Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = water-soluble tomato extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1525 KiB  
Article
Biostimulant Extracts Obtained from the Brown Seaweed Cystoseira barbata Enhance the Growth, Yield, Quality, and Nutraceutical Value of Soil-Grown Tomato
by Yagmur Arikan-Algul, Hande Mutlu-Durak, Umit Baris Kutman and Bahar Yildiz Kutman
Agronomy 2025, 15(5), 1138; https://doi.org/10.3390/agronomy15051138 - 6 May 2025
Viewed by 812
Abstract
The use of seaweed-derived biostimulants has gained attention as a sustainable strategy to enhance crop production. Brown seaweeds, in particular, are rich in bioactive compounds that can improve plant growth, yield, and quality parameters. This study investigated the biostimulant potential of extracts derived [...] Read more.
The use of seaweed-derived biostimulants has gained attention as a sustainable strategy to enhance crop production. Brown seaweeds, in particular, are rich in bioactive compounds that can improve plant growth, yield, and quality parameters. This study investigated the biostimulant potential of extracts derived from Cystoseira barbata for promoting tomato growth and improving fruit quality. Three different extracts (water, alkali, and acid), applied as soil drenches, were tested on a determinate tomato cultivar under greenhouse conditions. In young plants, alkali and acid extracts increased stem length by 40% and 60%, respectively, while water and acid extracts accelerated early flowering. Alkali and acid extracts also improved fruit yield by approximately 65%. Additionally, all extracts enhanced fruit quality by increasing fruit EC and Brix values, soluble carbohydrate levels, total phenolic content, total antioxidant capacity, lycopene and β-carotene concentrations, and vitamin C content, albeit to varying degrees. Along with increases in fruit K concentration in response to water and alkali extracts, all seaweed extract-treated groups showed elevated fruit S concentrations, accompanied by increases in reduced glutathione levels. These results indicate that C. barbata extracts can enhance plant performance while improving the nutritional and nutraceutical properties of tomato fruits. The observed effects were strongly influenced by the extraction method, which alters the extract composition. Extracts from sustainably sourced C. barbata may contribute to improved productivity and quality in horticulture; however, further research is needed to enable the standardized production of C. barbata, optimize biostimulant formulations, and validate their effectiveness under field conditions. Full article
(This article belongs to the Topic Biostimulants in Agriculture—2nd Edition)
Show Figures

Graphical abstract

15 pages, 3587 KiB  
Article
Biodegradable Film of Starch-Based Carboxymethyl Cellulose from Rice Husk and Straw for Application in Food Preservation
by Worapan Pormsila and Phinyo Udomphoch
Processes 2025, 13(5), 1387; https://doi.org/10.3390/pr13051387 - 1 May 2025
Viewed by 1027
Abstract
This study investigated the conversion of cellulose from rice husk (RH) and straw (RS), two types of agricultural waste, into Carboxymethyl cellulose (CMC). Cellulose was extracted using KOH and NaOH, hydrolyzed, and bleached to increase purity and fineness. The cellulose synthesis yielded a [...] Read more.
This study investigated the conversion of cellulose from rice husk (RH) and straw (RS), two types of agricultural waste, into Carboxymethyl cellulose (CMC). Cellulose was extracted using KOH and NaOH, hydrolyzed, and bleached to increase purity and fineness. The cellulose synthesis yielded a higher net CMC content for RH-CMC (84.8%) than for RS-CMC (57.7%). Due to smaller particle sizes, RH-CMC exhibited lower NaCl content (0.77%) and higher purity. FT-IR analysis confirmed similar functional groups to commercial CMC, while XRD analysis presented a more amorphous structure and a higher degree of carboxymethylation. A biodegradable film preparation of starch-based CMC using citric acid as a crosslinking agent shows food packaging properties. The biodegradable film demonstrated good swelling, water solubility, and moisture content, with desirable mechanical properties, maximum load (6.54 N), tensile strength (670.52 kN/m2), elongation at break (13.3%), and elastic modulus (2679 kN/m2), indicating durability and flexibility. The RH-CMC film showed better chemical and mechanical properties and complete biodegradability in soil within ten days. Applying the biodegradable film for tomato preservation showed that wrapping with the film reduced weight loss more efficiently than dip coating. The additional highlight of the work was a consumer survey in Thailand that revealed low awareness but significant interest in switching to alternative uses, indicating commercial potential for eco-friendly packaging choices and market opportunities for sustainable materials. Full article
(This article belongs to the Special Issue Circular Economy and Efficient Use of Resources (Volume II))
Show Figures

Figure 1

20 pages, 1741 KiB  
Article
Productivity and Quality Characteristics of Tomato Fruits (Solanum lycopersicum) Are Improved by the Application of a Green Seaweed (Ulva ohnoi)
by Adrian Alejandro Espinosa-Antón, Rosalba Mireya Hernández-Herrera, Sandra Fabiola Velasco-Ramírez, Ana Cristina Ramírez-Anguiano and Eduardo Salcedo-Pérez
Agriculture 2025, 15(7), 750; https://doi.org/10.3390/agriculture15070750 - 31 Mar 2025
Cited by 1 | Viewed by 885
Abstract
In the last decade, interest in the use of seaweed and seaweed-derived products in horticulture has grown due to their great potential as biostimulants for increasing yields and improving food quality in multiple crops. A greenhouse experiment was conducted to investigate the effects [...] Read more.
In the last decade, interest in the use of seaweed and seaweed-derived products in horticulture has grown due to their great potential as biostimulants for increasing yields and improving food quality in multiple crops. A greenhouse experiment was conducted to investigate the effects of the application of the green seaweed Ulva ohnoi (either as a seaweed suspension [SWS] or seaweed extract [SWE]) on the yield, size, shape, and nutritional quality (i.e., proximate composition and dietary antioxidant content) of tomato fruits (Solanum lycopersicum L. cv. Rio Fuego). A total of 36 tomato plants were potted individually and organized into three experimental groups: SWS (plants drenched with 250 mL of seaweed suspension [2.0%]), SWE (plants drenched with 250 mL of seaweed extract [0.2%]), and control (plants irrigated with water). Each treatment included three replications. The fruits harvested (66%) from SWS-treated plants were produced during the earliest harvest stages. In contrast, the fruits harvested from SWE-treated plants (82%) and control plants (77%) were produced during the late and very late harvest stages. Notably, SWS application significantly enhanced the number of fruits harvested per plant, average fruit weight, yield (kg/plant), number of seeds per fruit, and fruit size. Furthermore, tomato fruits from plants treated with either SWS or SWE exhibited higher percentages of protein, fat, crude fiber, dry matter, and total soluble solids, as well as lower acidity and reduced total carbohydrate content, compared to the control. The antioxidant metabolites in tomatoes, including lycopene, β-carotene, flavonoids, and phenolic acids, increased following the application of SWS and SWE, while anthocyanin and ascorbic acid contents increased only in SWS-treated plants. These results demonstrate that both forms of U. ohnoi application have biostimulating effects on tomato. In particular, the use of SWS shows great potential as a strategy to enhance tomato fruit productivity and quality in sustainable horticultural systems. Full article
(This article belongs to the Section Crop Production)
Show Figures

Graphical abstract

18 pages, 932 KiB  
Article
Identification of Phenolics and Structural Compounds of Different Agro-Industrial By-Products
by Óscar Benito-Román, Rodrigo Melgosa, José Manuel Benito and María Teresa Sanz
Agriculture 2025, 15(3), 299; https://doi.org/10.3390/agriculture15030299 - 30 Jan 2025
Viewed by 1198
Abstract
This study provides a comprehensive analysis of the composition of onion peels, tomato peels, and pistachio green hulls, with a focus on their structural and bioactive compounds. Onion peels, regardless of cultivar, were found to be rich in quercetin and its derivatives, along [...] Read more.
This study provides a comprehensive analysis of the composition of onion peels, tomato peels, and pistachio green hulls, with a focus on their structural and bioactive compounds. Onion peels, regardless of cultivar, were found to be rich in quercetin and its derivatives, along with other flavonoids and pectin. Tomato peels emerged as a notable source of naringenin (0.52 mg/g in ethanol extract) and rutin (0.24 mg/g in water extract) and showed an unexpectedly high lignin content, comprising nearly 50% of their structural components. Pistachio green hulls demonstrated a high extractive content (63.4 g/100 g), 73% of which were water-soluble. Protocatechuic acid, rutin, and quercetin derivatives were the dominant phenolic compounds in the water extract, while luteolin was most abundant in the ethanol extract. Regarding structural composition, tomato peels and pistachio green hulls shared similarities, exhibiting a high lignin content (53.4% and 33.8%, respectively) and uronic acids (10–15%). In contrast, onion peels were characterized by high levels of glucans (around 38%) and galacturonic acid (33%). The insights from this study pave the way for the design of sustainable and efficient extraction processes, enabling the sequential recovery of valuable bioactive compounds and promoting the valorization of these agro-industrial by-products. Additionally, onion and tomato peels were evaluated as sources of pectin using two extraction methods: conventional acid water extraction and subcritical water extraction. The results revealed significant differences in the pectin composition (53–68% galacturonic acid) and degree of esterification (79–92%) compared to commercial pectin (72.8% galacturonic acid and 68% esterification), highlighting the influence of the raw material and extraction method on the final properties of pectin. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 1507 KiB  
Article
Biologically Active Compounds in Tomato Fruits Under the Application of Water–Ethanol Spirulina, Dunaliella and Chlorella Microalgae Extracts on Plants’ Leaves
by Ingrīda Augšpole, Irina Sivicka, Kaspars Kampuss, Pāvels Semjonovs and Imants Missa
Int. J. Plant Biol. 2024, 15(4), 1338-1352; https://doi.org/10.3390/ijpb15040092 - 13 Dec 2024
Viewed by 1086
Abstract
This study aimed to detect an impact of water–ethanol extracts of different microalgae species—Spirulina platensis, Dunaliella salina and Chlorella vulgaris—on the accumulation of bioactive compounds in tomatoes. A treatment with the corresponding ethanol solution and pure drinking water was used [...] Read more.
This study aimed to detect an impact of water–ethanol extracts of different microalgae species—Spirulina platensis, Dunaliella salina and Chlorella vulgaris—on the accumulation of bioactive compounds in tomatoes. A treatment with the corresponding ethanol solution and pure drinking water was used as a control. Tomato cultivar ‘Belle’ F1 (Enza Zaden) was grown in a polycarbonate greenhouse, in 25 L pots filled with a peat substrate (pH KCl 5.5). The plants were sprayed weekly from germination until the start of harvesting, in total nine times. Fruits were analysed at the stage of full ripeness. Bioactive compounds’ contents such as vitamin C, titratable acidity, pH value, β-carotene, lycopene, anthocyanin, total phenols as well as total soluble solids and dry matter were analysed, and the connection between fruit mass and the taste index was determined. The influence of the tested extracts on the bioactive compounds and quality parameters of tomatoes was different, but no significant differences for most of the analysed active compounds were found, with the exception of total phenols (from 137.59 ± 1.34 to 166.93 ± 2.01 mg 100 g−1) and total soluble solids (from 3.93 ± 0.12 to 4.4 ± 0.18 °Brix). In the next research, a more detailed study about the influence of the ethanol concentration on changes in biologically active compounds should be provided. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

14 pages, 1060 KiB  
Article
Impact of Salinity and Biostimulants on Cherry Tomato Yield and Quality
by Ida Di Mola, Lucia Ottaiano, Eugenio Cozzolino, Christophe El-Nakhel, Nunzio Fiorentino, Maria Eleonora Pelosi, Youssef Rouphael and Mauro Mori
Horticulturae 2024, 10(12), 1239; https://doi.org/10.3390/horticulturae10121239 - 22 Nov 2024
Cited by 2 | Viewed by 1381
Abstract
Salt stress causes several detrimental effects on the growth and production of cultivated plants; therefore, scientists have investigated several strategies to mitigate the adverse effects of salt stress, including the application of biostimulants. In our research, we tested four salinity levels of irrigation [...] Read more.
Salt stress causes several detrimental effects on the growth and production of cultivated plants; therefore, scientists have investigated several strategies to mitigate the adverse effects of salt stress, including the application of biostimulants. In our research, we tested four salinity levels of irrigation water (tap water and water at 3.0, 6.0, and 9.0 dS m−1, EC0, EC3, EC6, and EC9, respectively) and two biostimulant applications (untreated plants—Control and plants treated with an extract from seaweed Ascophyllum nodosum—Bio) on a cherry-type tomato. The marketable tomato yield linearly decreased with increasing salinity stress in both treated and untreated plants. However, biostimulant application boosted the production, on average, by 53.2%, significantly impacting only the Control and EC3 treatments. Regarding qualitative traits, no interaction between the factors was detected, except for color parameters. Nonetheless, salinity, particularly in the two less stressed treatments, led to an increase in total soluble solids, firmness, lipophilic antioxidant activity, and ascorbic acid, while the biostimulant improved plant biomass, total soluble solids, firmness, and hydrophilic antioxidant activity. In conclusion, the seaweed extract of Ascophyllum nodosum elicited a beneficial response in tomato plants subjected to low levels of salt stress, as well as in optimal irrigation condition. Full article
Show Figures

Figure 1

26 pages, 1282 KiB  
Review
Functional Foods in Preventing Human Blood Platelet Hyperactivity-Mediated Diseases—An Updated Review
by Asim K. Duttaroy
Nutrients 2024, 16(21), 3717; https://doi.org/10.3390/nu16213717 - 30 Oct 2024
Cited by 3 | Viewed by 3739
Abstract
Backgrounds/Objectives: Abnormal platelet functions are associated with human morbidity and mortality. Platelets have emerged as critical regulators of numerous physiological and pathological processes beyond their established roles in hemostasis and thrombosis. Maintaining physiological platelet function is essential to hemostasis and preventing platelet-associated diseases [...] Read more.
Backgrounds/Objectives: Abnormal platelet functions are associated with human morbidity and mortality. Platelets have emerged as critical regulators of numerous physiological and pathological processes beyond their established roles in hemostasis and thrombosis. Maintaining physiological platelet function is essential to hemostasis and preventing platelet-associated diseases such as cardiovascular disease, cancer metastasis, immune disorders, hypertension, diabetes, sickle cell disease, inflammatory bowel disease, sepsis, rheumatoid arthritis, myeloproliferative disease, and Alzheimer’s disease. Platelets become hyperactive in obesity, diabetes, a sedentary lifestyle, hypertension, pollution, and smokers. Platelets, upon activation, can trawl leukocytes and progenitor cells to the vascular sites. Platelets release various proinflammatory, anti-inflammatory, and angiogenic factors and shed microparticles in the circulation, thus promoting pathological reactions. These platelet-released factors also maintain sustained activation, further impacting these disease processes. Although the mechanisms are unknown, multiple stimuli induce platelet hyperreactivity but involve the early pathways of platelet activation. The exact mechanisms of how hyperactive platelets contribute to these diseases are still unclear, and antiplatelet strategies are inevitable for preventing these diseases. Reducing platelet function during the early stages could significantly impact these diseases. However, while this is potentially a worthwhile intervention, using antiplatelet drugs to limit platelet function in apparently healthy individuals without cardiovascular disease is not recommended due to the increased risk of internal bleeding, resistance, and other side effects. The challenge for therapeutic intervention in these diseases is identifying factors that preferentially block specific targets involved in platelets’ complex contribution to these diseases while leaving their hemostatic function at least partially intact. Since antiplatelet drugs such as aspirin are not recommended as primary preventives, it is essential to use alternative safe platelet inhibitors without side effects. Methods: A systematic search of the PUBMED database from 2000 to 2023 was conducted using the selected keywords: “functional foods”, “polyphenols”, “fatty acids”, “herbs”, fruits and vegetables”, “cardioprotective agents”, “plant”, “platelet aggregation”, “platelet activation”, “clinical and non-clinical trial”, “randomized”, and “controlled”. Results: Potent natural antiplatelet factors have been described, including omega-3 fatty acids, polyphenols, and other phytochemicals. Antiplatelet bioactive compounds in food that can prevent platelet hyperactivity and thus may prevent several platelet-mediated diseases, including cardiovascular disease. Conclusions: This narrative review describes the work during 2000–2023 in developing functional foods from natural sources with antiplatelet effects. Full article
(This article belongs to the Special Issue Bioactive Compounds and Functional Foods in Human Health)
Show Figures

Figure 1

21 pages, 2521 KiB  
Article
Integrated Valorization of Fucus spiralis Alga: Polysaccharides and Bioactives for Edible Films and Residues as Biostimulants
by Valter F. R. Martins, Marta Coelho, Manuela Machado, Eduardo Costa, Ana M. Gomes, Fátima Poças, Raul A. Sperotto, Elena Rosa-Martinez, Marta Vasconcelos, Manuela E. Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Foods 2024, 13(18), 2938; https://doi.org/10.3390/foods13182938 - 17 Sep 2024
Cited by 4 | Viewed by 2386
Abstract
Fucus spp. seaweeds thrive in the cold temperate waters of the northern hemisphere, specifically in the littoral and sublittoral regions along rocky shorelines. Moreover, they are known to be a rich source of bioactive compounds. This study explored the valorization of Fucus spiralis [...] Read more.
Fucus spp. seaweeds thrive in the cold temperate waters of the northern hemisphere, specifically in the littoral and sublittoral regions along rocky shorelines. Moreover, they are known to be a rich source of bioactive compounds. This study explored the valorization of Fucus spiralis through the extraction of bioactives and polysaccharides (PSs) for food applications and biostimulant use. The bioactives were extracted using microwave hydrodiffusion and gravity (MHG), where the condition of 300 W for 20 min resulted in the highest total phenolic content and antioxidant activity of the extract. Cellular assays confirmed that the extract, at 0.5 mg/mL, was non-cytotoxic to HaCat cells. Polysaccharides (PSs) were extracted from the remaining biomass. The residue from this second extraction contained 1.5% protein and 13.35% carbohydrates. Additionally, the free amino acids and minerals profiles of both solid residues were determined. An edible film was formulated using alginate (2%), PS-rich Fucus spiralis extract (0.5%), and F. spiralis bioactive-rich extract (0.25%). The film demonstrated significant antioxidant properties, with ABTS and DPPH values of 221.460 ± 10.389 and 186.889 ± 36.062 µM TE/mg film, respectively. It also exhibited notable physical characteristics, including high water vapor permeability (11.15 ± 1.55 g.mm.m−2.day−1.kPa−1) and 100% water solubility. The residues from both extractions of Fucus spiralis exhibited biostimulant (BS) effects on seed germination and seedling growth. BSs with PSs enhanced pea germination by 48%, while BSs without PSs increased the root dry weight of rice and tomato by 53% and up to 176%, respectively, as well as the shoot dry weight by up to 38% and up to 74%, respectively. These findings underscore the potential of Fucus spiralis within the framework of a circular economy, wherein both extracted bioactives and post-extraction by-products can be used for sustainable agriculture and food applications. Full article
Show Figures

Graphical abstract

14 pages, 1398 KiB  
Article
Composite Coatings with Liposomes of Melissa officinalis Extract for Extending Tomato Shelf Life
by Rafael González-Cuello, Luis Gabriel Fuentes, Heliana Milena Castellanos, Joaquín Hernández-Fernández and Rodrigo Ortega-Toro
J. Compos. Sci. 2024, 8(7), 283; https://doi.org/10.3390/jcs8070283 - 22 Jul 2024
Cited by 2 | Viewed by 1382
Abstract
In this study, active coatings based on carboxymethylcellulose (CMC) were prepared using liposomes filled with an aqueous extract of Melissa officinalis retained in high acyl gellan gum (HAG), low acyl gellan gum (LAG), and their mixture (HAG/LAG). The objective was to investigate the [...] Read more.
In this study, active coatings based on carboxymethylcellulose (CMC) were prepared using liposomes filled with an aqueous extract of Melissa officinalis retained in high acyl gellan gum (HAG), low acyl gellan gum (LAG), and their mixture (HAG/LAG). The objective was to investigate the effect of these coatings on postharvest preservation of tomato (Solanum lycopersicum) fruits. The tomato fruits were divided into four groups: (i) coating with HAG-based liposomes (WL-HAG), (ii) coating with LAG-based liposomes (WL-LAG), (iii) coating with HAG/LAG-based liposomes (WL-HAG/LAG), and (iv) control group treated with sterile water. Over a period of 10 days, various quality attributes, such as respiration rate, soluble solids, titratable acidity, luminosity, weight loss, malondialdehyde (MDA) content, hydrogen peroxide, total phenols, and DPPH scavenging ability, were studied. The results indicated that the WL-HAG coatings significantly (p < 0.05) decreased the respiration rate, hydrogen peroxide, and MDA content compared to the control fruits and other coatings. Therefore, WL-HAG could be considered a promising option to enhance postharvest preservation of tomato fruits in the Colombian fruit and vegetable industry. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

19 pages, 5401 KiB  
Article
Enhancing Root Distribution, Nitrogen, and Water Use Efficiency in Greenhouse Tomato Crops Using Nanobubbles
by Fernando del Moral Torres, Rafael Hernández Maqueda and David Erik Meca Abad
Horticulturae 2024, 10(5), 463; https://doi.org/10.3390/horticulturae10050463 - 1 May 2024
Cited by 1 | Viewed by 2458
Abstract
The aim of this work was to determine the effect of saturating the irrigation solution with air (MNBA) or oxygen nanobubbles (MNBO) on relevant agronomic, productive, and postharvest parameters of tomato crops (Solanum lycopersicum L.) in greenhouses. As a control, conventional management [...] Read more.
The aim of this work was to determine the effect of saturating the irrigation solution with air (MNBA) or oxygen nanobubbles (MNBO) on relevant agronomic, productive, and postharvest parameters of tomato crops (Solanum lycopersicum L.) in greenhouses. As a control, conventional management was established, without nanobubbles, under the best possible agronomic conditions used in commercial greenhouses in southeastern Spain. No significant differences were found in the soil properties analysed or in the ionic concentration of the pore water extracted with Rhizon probes. Both MNBA and MNBO modified the root distribution and improved the N uptake efficiency and field water uptake efficiency compared to the control. MNBA had the highest harvest index. The total or marketable production was not affected, although it did increase the overall size of the fruit and the earliness with which they were produced compared to the control. MNBA significantly decreased titratable acidity and soluble solids content compared to the control in the last harvests. Both nanobubble treatments improved postharvest storage under room-temperature (20–25 °C) conditions. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Graphical abstract

13 pages, 3253 KiB  
Article
Physico-Chemical Properties and Valorization of Biopolymers Derived from Food Processing Waste
by Teresa Silvestri, Paola Di Donato, Irene Bonadies, Annarita Poli, Mariaenrica Frigione, Marco Biondi and Laura Mayol
Molecules 2023, 28(19), 6894; https://doi.org/10.3390/molecules28196894 - 30 Sep 2023
Cited by 1 | Viewed by 1589
Abstract
The widespread use of synthetic plastics, as well as the waste produced at the end of their life cycle, poses serious environmental issues. In this context, bio-based plastics, i.e., natural polymers produced from renewable resources, represent a promising alternative to petroleum-based materials. One [...] Read more.
The widespread use of synthetic plastics, as well as the waste produced at the end of their life cycle, poses serious environmental issues. In this context, bio-based plastics, i.e., natural polymers produced from renewable resources, represent a promising alternative to petroleum-based materials. One potential source of biopolymers is waste from the food industry, the use of which also provides a sustainable and eco-friendly solution to waste management. Thus, the aim of this work concerns the extraction of polysaccharide fractions from lemon, tomato and fennel waste. Characterizing the chemical–physical and thermodynamic properties of these polysaccharides is an essential step in evaluating their potential applications. Hence, the solubility of the extracted polysaccharides in different solvents, including water and organic solvents, was determined since it is an important parameter that determines their properties and applications. Also, acid-base titration was carried out, along with thermoanalytical tests through differential scanning calorimetry. Finally, the electrospinning of waste polysaccharides was investigated to explore the feasibility of obtaining polysaccharide-based membranes. Indeed, electrospun fibers are a promising structure/system via which it is possible to apply waste polysaccharides in packaging or well-being applications. Thanks to processing feasibility, it is possible to electrospin waste polysaccharides by combining them with different materials to obtain porous 3D membranes made of nanosized fibers. Full article
Show Figures

Graphical abstract

21 pages, 6535 KiB  
Article
Powdered Beverage from Native Plants from Argentina (Zuccagnia punctata and Solanum betaceum) Obtained by Spray-Drying: A Promising Source of Antioxidant Compounds
by Florencia María Correa Uriburu, Iris Catiana Zampini, Luis Maria Maldonado, Milagros Gómez Mattson, Daniela Salvatori and María Inés Isla
Plants 2023, 12(8), 1646; https://doi.org/10.3390/plants12081646 - 14 Apr 2023
Cited by 6 | Viewed by 3339
Abstract
In previous studies, the Argentinean native plants called Zuccagnia punctata (jarilla, pus pus, lata) and Solanum betaceum (chilto, tree tomato) were reported as new natural sources of antioxidant compounds, mainly chalcones, anthocyanins and rosmarinic acid derivates. The present study deals with the production [...] Read more.
In previous studies, the Argentinean native plants called Zuccagnia punctata (jarilla, pus pus, lata) and Solanum betaceum (chilto, tree tomato) were reported as new natural sources of antioxidant compounds, mainly chalcones, anthocyanins and rosmarinic acid derivates. The present study deals with the production of antioxidant beverages of Z. punctata (Zp) extract and chilto juice with honey as sweetener. A Zp extract and red chilto juice were obtained according to Food Code and characterized. The beverages were formulated by using maltodextrin (MD) with two dextrose equivalents (DE), 10 and 15, and then spray-dried at an inlet air temperature of 130 °C. The physicochemical, microscopical, phytochemical and functional characteristics of the powders were surveyed. The experiments carried out showed good physical properties for both formulations showing high water solubility with adequate features for handling, transport and storage. The chromatic parameters of both powdered beverages indicate orange–pink tones regardless of the wall material used. The total polyphenol and flavonoid content in the beverages were kept after spray-drying (92 and 100%, respectively). The anthocyanins were less stable under drying conditions (yield 58%). Both powdered beverages showed high scavenger capacity on ABTS•+, HO and H2O2 (SC50 between 3.29 to 41.05 µg GAE/mL) and were able to inhibit xanthine oxidase (XOD) activity (CI50 between 91.35 and 114.43 µg GAE/mL). The beverages were neither toxic nor mutagenic in the concentration range with biological activity. The results obtained in the present work scientifically support the use of the powdered beverages of Argentinean native plants as antioxidant. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds and Prospects for Their Use in Beverages)
Show Figures

Figure 1

15 pages, 17312 KiB  
Article
Effect of Leaf Extract from Lycium barbarum on Preservation of Cherry Tomato Fruit
by Hubai Bu, Yujia Ma, Beilei Ge, Xiaorong Sha, Ying Ma, Ping Zhang and Lei Jin
Horticulturae 2022, 8(12), 1178; https://doi.org/10.3390/horticulturae8121178 - 10 Dec 2022
Cited by 3 | Viewed by 2919
Abstract
The preservation of cherry tomatoes is a challenge for farmers, sellers, and processors. In recent years, natural extracts of plants have been increasingly used for the preservation of fruits and vegetables. In this study, we investigated the effect of treatment with goji berry [...] Read more.
The preservation of cherry tomatoes is a challenge for farmers, sellers, and processors. In recent years, natural extracts of plants have been increasingly used for the preservation of fruits and vegetables. In this study, we investigated the effect of treatment with goji berry (Lycium barbarum) leaf extract on the postharvest freshness of cherry tomatoes, and we determined the active ingredients, antioxidant capacity, and antifungal activity of the extract. Goji leaf extracts were tested at different concentrations (0.2–1.0 g/L) to assess their effects on preserving the freshness of cherry tomatoes at 5 °C and 20 °C. The goji berry leaf extract was rich in polysaccharides, saponins, polyphenols, and other active ingredients (1.11–45.83 mg/g), and the antioxidant capacity and antifungal activity were outstanding. Treatments with 0.2, 0.4, and 0.6 g/L of goji berry leaf extract at 20 °C helped to preserve tomato fruit, where 0.4 g/L was the most effective, followed by 0.2 and 0.6 g/L. However, 0.8 and 1.0 g/L had no effect. Treatment with 1.0 g/L of goji berry leaf extract at 5 °C effectively reduced the loss of quality of tomato fruit. This treatment maintained the firmness and color of the tomatoes and maintained the levels of nutrients such as vitamin C, total acids, and total soluble solids. The next most effective doses were 0.8 g/L and 0.6 g/L. Cherry tomatoes treated with goji berry leaf extract could be stored for 21 days at 20 °C and for 35 days at 5 °C. Compared with the control groups treated with distilled water and no treatment, the storage period was extended by 3–6 days at 20 °C and by 7–14 days at 5 °C. The results obtained in this study provide a theoretical basis for extending the storage period of cherry tomatoes using goji berry leaf extract and the development of natural preservatives as well as enhancing the utilization of germplasm resources. Full article
Show Figures

Figure 1

18 pages, 5299 KiB  
Article
Jania adhaerens Primes Tomato Seed against Soil-Borne Pathogens
by Hillary Righini, Roberta Roberti, Silvia Cetrullo, Flavio Flamigni, Antera Martel Quintana, Ornella Francioso, Veronica Panichi, Stefano Cianchetta and Stefania Galletti
Horticulturae 2022, 8(8), 746; https://doi.org/10.3390/horticulturae8080746 - 18 Aug 2022
Cited by 11 | Viewed by 3202
Abstract
Managing soil-borne pathogens is complex due to the restriction of the most effective synthetic fungicides for soil treatment. In this study, we showed that seed priming with Jania adhaerens water-soluble polysaccharides (JA WSPs) was successful in protecting tomato plants from the soil-borne pathogens [...] Read more.
Managing soil-borne pathogens is complex due to the restriction of the most effective synthetic fungicides for soil treatment. In this study, we showed that seed priming with Jania adhaerens water-soluble polysaccharides (JA WSPs) was successful in protecting tomato plants from the soil-borne pathogens Rhizoctonia solani, Pythium ultimum, and Fusarium oxysporum under greenhouse conditions. WSPs were extracted from dry thallus by autoclave-assisted method, and the main functional groups were characterized by using FT-IR spectroscopy. WSPs were applied by seed treatment at 0.3, 0.6 and 1.2 mg/mL doses, and each pathogen was inoculated singly in a growing substrate before seeding/transplant. Overall, WSPs increased seedling emergence, reduced disease severity and increased plant development depending on the dose. Transcriptional expression of genes related to phenylpropanoid, chlorogenic acid, SAR and ISR pathways, and chitinase and β-1,3 glucanase activities were investigated. Among the studied genes, HQT, HCT, and PR1 were significantly upregulated depending on the dose, while all doses increased PAL and PR2 expression as well as β-1,3 glucanase activity. These results demonstrated that, besides their plant growth promotion activity, JA WSPs may play a protective role in triggering plant defense responses potentially correlated to disease control against soil-borne pathogens. Full article
(This article belongs to the Special Issue Sustainable Control Strategies of Plant Pathogens in Horticulture)
Show Figures

Figure 1

14 pages, 1818 KiB  
Article
Evaluation of Suitable Water–Zeolite Coupling Regulation Strategy of Tomatoes with Alternate Drip Irrigation under Mulch
by Xiaolan Ju, Tao Lei, Xianghong Guo, Xihuan Sun, Juanjuan Ma, Ronghao Liu and Ming Zhang
Horticulturae 2022, 8(6), 536; https://doi.org/10.3390/horticulturae8060536 - 16 Jun 2022
Cited by 6 | Viewed by 2299
Abstract
The water (W; W50, W75, and W100)–zeolite (Z; Z0, Z3, Z6 and Z9) coupling (W-Z) regulation strategy of high-quality and high-yield tomato [...] Read more.
The water (W; W50, W75, and W100)–zeolite (Z; Z0, Z3, Z6 and Z9) coupling (W-Z) regulation strategy of high-quality and high-yield tomato was explored with alternate drip irrigation under mulch. Greenhouse planting experiments were used in monitoring and analyzing tomato growth, physiology, yield, quality, and water use efficiency (WUE). Suitable amounts of W and Z for tomato growth were determined through the principal component analysis (PCA) method. Results showed that tomato plant height (Ph), stem thickness (St), root indexes, leaf area index (LAI), photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), organic acid (OA), and yield showed a positive response to W, whereas nitrate (NC), vitamin C (VC), soluble solid (SS), intercellular CO2 concentration (Ci), fruit firmness (Ff), and WUE showed the opposite trend. The responses of Ci and Ff to Z were first negative and then positive, whereas the responses of other indexes to Z showed an opposite trend (except yield under W50). The effects of W, Z, and W-Z on tomato growth, physiological, and quality indexes and yield were as follows: W > Z > W-Z; the effects on WUE were as follows: Z > W > W-Z. The two principal components of growth factor and water usage factor were extracted, and the cumulative variance contribution rate reached 93.831%. Under different treatments for tomato growth, the comprehensive evaluation score F was between −1.529 and 1.295, the highest treated with Z6W100, the lowest treated with Z0W50. The PCA method showed that under the condition of alternate drip irrigation under mulch, the most suitable W for tomato planting was 100% E (E is the water surface evaporation), and the amount of Z was 6 t·ha−1. Full article
Show Figures

Figure 1

Back to TopTop