Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = wave height trend

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5779 KiB  
Article
Regional Wave Spectra Prediction Method Based on Deep Learning
by Yuning Liu, Rui Li, Wei Hu, Peng Ren and Chao Xu
J. Mar. Sci. Eng. 2025, 13(8), 1461; https://doi.org/10.3390/jmse13081461 - 30 Jul 2025
Viewed by 202
Abstract
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave [...] Read more.
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave spectrum prediction over the Bohai and Yellow Seas domain. It uses 2D gridded spectrum data rather than a spectrum at specific points as input and analyzes the impact of various input factors at different time lags on wave development. The results show that incorporating water depth and mean sea level pressure significantly reduces errors. The model performs well across seasons with the seasonal spatial average root mean square error (SARMSE) of spectral energy remaining below 0.040 m2·s and RMSEs for significant wave height (SWH) and mean wave period (MWP) of 0.138 m and 1.331 s, respectively. At individual points, the spectral density bias is near zero, correlation coefficients range from 0.95 to 0.98, and the peak frequency RMSE is between 0.03 and 0.04 Hz. During a typical cold wave event, the model accurately reproduces the energy evolution and peak frequency shift. Buoy observations confirm that the model effectively tracks significant wave height trends under varying conditions. Moreover, applying a frequency-weighted loss function enhances the model’s ability to capture high-frequency spectral components, further improving prediction accuracy. Overall, the proposed method shows strong performance in spectrum prediction and provides a valuable approach for regional wave spectrum modeling. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

21 pages, 8446 KiB  
Article
Regional Wave Analysis in the East China Sea Based on the SWAN Model
by Songnan Ma, Fuwu Ji, Qunhui Yang, Zhinan Mi and Wenhui Cao
J. Mar. Sci. Eng. 2025, 13(6), 1196; https://doi.org/10.3390/jmse13061196 - 19 Jun 2025
Viewed by 584
Abstract
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and [...] Read more.
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and ETOPO1 bathymetric data to perform high-precision simulations at a resolution of 0.05° × 0.05° for the waves in the area of 25–35° N and 120–130° E in the ECS from 2009 to 2023. The simulation results indicate that the application of the whitecapping dissipation parameter Komen and the bottom friction parameter Collins yields an average RMSE of 0.374 m and 0.369 m when compared to satellite-measured data, demonstrating its superior suitability for wave simulation in shallow waters such as the ESC over the other whitecapping dissipation parameter, Westhuysen, and the other two bottom friction parameters, Jonswap and Madsen, in the SWAN model. The monthly average significant wave height (SWH) ranges from 0 to 3 m, exhibiting a trend that it is more important in autumn and winter than in spring and summer and gradually increases from the northwest to the southeast. Due to the influence of the Kuroshio current, topography, and events such as typhoons, areas with significant wave heights are found in the northwest of the Ryukyu Islands and north of the Taiwan Strait. The wave energy flux density in most areas of the ECS is >2 kW/m, particularly in the north of the Ryukyu Islands, where the annual average value remains above 8 kW/m. Because of the influence of climate events such as El Niño and extreme heatwaves, the wave energy flux density decreased significantly in some years (a 21% decrease in 2015). The coefficient of variation of wave energy in the East China Sea exhibits pronounced regional heterogeneity, which can be categorized into four distinct patterns: high mean wave energy with high variation coefficient, high mean wave energy with low variation coefficient, low mean wave energy with high variation coefficient, and low mean wave energy with low variation coefficient. This classification fundamentally reflects the intrinsic differences in dynamic environments across various maritime regions. These high-precision numerical simulation results provide methodological and theoretical support for exploring the spatiotemporal variation laws of waves in the ECS region, the development and utilization of wave resources, and marine engineering construction. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

28 pages, 7802 KiB  
Article
Anomalous Behavior in Weather Forecast Uncertainty: Implications for Ship Weather Routing
by Marijana Marjanović, Jasna Prpić-Oršić, Anton Turk and Marko Valčić
J. Mar. Sci. Eng. 2025, 13(6), 1185; https://doi.org/10.3390/jmse13061185 - 17 Jun 2025
Viewed by 1099
Abstract
Ship weather routing is heavily dependent on weather forecasts. However, the predictive nature of meteorological models introduces an unavoidable level of uncertainty which, if not accounted for, can compromise navigational safety, operational efficiency, and environmental impact. This study examines the temporal degradation of [...] Read more.
Ship weather routing is heavily dependent on weather forecasts. However, the predictive nature of meteorological models introduces an unavoidable level of uncertainty which, if not accounted for, can compromise navigational safety, operational efficiency, and environmental impact. This study examines the temporal degradation of forecast accuracy across certain oceanographic and atmospheric variables, using a six-month dataset for the area of North Atlantic provided by the National Oceanic and Atmospheric Administration (NOAA). The analysis reveals distinct variable-specific uncertainty trends with wind speed forecasts exhibiting significant temporal fluctuation (RMSE increasing from 0.5 to 4.0 m/s), while significant wave height forecasts degrade in a more stable and predictable pattern (from 0.2 to 0.9 m). Confidence intervals also exhibit non-monotonic evolution, narrowing by up to 15% between 96–120-h lead times. To address these dynamics, a Python-based framework combines distribution-based modeling with calibrated confidence intervals to generate uncertainty bounds that evolve with forecast lead time (R2 = 0.87–0.93). This allows uncertainty to be quantified not as a static estimate, but as a function sensitive to both variable type and prediction horizon. When integrated into routing algorithms, such representations allow for route planning strategies that are not only more reflective of real-world meteorological limitations but also more robust to evolving weather conditions, demonstrated by a 3–7% increase in travel time in exchange for improved safety margins across eight test cases. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 7317 KiB  
Article
The Spatial–Temporal Characteristics of Wave Energy Resource Availability in the China Seas
by Rui-Zhe Shen, Cheng-Tao Yi, Yu-Nuo Liu, Lei Wang, Kai Wu, Mu-Yu Chen and Chong-Wei Zheng
J. Mar. Sci. Eng. 2025, 13(6), 1042; https://doi.org/10.3390/jmse13061042 - 26 May 2025
Viewed by 401
Abstract
For coastal nations and regions, wave energy provides a localized energy solution, decreasing dependency on external energy sources and fostering the sustainable development of local economies. Effective wave height occurrence (EWHO) represents the availability of wave energy and is a crucial parameter for [...] Read more.
For coastal nations and regions, wave energy provides a localized energy solution, decreasing dependency on external energy sources and fostering the sustainable development of local economies. Effective wave height occurrence (EWHO) represents the availability of wave energy and is a crucial parameter for site selection for optimal wave energy. This paper systematically analyzes the distribution of EWHO in China seas areas using significant wave height (SWH) data in the fifth generation of ECMWF atmospheric reanalysis (ERA5) and key climate indices. Employing methods such as climate statistical analysis, linear regression, significance testing, and trend analysis, the study highlights the temporal and spatial distribution characteristics, variation trends, and correlations with climate indices of EWHO. This research aims to provide technical assistance and decision support for the development of wave energy at sea. The results indicate the following conclusions: (1) The high EWHO in the China seas is predominantly located in northern Nanhai, southern Donghai, and the eastern waters of the Philippine Islands. The EWHO is highest in winter. (2) The growth trend of EWHO is most notable in the sea area east of the line connecting the Ryukyu Islands, Taiwan, and the northeastern Philippines, peaking in spring and being relatively weak in winter. (3) The correlation between NINO3 and EWHO is most significant in Nanhai and the northeastern waters of the Philippines, peaking in February with correlation coefficients ranging from −0.30 to −0.50. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

18 pages, 2174 KiB  
Article
A Hybrid Deep Learning Model Based on FFT-STL Decomposition for Ocean Wave Height Prediction
by Yelian Sun, Longkun Yu and Dandan Zhu
Appl. Sci. 2025, 15(10), 5517; https://doi.org/10.3390/app15105517 - 14 May 2025
Viewed by 571
Abstract
Accurate prediction of the height of ocean waves is critical to ensuring maritime safety, optimizing offshore operations, and mitigating coastal hazards. To improve the accuracy of ocean wave height prediction, we developed a hybrid model that integrates decomposition and deep learning. The approach [...] Read more.
Accurate prediction of the height of ocean waves is critical to ensuring maritime safety, optimizing offshore operations, and mitigating coastal hazards. To improve the accuracy of ocean wave height prediction, we developed a hybrid model that integrates decomposition and deep learning. The approach combines Fourier transform, seasonal and trend decomposition using Loess, and various deep learning models, which can more accurately capture the periodicity, trends, and random fluctuations. The trend, seasonality, and residual components are predicted using the LSTM model, SARIMAX, and 1D-CNN, respectively. The mean square error of the model prediction was calculated to be 0.0087 and the root mean square error was 0.0935. The results show that the hybrid model outperforms the other methods compared in our experiments. This model can accurately predict ocean wave heights and provides a reference for predicting time-series data with seasonal fluctuations. Full article
Show Figures

Figure 1

19 pages, 12239 KiB  
Article
Research and Parameter Analysis of Lateral Resistance Performance of Assembled Corrugated Steel Plate Shear Wall
by Jianian He, Zheng Chen, Dongzhuo Zhao and Shizhe Chen
Appl. Sci. 2025, 15(8), 4369; https://doi.org/10.3390/app15084369 - 15 Apr 2025
Viewed by 383
Abstract
Corrugated steel plate shear walls (CSPSWs) exhibit excellent energy dissipation capacity and lateral resistance performance due to their unique “accordion structure”, making them a highly promising seismic component in prefabricated buildings. The assembled CSPSWs utilize bolted connections on both sides, which align with [...] Read more.
Corrugated steel plate shear walls (CSPSWs) exhibit excellent energy dissipation capacity and lateral resistance performance due to their unique “accordion structure”, making them a highly promising seismic component in prefabricated buildings. The assembled CSPSWs utilize bolted connections on both sides, which align with the energy-saving and emission-reduction trends of prefabricated construction. Compared to traditional welded connections, this method reduces the impact on frame columns during seismic deformation and allows for easier post-damage replacement. Through experimental and finite element analysis, this study systematically investigates the lateral mechanical behavior of assembled CSPSWs and compares them with flat steel plate shear walls (FSPSWs), revealing the stress mechanisms and failure modes of corrugated structures. Additionally, parametric analysis quantifies the influence of plate thickness, width/height ratio, and wave height on structural performance. Experimental results demonstrate that CSPSWs significantly outperform FSPSWs in out-of-plane displacement resistance and energy dissipation efficiency. Parametric analysis indicates that increasing plate thickness and width/height ratio enhances energy dissipation, while increasing wave height negatively affects energy dissipation capacity. This research provides theoretical support for the optimal design and engineering application of assembled corrugated steel plate shear walls. Full article
Show Figures

Figure 1

15 pages, 4838 KiB  
Article
Numerical Investigation of Effect of Nozzle Upper Divergent Angle on Asymmetric Rectangular Section Ejector
by Manfei Lu, Jingming Dong, Chi Feng, Shuaiyu Song, Miao Zhang and Runfa Wang
Entropy 2025, 27(3), 312; https://doi.org/10.3390/e27030312 - 17 Mar 2025
Viewed by 440
Abstract
Ejectors, as widely utilized devices in the field of industrial energy conservation, exhibit a performance that is significantly affected by their structural parameters. However, the study of the influence of nozzle geometry parameters on asymmetric ejector performance is still limited. In this paper, [...] Read more.
Ejectors, as widely utilized devices in the field of industrial energy conservation, exhibit a performance that is significantly affected by their structural parameters. However, the study of the influence of nozzle geometry parameters on asymmetric ejector performance is still limited. In this paper, the effect of the nozzle upper divergent angle on the operating characteristics of an asymmetric rectangular section ejector was comprehensively investigated. The results indicated that the entrainment ratio gradually decreased with an increase in the nozzle upper divergent angle, and the maximum decrease could be 20%. At the same time, the relationship between the upper and lower divergent angles was closely linked to the trend of change in the secondary fluid mass flow rate. The analysis of flow characteristics found that the deflection of the central jet was caused by the pressure difference between the walls of the upper and lower divergent sections of the nozzle. Additionally, quantitative analysis of the development of the mixing layer showed that the mass flow rate of the secondary fluid inlet was related to the development of the mixing boundary. Shock wave analysis demonstrated that the deterioration in ejector performance was due to the reduction in the shock wave strength caused by Mach reflection and the increase in the Mach stem height. Full article
(This article belongs to the Special Issue Thermal Science and Engineering Applications)
Show Figures

Figure 1

22 pages, 626 KiB  
Article
Channel Characterization and Comparison in Industrial Scenario from Sub-6 GHz to Visible Light Bands for 6G
by Yue Yin, Pan Tang, Jianhua Zhang, Zheng Hu, Tao Jiang, Liang Xia and Guangyi Liu
Photonics 2025, 12(3), 257; https://doi.org/10.3390/photonics12030257 - 13 Mar 2025
Viewed by 684
Abstract
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but [...] Read more.
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but also high-frequency technologies, such as millimeter wave (mmWave), terahertz (THz), and visible light bands. In this paper, we conduct a channel characterization and comparison in the industrial scenario from the sub-6 GHz to visible light bands. The channel characteristics, including the path loss (PL), root mean square (RMS) delay spread (DS), and angle spread (AS), were analyzed with respect to the frequency dependence and the distance dependence. On the one hand, the visible light band exhibited significant differences in channel characteristics compared to the electronic wave band. Due to the line-of-sight transmission of VLC, the visible light band had a higher path loss, and the path loss exponent reached 3.84. Due to the Lambertian radiation pattern, which has a wide range of reflection angles, the AS of the visible light band was much larger than that of the electronic wave band, which were 1.73 and 0.80 for the visible light and THz bands, respectively. On the other hand, the blockage effect of the metal instruments in the industrial scenario will greatly affect the channel characteristics. As the transceiver distance grows large, signals from both sides of the receiver will be blocked by metal instruments, resulting in a decreasing trend in the RMS DS for the electronic wave band. Moreover, the statistical characteristics of the channel properties were modeled and compared with the 3GPP TR 38.901 standard. It was found that the height of the receiver caused the difference between the proposed model and the 3GPP model and needs to be taken into account when modeling. Furthermore, we extended the 3GPP model to the THz and VLC bands and provided the statistical parameters of the channel characteristics for all frequency bands. This study can provide insights for the evaluation and standardization of multi-frequency communication technology in the industrial scenario. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

10 pages, 236 KiB  
Article
Gender Difference in Orthostatic Vascular Stiffness Increase in Young Subjects
by Victor N. Dorogovtsev, Dmitry S. Yankevich, Valentina M. Tsareva, Denis A. Punin, Ilya V. Borisov, Natalya N. Dekhnich and Andrey V. Grechko
Diagnostics 2025, 15(5), 517; https://doi.org/10.3390/diagnostics15050517 - 20 Feb 2025
Viewed by 1019
Abstract
Background/Objectives: Early detection of increased vascular stiffness in young populations may facilitate the development of more effective strategies for the primary prevention of arterial hypertension and other age-related cardiovascular diseases. To examine gender differences in orthostatic increases in vascular stiffness during the head-up [...] Read more.
Background/Objectives: Early detection of increased vascular stiffness in young populations may facilitate the development of more effective strategies for the primary prevention of arterial hypertension and other age-related cardiovascular diseases. To examine gender differences in orthostatic increases in vascular stiffness during the head-up tilt test (HUTT), standardized by hydrostatic column height. Materials and Methods: A total of 133 healthy adults aged 18–20 years (93 females and 40 males) were evaluated. Blood pressure and pulse wave velocity at the brachial–ankle artery site (baPWV) were measured using an ABI system 100 PWV multichannel sphygmomanometer. Orthostatic changes in arterial stiffness were assessed during a head-up tilt test (HUTT) using the Luanda protocol, which standardizes hydrostatic column height. The functional reserve coefficient (FRC) of orthostatic circulatory regulation was introduced as a measure of adaptive capacity: FRC = ΔbaPWV/baPWVb. This coefficient accounts for both structural (baPWVb) and functional (ΔbaPWV = baPWVt − baPWVb) components influencing cardiovascular system adaptation, which exhibit multidirectional changes with age. Results: Baseline baPWV (baPWVb) values in the horizontal position showed no significant differences between genders and were within normal age ranges. However, baPWV values in the upright HUTT position (baPWVt) were significantly higher in men (p = 0.0007). Dynamic biomarkers of vascular reserve, including ΔbaPWV and FRC, were also significantly elevated in men (p = 0.0009 and p = 0.0064, respectively). Conclusions: While baseline baPWVb values were comparable between genders, dynamic biomarkers of vascular reserve, such as ΔbaPWV and FRC, were significantly higher in men. Prospective studies are needed to establish optimal reference values for these dynamic biomarkers, enabling the assessment of individual trends in vascular aging and evaluating the effects of treatment, lifestyle modifications, and other preventive measures on vascular health. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
18 pages, 5498 KiB  
Article
Experimental Study of the Effects of Initial Ullage Height and Water Layer Thickness on Crude Oil Boilover Characteristics
by Yueyang Li, Cong Yan, Qi Jing, Guohua Luan, Xin Li, Yuntao Li, Yunhe Zhang, Binglu Zhang and Guangbo Ma
Fire 2025, 8(2), 78; https://doi.org/10.3390/fire8020078 - 17 Feb 2025
Cited by 1 | Viewed by 687
Abstract
In crude oil storage tank fires, large amounts of firefighting water are used, which may trigger boilover. Variations in oil level affect ullage height, while firefighting water injection alters the water layer thickness, with both processes influencing boilover behavior. This study conducts boilover [...] Read more.
In crude oil storage tank fires, large amounts of firefighting water are used, which may trigger boilover. Variations in oil level affect ullage height, while firefighting water injection alters the water layer thickness, with both processes influencing boilover behavior. This study conducts boilover experiments with 3 types of crude oil to investigate the effects of ullage height and water layer thickness. The results show that the water-cooling effect delays boilover onset time, suppresses intensity, and reduces the mass burning rate, with Jidong crude showing the highest reduction (19.2%). However, the water-cooling effect has a limit, and its influence weakens when the water layer thickness exceeds 6 cm. Ullage height affects flame behavior. A moderate increase enhances combustion and shortens boilover onset time, while further increases cause self-extinction. The oil–water interface temperature varies nonlinearly between approximately 100 and 120 °C with changing ullage height. The variation trends of hot wave propagation rate with water layer thickness and ullage height are consistent with those of the burning rate, and correlation equations between them are established. Additionally, the study shows that light crude oil exhibits a later boilover onset with a longer duration and experiences 2~3 distinct boilover events, whereas high-viscosity Jidong crude oil undergoes a single short and intense boilover. Full article
(This article belongs to the Special Issue Advances in Pool Fire Dynamics)
Show Figures

Figure 1

23 pages, 8334 KiB  
Article
Typhoon Blend Wind Field Optimization Using Wave-Height Hindcasts
by Tzu-Chieh Chen, Kai-Cheng Hu, Han-Lun Wu, Wei-Shiun Lu, Wei-Bo Chen, Wen-Son Chiang and Shih-Chun Hsiao
J. Mar. Sci. Eng. 2025, 13(2), 354; https://doi.org/10.3390/jmse13020354 - 14 Feb 2025
Cited by 1 | Viewed by 984
Abstract
Typhoons cause significant losses and pose substantial threats every year, with an increasing trend observed in recent years. This study evaluates significant wave height (SWH) hindcasts for typhoons affecting Taiwan using optimized wind field configurations within the SCHISM-WWM-III coupled model. To enhance typhoon-induced [...] Read more.
Typhoons cause significant losses and pose substantial threats every year, with an increasing trend observed in recent years. This study evaluates significant wave height (SWH) hindcasts for typhoons affecting Taiwan using optimized wind field configurations within the SCHISM-WWM-III coupled model. To enhance typhoon-induced SWH simulations, the blended wind field integrates ERA5 reanalysis wind data with the modified Rankine vortex wind model. Key parameters, including the parametric wind field start time, best track data, and the radius of maximum wind speed, were carefully selected based on analyses of typhoons Meranti and Megi in 2016. Validation metrics such as the skill core, HH indicator, maximum SWH difference, and peak time difference of the SWH indicate that the optimized setup improves the accuracy of simulation. The findings highlight the effectiveness of the adjusted blended wind field, the high-resolution best track data provided by Taiwan, and the maximum wind speed radius in significantly enhancing the accuracy of typhoon wave modeling for the waters surrounding Taiwan. Full article
(This article belongs to the Special Issue Storm Tide and Wave Simulations and Assessment, 3rd Edition)
Show Figures

Figure 1

18 pages, 6355 KiB  
Article
Dynamic Response Simulation for a Novel Single-Point Mooring Gravity-Type Deep-Water Net Cage Under Irregular Wave and Current
by Guoliang Pang, Chengyu Wan, Liuyang Sui, Shiyao Zhu, Hangfei Liu, Gen Li, Taiping Yuan, Yu Hu, Qiyou Tao and Xiaohua Huang
Appl. Sci. 2025, 15(3), 1570; https://doi.org/10.3390/app15031570 - 4 Feb 2025
Viewed by 937
Abstract
This study investigated the structural response characteristics of a novel single-point mooring gravity-type deep-water (SPM-GDW) net cage under irregular waves and currents. A hydrodynamic numerical model of the cage was created and validated through model experiments. Based on the validated cage model, the [...] Read more.
This study investigated the structural response characteristics of a novel single-point mooring gravity-type deep-water (SPM-GDW) net cage under irregular waves and currents. A hydrodynamic numerical model of the cage was created and validated through model experiments. Based on the validated cage model, the structural response characteristics such as cage motion response, mooring line forces, and floating collar stress were studied, considering the actual operating conditions in the target sea area. The response time history curves, wave height time history, and spectral density statistics were studied and compared. The results showed that the heave motion of the cage was consistent with wave elevation in the vertical direction and mainly influenced by wave conditions. The surge motion of the cage was closely related to the current, with a significant lag effect compared to wave elevation motion. Low-frequency loads under the combined action of waves and currents had a significant impact on the surge motion of the cage. In addition, the mooring line tension and pontoon stress were closely related to the wave elevation, with peak values of tension and stress occurring almost simultaneously with the peak wave elevation. However, the pontoon stress exhibited high-frequency response characteristics while satisfying the wave frequency response trend. It was found that the flow velocity had a significant impact on the spectral density of mooring line tension and pontoon stress in the low-frequency range, with an increase in spectral density values as the flow velocity increased. The structural response characteristics identified in this study provide a computational basis for the optimized design and analysis of single-point mooring gravity-type deep-water cages. Full article
(This article belongs to the Special Issue Advances in Applied Marine Sciences and Engineering—2nd Edition)
Show Figures

Figure 1

20 pages, 4876 KiB  
Article
Projecting Barrier Beach Vulnerability to Waves and Sea-Level Rise Under Climate Change
by Andrea Sulis, Fabrizio Antonioli, Andrea Atzeni, Andrea Carboni, Giacomo Deiana, Paolo E. Orrù, Valeria Lo Presti and Silvia Serreli
J. Mar. Sci. Eng. 2025, 13(2), 285; https://doi.org/10.3390/jmse13020285 - 3 Feb 2025
Viewed by 1712
Abstract
Long-term impacts of sea-level changes and trends in storm magnitude and frequency along the Mediterranean coasts are key aspects of effective coastal adaptation strategies. In enclosed basins such as a gulf, this requires a step beyond global and regional analysis toward high-resolution modeling [...] Read more.
Long-term impacts of sea-level changes and trends in storm magnitude and frequency along the Mediterranean coasts are key aspects of effective coastal adaptation strategies. In enclosed basins such as a gulf, this requires a step beyond global and regional analysis toward high-resolution modeling of hazards and vulnerabilities at different time scales. We present the compound future projection of static (relative sea level) and dynamic (wind-wave) impacts on the geomorphological evolution of a vulnerable sandy coastal plan located in south Sardinia (west Mediterranean Sea). Based on local temporal trends in Hs (8 mm yr−1) and sea level (5.4 mm yr−1), a 2-year return time flood scenario at 2100 shows the flattening of the submerged morphologies triggering the process of marine embayment. The research proposes adaptation strategies to be adopted to design the projected new coastal area under vulnerabilities at local and territorial scales. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 2287 KiB  
Article
Empirical Relationships of the Characteristics of Standing Trees with the Dynamic Modulus of Elasticity of Japanese Cedar (Cryptomeria japonica) Logs: Case Study in the Kyoto Prefecture
by Kiichi Harada, Yasutaka Nakata, Masahiko Nakazawa, Keisuke Kojiro and Keiko Nagashima
Forests 2025, 16(2), 244; https://doi.org/10.3390/f16020244 - 27 Jan 2025
Viewed by 915
Abstract
With growing worldwide interest in constructing larger and taller wooden buildings, wood properties, such as the dynamic modulus of elasticity (MOEdyn), have become increasingly important. However, the MOEdyn of trees and [...] Read more.
With growing worldwide interest in constructing larger and taller wooden buildings, wood properties, such as the dynamic modulus of elasticity (MOEdyn), have become increasingly important. However, the MOEdyn of trees and logs has rarely been considered in forest management because a method for estimating the MOEdyn of logs based on standing tree characteristics has been lacking. Herein, we explored the multiple relationships between the MOEdyn of logs and standing tree characteristics of Japanese cedar (Cryptomeria japonica) such as tree height, diameter at breast height (DBH), and tree age, including the stress-wave velocity of the tree, which is known to be correlated with the MOEdyn of logs. The relationship between the MOEdyn of logs and standing tree characteristics was investigated by considering the bucking position. Different trends between the bottom logs and upper logs were found for all characteristics, showing a multiple trend of tree characteristics with the MOEdyn of logs based on the bucking position. The top three generalised linear mixed models for the prediction of the MOEdyn of logs showed relatively high accuracies when the bucking position was considered as a random effect. Although the contribution of the stress-wave velocity of the tree was relatively high, adding tree age improved the accuracy of the model, and this model was selected as the top model. The model for the bottom log, utilising the stress-wave velocity and age of the tree as explanatory variables, was highly explanatory (R2 = 0.70); however, the best model for upper logs was only moderately explanatory (R2 = 0.44). In addition, tree height and DBH were selected as explanatory variables along with tree age in the second and third models, which suggested the importance of growth rate rather than tree size. Therefore, adding correlates associated to characteristics related to height growth, such as site index, and DBH growth, such as stand density, is expected to improve model accuracy. Full article
Show Figures

Figure 1

16 pages, 6741 KiB  
Article
Geotechnical and Hydrogeological Zonation of Tailings Storage Facilities: Importance for Design, Construction, Operation, and Closure
by Roberto Rodríguez-Pacheco, Joanna Butlanska and Aldo Onel Oliva-González
Minerals 2025, 15(2), 105; https://doi.org/10.3390/min15020105 - 22 Jan 2025
Viewed by 1086
Abstract
This study introduces a conceptual model for understanding the hydromechanical behavior and zonation within tailings storage facilities (TSFs) constructed using the hydraulic backfill method, which constitutes over 98% of TSFs worldwide. The model identifies four distinct zones—dike, discharge, transition, and distal—each characterized by [...] Read more.
This study introduces a conceptual model for understanding the hydromechanical behavior and zonation within tailings storage facilities (TSFs) constructed using the hydraulic backfill method, which constitutes over 98% of TSFs worldwide. The model identifies four distinct zones—dike, discharge, transition, and distal—each characterized by unique physical, geotechnical, and hydraulic properties. Key findings highlight gradients in parameters which systematically vary from the dam toward the settling pond. This study observes that seven parameters such as grain size, friction angle, shear strength, dry density, permeability, shear wave velocities, and liquefaction capacity decrease in value from the dike to the lagoon. Conversely, thirteen parameters such as fine content, porosity, cohesion, plasticity, degree of saturation, volumetric and gravimetric water content, capillary height, specific and volumetric surface of tailings, suction, air and water entry value in the soil water characteristic curve increase in value from the dike to the lagoon. These trends underscore the complex behavior of tailings and their implications for stability, drainage, and environmental impact. By integrating geological, geotechnical, hydrogeological, and geophysical data, this study provides a holistic framework for TSF management, addressing both current challenges and long-term environmental considerations. Full article
Show Figures

Graphical abstract

Back to TopTop