multipath caused by reflective surfaces can significantly degrade positioning accuracy. However, traditional multipath mitigation methods often assume strong day-to-day repeatability of residual errors, which is not always valid in complex monitoring environments. We propose a novel GNSS [...] Read more.
In deformation monitoring, the severe GNSS multipath caused by reflective surfaces can significantly degrade positioning accuracy. However, traditional multipath mitigation methods often assume strong day-to-day repeatability of residual errors, which is not always valid in complex monitoring environments. We propose a novel GNSS multipath correction approach that leverages multi-day post-fit residual data and principal component analysis to extract stable multipath signals, integrating them into an enhanced spatial repeatability multipath correction model. This method can effectively isolate true multipath errors, even under conditions of weak inter-day repeatability. Experimental results from a dam monitoring network demonstrate that the proposed method reduces the root mean square (RMS) error of single-day kinematic positioning by about 1.8 mm, 2.4 mm, and 6.7 mm in the East, North, and Up components, respectively. For static positioning solutions over 1 h, 2 h, and 4 h sessions, the RMS in East, North, and Up is reduced by approximately 40% on average. After correction, 2 h sessions achieve ~1.1 mm horizontal and ~3.0 mm vertical accuracy, while 4 h sessions reach ~0.9 mm horizontal and ~2.5 mm vertical accuracy. These improvements confirm that the proposed method effectively mitigates multipath effects and meets the high-precision requirements of deformation monitoring. Full article
Show Figures

Figure 1

16 pages, 1702 KiB  
Article
Mobile and Wireless Autofluorescence Detection Systems and Their Application for Skin Tissues
by Yizhen Wang, Yuyang Zhang, Yunfei Li and Fuhong Cai
Biosensors 2025, 15(8), 501; https://doi.org/10.3390/bios15080501 - 3 Aug 2025
Viewed by 304
Abstract
Skin autofluorescence (SAF) detection technology represents a noninvasive, convenient, and cost-effective optical detection approach. It can be employed for the differentiation of various diseases, including metabolic diseases and dermatitis, as well as for monitoring the treatment efficacy. Distinct from diffuse reflection signals, the [...] Read more.
Skin autofluorescence (SAF) detection technology represents a noninvasive, convenient, and cost-effective optical detection approach. It can be employed for the differentiation of various diseases, including metabolic diseases and dermatitis, as well as for monitoring the treatment efficacy. Distinct from diffuse reflection signals, the autofluorescence signals of biological tissues are relatively weak, making them challenging to be captured by photoelectric sensors. Moreover, the absorption and scattering properties of biological tissues lead to a substantial attenuation of the autofluorescence of biological tissues, thereby worsening the signal-to-noise ratio. This has also imposed limitations on the development and application of compact-sized autofluorescence detection systems. In this study, a compact LED light source and a CMOS sensor were utilized as the excitation and detection devices for skin tissue autofluorescence, respectively, to construct a mobile and wireless skin tissue autofluorescence detection system. This system can achieve the detection of skin tissue autofluorescence with a high signal-to-noise ratio under the drive of a simple power supply and a single-chip microcontroller. The detection time is less than 0.1 s. To enhance the stability of the system, a pressure sensor was incorporated. This pressure sensor can monitor the pressure exerted by the skin on the detection system during the testing process, thereby improving the accuracy of the detection signal. The developed system features a compact structure, user-friendliness, and a favorable signal-to-noise ratio of the detection signal, holding significant application potential in future assessments of skin aging and the risk of diabetic complications. Full article
Show Figures

Figure 1

30 pages, 1523 KiB  
Article
Modeling and Simulation of Attraction–Repulsion Chemotaxis Mechanism System with Competing Signal
by Anandan P. Aswathi, Amar Debbouche, Yadhavan Karuppusamy and Lingeshwaran Shangerganesh
Mathematics 2025, 13(15), 2486; https://doi.org/10.3390/math13152486 - 1 Aug 2025
Viewed by 227
Abstract
This paper addresses an attraction–repulsion chemotaxis system governed by Neumann boundary conditions within a bounded domain ΩR3 that has a smooth boundary. The primary focus of the study is the chemotactic response of a species (cell population) to two competing [...] Read more.
This paper addresses an attraction–repulsion chemotaxis system governed by Neumann boundary conditions within a bounded domain ΩR3 that has a smooth boundary. The primary focus of the study is the chemotactic response of a species (cell population) to two competing signals. We establish the existence and uniqueness of a weak solution to the system by analyzing the solvability of an approximate problem and utilizing the Leray–Schauder fixed-point theorem. By deriving appropriate a priori estimates, we demonstrate that the solution of the approximate problem converges to a weak solution of the original system. Additionally, we conduct computational studies of the model using the finite element method. The accuracy of our numerical implementation is evaluated through error analysis and numerical convergence, followed by various numerical simulations in a two-dimensional domain to illustrate the dynamics of the system and validate the theoretical findings. Full article
(This article belongs to the Special Issue Advances in Numerical Analysis of Partial Differential Equations)
Show Figures

Figure 1

25 pages, 4032 KiB  
Review
Insights to Resistive Pulse Sensing of Microparticle and Biological Cells on Microfluidic Chip
by Yiming Yao, Kai Zhao, Haoxin Jia, Zhengxing Wei, Yiyang Huo, Yi Zhang and Kaihuan Zhang
Biosensors 2025, 15(8), 496; https://doi.org/10.3390/bios15080496 - 1 Aug 2025
Viewed by 302
Abstract
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through [...] Read more.
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through a nanopore, this technology offers detailed insights into the structure, charge, and dynamics of the analytes. In this work, the RPS platforms based on biological, solid-state, and other sensing pores, detailing their latest research progress and applications, are reviewed. Their core capability is the high-precision characterization of tiny particles, ions, and nucleotides, which are widely used in biomedicine, clinical diagnosis, and environmental monitoring. However, current RPS methods involve bottlenecks, including limited sensitivity (weak signals from sub-nanometer targets with low SNR), complex sample interference (high false positives from ionic strength, etc.), and field consistency (solid-state channel drift, short-lived bio-pores failing POCT needs). To overcome this, bio-solid-state fusion channels, in-well reactors, deep learning models, and transfer learning provide various options. Evolving into an intelligent sensing ecosystem, RPS is expected to become a universal platform linking basic research, precision medicine, and on-site rapid detection. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and Lab-on-Chip (Bio)sensors)
Show Figures

Figure 1

Back to TopTop