Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = waterjet cutting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2774 KB  
Article
Numerical Modeling on the Damage Behavior of Concrete Subjected to Abrasive Waterjet Cutting
by Xueqin Hu, Chao Chen, Gang Wang and Jenisha Singh
Buildings 2025, 15(13), 2279; https://doi.org/10.3390/buildings15132279 - 28 Jun 2025
Viewed by 318
Abstract
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical [...] Read more.
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical framework based on a coupled Smoothed Particle Hydrodynamics (SPH)–Finite Element Method (FEM) algorithm incorporating the Riedel–Hiermaier–Thoma (RHT) constitutive model is proposed to investigate the damage mechanism of concrete subjected to abrasive waterjet. Numerical simulation results show a stratified damage observation in the concrete, consisting of a crushing zone (plastic damage), crack formation zone (plastic and brittle damage), and crack propagation zone (brittle damage). Furthermore, concrete undergoes plastic failure when the shear stress on an element exceeds 5 MPa. Brittle failure due to tensile stress occurs only when both the maximum principal stress (σ1) and the minimum principal stress (σ3) are greater than zero at the same time. The damage degree (χ) of the concrete is observed to increase with jet diameter, concentration of abrasive particles, and velocity of jet. A series of orthogonal tests are performed to analyze the influence of velocity of jet, concentration of abrasive particles, and jet diameter on the damage degree and impact depth (h). The parametric numerical studies indicates that jet diameter has the most significant influence on damage degree, followed by abrasive concentration and jet velocity, respectively, whereas the primary determinant of impact depth is the abrasive concentration followed by jet velocity and jet diameter. Based on the parametric analysis, two optimized abrasive waterjet configurations are proposed: one tailored for rock fragmentation in tunnel boring machine (TBM) operations; and another for cutting reinforced concrete piles in shield tunneling applications. These configurations aim to enhance the efficiency and sustainability of excavation and tunneling processes through improved material removal performance and reduced mechanical wear. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 10923 KB  
Article
Food Processing with UHP Waterjets
by Mohamed Hashish
Appl. Sci. 2025, 15(11), 6246; https://doi.org/10.3390/app15116246 - 1 Jun 2025
Viewed by 632
Abstract
The use of UHP for food processing includes many applications such as cutting, peeling, pasteurization, and pumping through the orifice to affect food rheology. This paper focuses on food cutting applications using UHP waterjets. State-of-the-art food cutting systems are described including pumps, manipulators, [...] Read more.
The use of UHP for food processing includes many applications such as cutting, peeling, pasteurization, and pumping through the orifice to affect food rheology. This paper focuses on food cutting applications using UHP waterjets. State-of-the-art food cutting systems are described including pumps, manipulators, sensors, cutting heads, and software. While UHP technology is commercially available at 621 MPa of pressure, most food cutting systems’ pressure is below 400 MPa. Highly focused waterjets are important for efficient slicing of food and thus diamond orifices with sharp entry edges are used in specially designed cutting using fast acting on/off valves. Automation is at an advanced level for fish, pin bone removal, poultry, meat, and vegetable processing systems where upstream sensor data are used with CNC controllers to determine the paths of the cutting jet(s) at relatively high production rates for portioning or trimming to tight specifications. Harvesting lettuce proved to be highly successful in improving the overall productivity and working environment ergonomics. An important advantage of the waterjet in increasing the shelf life of trimmed food is presented. For example, celery and lettuce shelf life increases by days over mechanical cutting. The use of salt as an abrasive material in abrasive waterjet cutting nozzles was found to be impractical for cutting meat with bone and more work is needed in this area. Bakery, cake, and sandwich cutting applications are utilized in actual plants in the USA and Europe. For example, small envelop cake cutting machines using relatively low-power jets are used for cutting cake into different shapes. Full article
Show Figures

Figure 1

12 pages, 5401 KB  
Article
Comparison of 2D and 3D Surface Roughness Parameters of AlMgSi0.5 Aluminium Alloy Surfaces Machined by Abrasive Waterjet
by Csaba Felhő, Krisztina Kun-Bodnár and Zsolt Maros
J. Manuf. Mater. Process. 2025, 9(3), 80; https://doi.org/10.3390/jmmp9030080 - 2 Mar 2025
Cited by 1 | Viewed by 884
Abstract
The use of 3D roughness parameters is increasingly gaining ground in various areas of engineering, especially in academic research. In many cases, however, these studies primarily cover the illustration of the character of the surfaces, the interpretation of areal numerical roughness values is [...] Read more.
The use of 3D roughness parameters is increasingly gaining ground in various areas of engineering, especially in academic research. In many cases, however, these studies primarily cover the illustration of the character of the surfaces, the interpretation of areal numerical roughness values is often disputed. The goal of this paper is to examine how the 2D and 3D roughness parameters change in the case of anisotropic surfaces, such as surfaces cut with an abrasive water jet. For this purpose, abrasive water jet cutting experiments were performed on AlMgSi0.5 aluminum alloy using different technological parameters. After the experiments, two amplitude-type 3D roughness parameters (Sa and Sz) of the cut surface and four profile parameters (Ra, Rz for roughness and Pa, Pz for raw profile) were measured at five different depths. Our conducted research indicates that the 3D parameters represent a kind of average value for certain roughness characteristics and a maximum value for others. The paper also reports on how these roughness characteristics change as a function of feed speed. Full article
Show Figures

Figure 1

11 pages, 18488 KB  
Article
The Advancement of Waterjet-Guided Laser Cutting System for Enhanced Surface Quality in AISI 1020 Steel Sheets
by Muhammed Paksoy, Hakan Çandar and Necip Fazıl Yılmaz
Materials 2024, 17(14), 3458; https://doi.org/10.3390/ma17143458 - 12 Jul 2024
Cited by 3 | Viewed by 2179
Abstract
This study investigates the effects of a water-guided laser on the cutting performance of AISI 1020 steel sheets of various thicknesses by comparing the results with respect to a conventional laser. For this purpose, a novel nozzle design has been devised enabling the [...] Read more.
This study investigates the effects of a water-guided laser on the cutting performance of AISI 1020 steel sheets of various thicknesses by comparing the results with respect to a conventional laser. For this purpose, a novel nozzle design has been devised enabling the delivery of laser beams to the workpiece conventionally as well as through water guidance. Diverging from prior literature, a fiber laser is used with a high wavelength and a laser power output of 1 kW. Experiments are conducted on steel sheets with thicknesses ranging from 1.5 mm to 3 mm using three different cutting speeds and laser power levels. Analysis focuses on assessing surface roughness, burr formation and heat effects on the cut surfaces for both conventional and waterjet-guided cutting. Surface roughness is evaluated by using a 3D profilometer and cut surfaces are examined through SEM imaging. The results showed that the waterjet-guided laser system greatly reduced surface roughness and minimized problems associated with traditional laser cutting such as kerf, dross adherence and thermal damage. The study revealed that cutting speed had a greater effect on surface roughness reduction than laser power, with the most noticeable differences occurring in thinner sheets. Furthermore, the investigation suggests that the waterjet-guided laser cutting system demonstrates superior performance relative to conventional methods, particularly in surface quality. Full article
(This article belongs to the Special Issue Advances in Laser Processing Technology of Materials)
Show Figures

Figure 1

75 pages, 63359 KB  
Review
Abrasive Waterjet Machining
by Mohamed Hashish
Materials 2024, 17(13), 3273; https://doi.org/10.3390/ma17133273 - 2 Jul 2024
Cited by 5 | Viewed by 5465
Abstract
The abrasive waterjet machining process was introduced in the 1980s as a new cutting tool; the process has the ability to cut almost any material. Currently, the AWJ process is used in many world-class factories, producing parts for use in daily life. A [...] Read more.
The abrasive waterjet machining process was introduced in the 1980s as a new cutting tool; the process has the ability to cut almost any material. Currently, the AWJ process is used in many world-class factories, producing parts for use in daily life. A description of this process and its influencing parameters are first presented in this paper, along with process models for the AWJ tool itself and also for the jet–material interaction. The AWJ material removal process occurs through the high-velocity impact of abrasive particles, whose tips micromachine the material at the microscopic scale, with no thermal or mechanical adverse effects. The macro-characteristics of the cut surface, such as its taper, trailback, and waviness, are discussed, along with methods of improving the geometrical accuracy of the cut parts using these attributes. For example, dynamic angular compensation is used to correct for the taper and undercut in shape cutting. The surface finish is controlled by the cutting speed, hydraulic, and abrasive parameters using software and process models built into the controllers of CNC machines. In addition to shape cutting, edge trimming is presented, with a focus on the carbon fiber composites used in aircraft and automotive structures, where special AWJ tools and manipulators are used. Examples of the precision cutting of microelectronic and solar cell parts are discussed to describe the special techniques that are used, such as machine vision and vacuum-assist, which have been found to be essential to the integrity and accuracy of cut parts. The use of the AWJ machining process was extended to other applications, such as drilling, boring, milling, turning, and surface modification, which are presented in this paper as actual industrial applications. To demonstrate the versatility of the AWJ machining process, the data in this paper were selected to cover a wide range of materials, such as metal, glass, composites, and ceramics, and also a wide range of thicknesses, from 1 mm to 600 mm. The trends of Industry 4.0 and 5.0, AI, and IoT are also presented. Full article
Show Figures

Figure 1

18 pages, 6836 KB  
Article
Advanced Waterjet Technology for Machining Beveled Structures of High-Strength and Thick Material
by Mingming Du, Wei Zhong, Zhichao Song, Jialin Teng, Wei Liang and Haijin Wang
Machines 2024, 12(6), 408; https://doi.org/10.3390/machines12060408 - 13 Jun 2024
Viewed by 1926
Abstract
The bevel cutting of large-thickness plates is a key process in modern industries. However, traditional processing method such as air-arc gouging bevel cutting or laser bevel cutting may cause serious deformation and rough surface quality due to the defects of the thermal cutting [...] Read more.
The bevel cutting of large-thickness plates is a key process in modern industries. However, traditional processing method such as air-arc gouging bevel cutting or laser bevel cutting may cause serious deformation and rough surface quality due to the defects of the thermal cutting method. In order to improve the quality and efficiency of bevel processing, the abrasive waterjet cutting method is used in this research to overcome the challenge for bevel machining of high-strength DH40 steel plates with a large thickness. For different kinds of beveled structures, a 3D camera is used to measure the reference points defined on the workpiece and the SVD registration algorithm is adopted to transform the theoretical coordinate system to the actual coordinate system. Furthermore, the distance between the nozzle and the workpiece surface is also measured and compensated for to ensure the consistency of the bevel width. Finally, experiments are carried out for different kinds of bevels to verify the feasibility of the proposed method for high precision processing for beveled structures. The developed method has been effectively applied in the actual shipbuilding industry. Full article
Show Figures

Figure 1

16 pages, 18966 KB  
Article
Monitoring Equipment Malfunctions in Composite Material Machining: Acoustic Emission-Based Approach for Abrasive Waterjet Cutting
by Ioan Alexandru Popan, Cosmin Cosma, Alina Ioana Popan, Vlad I. Bocăneț and Nicolae Bâlc
Appl. Sci. 2024, 14(11), 4901; https://doi.org/10.3390/app14114901 - 5 Jun 2024
Cited by 4 | Viewed by 1638
Abstract
This paper introduces an Acoustic Emission (AE)-based monitoring method designed for supervising the Abrasive Waterjet Cutting (AWJC) process, with a specific focus on the precision cutting of Carbon Fiber-Reinforced Polymer (CFRP). In industries dealing with complex CFRP components, like the aerospace, automotive, or [...] Read more.
This paper introduces an Acoustic Emission (AE)-based monitoring method designed for supervising the Abrasive Waterjet Cutting (AWJC) process, with a specific focus on the precision cutting of Carbon Fiber-Reinforced Polymer (CFRP). In industries dealing with complex CFRP components, like the aerospace, automotive, or medical sectors, preventing cutting system malfunctions is very important. This proposed monitoring method addresses issues such as reductions or interruptions in the abrasive flow rate, the clogging of the cutting head with abrasive particles, the wear of cutting system components, and drops in the water pressure. Mathematical regression models were developed to predict the root mean square of the AE signal. The signal characteristics are determined, considering key cutting parameters like the water pressure, abrasive mass flow rate, feed rate, and material thickness. Monitoring is conducted at both the cutting head and on the CFRP workpiece. The efficacy of the proposed monitoring method was validated through experimental tests, confirming its utility in maintaining precision and operational integrity in AWJC processes applied to CFRP materials. Integrating the proposed monitoring technique within the framework of digitalization and Industry 4.0/5.0 establishes the basis for advanced technologies such as Sensor Integration, Data Analytics and AI, Digital Twin Technology, Cloud and Edge Computing, MES and ERP Integration, and Human-Machine Interface. This integration enhances operational efficiency, quality control, and predictive maintenance in the AWJC process. Full article
(This article belongs to the Special Issue Advancement in Smart Manufacturing and Industry 4.0)
Show Figures

Graphical abstract

28 pages, 10351 KB  
Review
Two-Dimensional Pentamode Metamaterials: Properties, Manufacturing, and Applications
by Chuang Zhou, Qi Li, Xiaomei Sun, Zifei Xiao and Haichao Yuan
Crystals 2024, 14(6), 521; https://doi.org/10.3390/cryst14060521 - 30 May 2024
Cited by 2 | Viewed by 2063
Abstract
Metamaterials are artificial materials with properties depending mainly on their designed structures instead of their materials. Pentamode metamaterials are one type of metamaterial. They have solid structures with fluid-like properties, which can only withstand compressive stresses, not shear stresses. Two-dimensional pentamode metamaterials are [...] Read more.
Metamaterials are artificial materials with properties depending mainly on their designed structures instead of their materials. Pentamode metamaterials are one type of metamaterial. They have solid structures with fluid-like properties, which can only withstand compressive stresses, not shear stresses. Two-dimensional pentamode metamaterials are easier to manufacture than three-dimensional models, so they have received wide attention. In this review, the properties, manufacturing, and applications of two-dimensional pentamode metamaterials will be discussed. Their water-like properties are their most important properties, and their velocities and anisotropy can be designed. They can be processed by wire-cut electrical discharge machining, waterjet cutting, and additive manufacturing techniques. They have a broad application prospect in acoustic fields such as acoustic stealth cloaks, acoustic waveguides, flat acoustic focusing lenses, pentamode acoustic meta-surfaces, etc. Full article
Show Figures

Figure 1

18 pages, 35401 KB  
Article
Vibration Reduction on Circular Disks with Vibroacoustic Metamaterials
by Sebastian Rieß, Ron Schmidt, William Kaal, Heiko Atzrodt and Sven Herold
Appl. Sci. 2024, 14(11), 4637; https://doi.org/10.3390/app14114637 - 28 May 2024
Cited by 1 | Viewed by 1923
Abstract
Vibroacoustic metamaterials represent an innovative technology developed for broadband vibration reduction. They consist of an array of local resonators and are able to reduce vibrations over a wide frequency range, commonly referred to as a stop band. Vibroacoustic metamaterials may be a promising [...] Read more.
Vibroacoustic metamaterials represent an innovative technology developed for broadband vibration reduction. They consist of an array of local resonators and are able to reduce vibrations over a wide frequency range, commonly referred to as a stop band. Vibroacoustic metamaterials may be a promising strategy to reduce out-of-plane vibrations of thin-walled, disk-shaped structures, such as saw blades. However, their behavior in rotating systems has not yet been fully understood. In this study, a vibroacoustic metamaterial integrated into a circular disk for the reduction of out-of-plane vibrations is experimentally investigated in the rotating and non-rotating state. Derived from the predominant frequency range of noise emitted by saw blades, a vibroacoustic metamaterial with a numerically predicted stop band in the frequency range from 2000 Hz to 3000 Hz, suitable for integration into a circular disk, is designed. The resonators of the metamaterial are realized by cutting slots into the disk using a waterjet cutting machine. To experimentally examine the structural dynamic behavior, the disk is excited by an impulse hammer and observed by a stationary optical velocity sensor on a rotor dynamics test stand. The results of the rotating and the non-rotating state are compared. The measurements are carried out at two different radii and at speeds up to 3000 rpm. A distinct stop band characteristic is shown in the desired frequency range from 2000 Hz to 3000 Hz in the rotating and non-rotating state. No significant shift of the stop band frequency range was observed during rotation. However, adjacent modes were observed to propagate into the stop band frequency range. This work contributes to a better understanding of the behavior of vibroacoustic metamaterials in the rotating state and enables future applications of vibroacoustic metamaterials for vibration reduction in rotating, disk-shaped structures such as saw blades, brake disks or gears. Full article
Show Figures

Figure 1

18 pages, 3802 KB  
Article
Evaluation of the Feasibility of the Prediction of the Surface Morphologiesof AWJ-Milled Pockets by Statistical Methods Based on Multiple Roughness Indicators
by Nikolaos E. Karkalos, Muthuramalingam Thangaraj and Panagiotis Karmiris-Obratański
Surfaces 2024, 7(2), 340-357; https://doi.org/10.3390/surfaces7020021 - 10 May 2024
Cited by 4 | Viewed by 1691
Abstract
Improvement of the surface quality of machined parts is essential in order to avoid excessive and costly post-processing. Although non-conventional processes can efficiently carry out the machining of difficult-to-cut materials with high productivity, they may also, for various reasons, be related to increased [...] Read more.
Improvement of the surface quality of machined parts is essential in order to avoid excessive and costly post-processing. Although non-conventional processes can efficiently carry out the machining of difficult-to-cut materials with high productivity, they may also, for various reasons, be related to increased surface roughness. In order to optimize the surface quality of generated surfaces in a reliable way, surface profiles obtained during these processes must be adequately modeled. However, given that most studies have focused on Ra or Rz indicators or are based on the assumption of a normal distribution for the profile heights, relevant models cannot accurately represent the surface characteristics that exist in a real machined surface with a high degree of accuracy. Thus, in the present study, a new modeling approach based on the use of a statistical probability distribution for the surface profile height is proposed. After six different distributions were evaluated on the basis of a three-stage procedure involving different roughness indicators pertaining to the abrasive waterjet (AWJ) milling of pockets, it was found that, although it is not possible to model the nominal values of every roughness parameter simultaneously, in several cases, it is possible to approximate the values of critical indicators such as Ra, Rz, Rsk, Rku and Rp/Rv ratio by Weibull distribution with a sufficient degree of accuracy. Full article
Show Figures

Figure 1

47 pages, 30608 KB  
Review
A Review of Waterjet Cutting Research towards microAWJ and the Definition of the Waterjet Digital Twin
by Massimiliano Annoni
Materials 2024, 17(6), 1328; https://doi.org/10.3390/ma17061328 - 13 Mar 2024
Cited by 3 | Viewed by 4197
Abstract
This review paper aimed to draw the red line passing through almost 25 years of research on waterjet cutting carried out at WJ_Lab, the waterjet laboratory of the Department of Mechanical Engineering of Politecnico di Milano. The purpose was not to just historically [...] Read more.
This review paper aimed to draw the red line passing through almost 25 years of research on waterjet cutting carried out at WJ_Lab, the waterjet laboratory of the Department of Mechanical Engineering of Politecnico di Milano. The purpose was not to just historically analyse the obtained scientific results by themselves but to make them even more useful by introducing the concept of the waterjet digital twin passing through the accuracy improvements due to microAWJ. This strategy effectively creates synergy among the topics and gives the opportunity to researchers in this field to both have an example of how research in industrial manufacturing processes can be guided by scientific and industrial needs, at least from the author’s point of view, and to appreciate how it can be made useful for further improvements by introducing a powerful concept as the digital twin. Full article
Show Figures

Figure 1

5 pages, 1092 KB  
Proceeding Paper
A Characterization Study of the ZE41 Magnesium Alloy Using Abrasive Waterjet Cutting
by Prem Padmaraja, Rabin Sasi, Ram Prakash Shanmugasundaram, Rajesh Munusamy and Selvakumar Gurusamy
Eng. Proc. 2024, 61(1), 41; https://doi.org/10.3390/engproc2024061041 - 6 Feb 2024
Viewed by 755
Abstract
ZE41 is a magnesium alloy used in heat exchangers, condensers, reactors, and pressure vessels where good surface qualities are required. This current research focuses on the investigation of the striation angle (SA), surface roughness (SR), and striation zone (SZ) in ZE41, using abrasive [...] Read more.
ZE41 is a magnesium alloy used in heat exchangers, condensers, reactors, and pressure vessels where good surface qualities are required. This current research focuses on the investigation of the striation angle (SA), surface roughness (SR), and striation zone (SZ) in ZE41, using abrasive waterjet cutting. Significant variables in the investigation were jet pressure, traverse speed, mass flow rate, and stand-off distance. In accordance with Taguchi’s L18 orthogonal array, the responses for each cut test were studied. In addition, the principal component-based grey incidence (PGI) technique successfully combined the strengths of the optimization tool to identify the ideal parameter condition. The confirmation results revealed that the PGI technique improved SR by 4.02%, SZ by 6.67%, and 1.48% in the SA. Full article
Show Figures

Figure 1

15 pages, 7074 KB  
Article
A Study to Investigate the Influence of Machining Parameters on Delamination in the Abrasive Waterjet Machining of Jute-Fiber-Reinforced Polymer Composites: An Integrated Taguchi and Response Surface Methodology (RSM) Optimization to Minimize Delamination
by B. R. N. Murthy, Sathish Rao U, Nithesh Naik, Srinivasa Rao Potti and Sandeep Nambiar S
J. Compos. Sci. 2023, 7(11), 475; https://doi.org/10.3390/jcs7110475 - 14 Nov 2023
Cited by 11 | Viewed by 2274
Abstract
In recent years, abrasive waterjet machining has emerged as a promising machining technique for the machining of composites because of its non-thermal nature. In the present study, the effect of machining parameters on the quality of machining has been studied and the process [...] Read more.
In recent years, abrasive waterjet machining has emerged as a promising machining technique for the machining of composites because of its non-thermal nature. In the present study, the effect of machining parameters on the quality of machining has been studied and the process parameters have been optimized to machine jute-fiber-reinforced polymer composites. The design of the experiment was used to predict the combination of the input parameters for L27 experiments. Taguchi and response surface methodology (RSM) techniques were employed to analyze the experimental data and identify the optimum combination of process parameters to achieve as little delamination as possible. The results indicate that an increase in the values of the parameters traverse speed and abrasive mass flow rate leads to an increase in the damage obtained. However, an increase in the value of the parameter stand-off distance minimizes the damage produced. To achieve minimum delamination, the optimum combination of input parameters is obtained through Taguchi and RSM. For the present experimental condition, to achieve minimum delamination, the parameter traverse speed should be set at 20 mm/min, the stand-off distance should be 4 mm, and the abrasive flow rate should be set at 0.25 kg/min. The results confirm that the optimum combination of parameters obtained through both approaches is similar. This investigation results indicated a significant improvement in the cutting quality with reduced damage, achieved through the optimized process parameters. For the considered range of parameters, graphs are plotted such that any intermediate values can be anticipated within the considered range without performing any further experiments. The present work signifies the effect of fiber orientation on delamination. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

26 pages, 7615 KB  
Article
Multi-Response Optimization of Abrasive Waterjet Cutting on r-GO-Reinforced Fibre Intermetallic Laminates through Moth–Flame Optimization Algorithm
by Devaraj Rajamani, Mahalingam Siva Kumar and Esakki Balasubramanian
J. Compos. Sci. 2023, 7(11), 462; https://doi.org/10.3390/jcs7110462 - 3 Nov 2023
Cited by 2 | Viewed by 1649
Abstract
Laminated metal-composite structures, also known as fibre metal laminates (FMLs), have emerged as prominent engineering materials in various industries, particularly in the domains of aircraft and automobile manufacturing. These materials are sought after due to their enhanced impact and fatigue resistance capabilities. The [...] Read more.
Laminated metal-composite structures, also known as fibre metal laminates (FMLs), have emerged as prominent engineering materials in various industries, particularly in the domains of aircraft and automobile manufacturing. These materials are sought after due to their enhanced impact and fatigue resistance capabilities. The machining of FMLs plays a crucial role in achieving near-net shapes for the purpose of joining and assembling components. Delamination is a prevalent issue encountered during the process of conventional machining, thus rendering FMLs are challenging materials to machine. This study aims to investigate the cutting process of novel fibre intermetallic laminates (FILs) using the abrasive water jet (AWJ) cutting technique. The FILs consists of carbon and aramid fibers that are adhesively bonded with a resin matrix filled with reduced graphene oxide (r-GO) nano fillers. Moreover, these laminates contain embedded Nitinol shape memory alloy sheets as the skin materials. Specifically, the study aims to investigate the impact of different factors, such as the addition of reduced graphene oxide (r-GO) in the laminates (ranging from 0 to 2 wt%), traverse speed (ranging from 400 to 600 mm/min), waterjet pressure (ranging from 200 to 300 MPa), and nozzle height (ranging from 2 to 4 mm), on the material removal rate (MRR), delamination factor (FD), and kerf deviation (KD). ANOVA was used in the statistical analysis to determine the most influential parameters and their effects on the selected responses. The optimal AWJC parameters are determined using a metaheuristic-based moth–flame optimization (MFO) algorithm in order to enhance cut quality. The efficacy of MFO is subsequently compared with similar well-established metaheuristics such as the genetic algorithm, particle swarm algorithm, dragonfly algorithm, and grey-wolf algorithm. MFO was found to outperform in terms of several performance indices, including rapid divergence, diversity, spacing, and hypervolume values, among the algorithms compared. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

29 pages, 15098 KB  
Article
Modeling and Machine Learning of Vibration Amplitude and Surface Roughness after Waterjet Cutting
by Michał Leleń, Katarzyna Biruk-Urban, Jerzy Józwik and Paweł Tomiło
Materials 2023, 16(19), 6474; https://doi.org/10.3390/ma16196474 - 29 Sep 2023
Cited by 5 | Viewed by 1540
Abstract
This study focused on analyzing vibrations during waterjet cutting with variable technological parameters (speed, vfi; and pressure, pi), using a three-axis accelerometer from SEQUOIA for three different materials: aluminum alloy, titanium alloy, and steel. Difficult-to-machine materials often require specialized [...] Read more.
This study focused on analyzing vibrations during waterjet cutting with variable technological parameters (speed, vfi; and pressure, pi), using a three-axis accelerometer from SEQUOIA for three different materials: aluminum alloy, titanium alloy, and steel. Difficult-to-machine materials often require specialized tools and machinery for machining; however, waterjet cutting offers an alternative. Vibrations during this process can affect the quality of cutting edges and surfaces. Surface roughness was measured by contact methods after waterjet cutting. A machine learning (ML) model was developed using the obtained maximum acceleration values and surface roughness parameters (Ra, Rz, and RSm). In this study, five different models were adopted. Due to the characteristics of the data, five regression methods were selected: Random Forest Regressor, Linear Regression, Gradient Boosting Regressor, LGBM Regressor, and XGBRF Regressor. The maximum vibration amplitude reached the lowest acceleration value for aluminum alloy (not exceeding 5 m/s2), indicating its susceptibility to cutting while maintaining a high surface quality. However, significantly higher acceleration amplitudes (up to 60 m/s2) were registered for steel and titanium alloy in all process zones. The predicted roughness parameters were determined from the developed models using second-degree regression equations. The prediction of vibration parameters and surface quality estimators after waterjet cutting can be a useful tool that for allows for the selection of the optimal abrasive waterjet machining (AWJM) technological parameters. Full article
Show Figures

Figure 1

Back to TopTop