Productivity and Quality Characteristics of Tomato Fruits (Solanum lycopersicum) Are Improved by the Application of a Green Seaweed (Ulva ohnoi)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweed Suspension and Seaweed Extract Preparation
2.2. Plant Material and Crop Growing Conditions
2.3. Experimental Design and Treatments
2.4. Productivity and Fruit Size and Shape
2.5. Nutritional Content of Tomato Fruits
2.6. Statistical Analysis
3. Results
3.1. Yield, Size, and Shape of Tomato Fruits
3.2. Nutritional Analysis
3.3. Understanding Treatment–Variable Interactions Through Hierarchical Clustering and PCA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Organization. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 18 November 2024).
- Food and Agricultural Organization. Faostat. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 November 2024).
- Quiroga, M.R.; Rosale, E.M.; Rincón, E.P.; Hérnandez, G.E.; Garrido, R. Enfermedades causadas por hongos y nematodos en el cultivo de Tomate (Lycopericon esculentum Mill.). Chiapas, México. Rev. Mex. Fitopatol. 2007, 25, 114–119. [Google Scholar]
- Agroconsult Buinov. Digital Marketing From. Available online: https://agroconsult-buinov.com/en/produkt/tomato-rio-fuego/ (accessed on 10 March 2025).
- Canene-Adams, K.; Campbell, J.K.; Zaripheh, S.; Jeffery, E.H.; Erdman, J.W., Jr. The tomato as a functional food. J. Nutr. 2005, 135, 1226–1230. [Google Scholar] [PubMed]
- Pohl, A.; Kalisz, A.; Sekara, A. Seaweed extracts’ multifactorial action: Influence on physiological and biochemical status of Solanaceae plants. Acta Agrobot. 2019, 72, 1–11. [Google Scholar]
- Mannino, G.; Campobenedetto, C.; Vigliante, I.; Contartese, V.; Gentile, C.; Bertea, C.M. The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules 2020, 10, 1662. [Google Scholar] [CrossRef]
- Felföldi, Z.; Ranga, F.; Roman, I.A.; Sestras, A.F.; Vodnar, D.C.; Prohens, J.; Sestras, R.E. Analysis of Physico-Chemical and Organoleptic Fruit Parameters Relevant for Tomato Quality. Agronomy 2022, 12, 1232. [Google Scholar] [CrossRef]
- Jurić, S.; Vlahoviček-Kahlina, K.; Jurić, O.; Uher, S.F.; Jalšenjak, N.; Vinceković, M. Increasing the lycopene content and bioactive potential of tomato fruits by application of encapsulated biological and chemical agents. Food Chem. 2022, 393, 133341. [Google Scholar]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. Int. J. Food Sci. 2020, 2020, 9081686. [Google Scholar]
- Paull, J. The Uptake of Organic Agriculture: A Decade of Worldwide Development. J. Soc. Dev. Sci. 2011, 2, 111–120. [Google Scholar]
- Abu, N.J.; Bujang, J.S.; Zakaria, M.H.; Zulkifly, S. Use of Ulva reticulata as a growth supplement for tomato (Solanum lycopersicum). PLoS ONE 2022, 17, e0270604. [Google Scholar]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plant 2021, 10, 1–27. [Google Scholar]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Ital. J. Agron. 2021, 16, 1825. [Google Scholar]
- Espinosa-Antón, A.A.; Hernández-Herrera, R.M. Effects of green seaweed (Ulva onhoi) on the reproductive development of tomato (Solanum lycopersicum) plants. Acta Agrobot. 2024, 77, 193117. [Google Scholar]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [PubMed]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef]
- Kaur, I. Seaweeds: Soil Health Boosters for Sustainable Agriculture. In Soil Health. Soil Biology; Giri, B., Varma, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 163–182. [Google Scholar]
- Kumari, R.; Kaur, I.; Bhatnagar, A.K. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J. Appl. Phycol. 2011, 23, 623–633. [Google Scholar]
- Ali, N.; Farrell, A.; Ramsubhag, A.; Jayaraman, J. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. J. Appl. Phycol. 2016, 28, 1353–1362. [Google Scholar]
- Mzibra, A.; Aasfar, A.; Khouloud, M.; Farrie, Y.; Boulif, R.; Kadmiri, I.M.; Bamouh, A.; Douira, A. Improving Growth, Yield, and Quality of Tomato Plants (Solanum lycopersicum L.) by the Application of Moroccan Seaweed-Based Biostimulants under Greenhouse Conditions. Agronomy 2021, 11, 1373. [Google Scholar] [CrossRef]
- Subramaniyan, L.; Veerasamy, R.; Prabhakaran, J.; Selvaraj, A.; Algarswamy, S.; Karuppasami, K.M.; Thangavel, K.; Nalliappan, S. Biostimulation Effects of seaweed extract (Ascophyllum nodosum) on phytomorpho-physiological, yield, and quality traits of tomato (Solanum lycopersicum L.). Horticulturae 2023, 9, 348. [Google Scholar] [CrossRef]
- Espinosa-Antón, A.A.; Zamora-Natera, J.F.; Zarazúa-Villaseñor, P.; Santacruz-Ruvalcaba, F.; Sánchez-Hernández, C.V.; Águila Alcántara, E.; Torres-Morán, M.I.; Velasco-Ramírez, P.; Hernández-Herrera, R.M. Application of Seaweed Generates Changes in the Substrate and Stimulates the Growth of Tomato Plants. Plants 2023, 12, 1520. [Google Scholar] [CrossRef]
- Castellanos-Barriga, L.G.; Santacruz-Ruvalcaba, F.; Hernández-Carmona, G.; Ramírez-Briones, E.; Hernández-Herrera, R.M. Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). J. Appl. Phycol. 2017, 29, 2479–2488. [Google Scholar]
- Hamouda, M.M.; Saad-Allah, K.M.; Gad, D. Potential of Seaweed Extract on Growth, Physiological, Cytological and Biochemical Parameters of Wheat (Triticum aestivum L.) Seedlings. J. Soil Sci. Plant Nutr. 2022, 22, 1818–1831. [Google Scholar]
- Whapham, C.A.; Blunden, G.; Jenkins, T.; Hankins, S.D. Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J. Appl. Phycol. 1993, 5, 231–234. [Google Scholar]
- Kasim, W.A.; Ham, E.A.M.; Shams El-Din, N.G. Eskander S Influence of seaweed extracts on the growth, some metabolic activities and yield of wheat grown under drought stress. Int. J. Agron. Agric. Res. 2015, 7, 173–189. [Google Scholar]
- Latique, S.; Mrid, R.B.; Kabach, I.; Kchikich, A.; Sammama, H.; Yasri, A.; Nhiri, M.; El Kaoua, M.; Douira, A.; Selmaoui, K. Foliar Application of Ulva rigida Water Extracts Improves Salinity Tolerance in Wheat (Triticum durum L.). Agronomy 2021, 11, 265. [Google Scholar] [CrossRef]
- Hiraoka, M.; Shimada, S.; Uenosono, M.; Masuda, M. A new green-tide-forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycol. Res. 2004, 52, 17–29. [Google Scholar]
- Smetacek, V.; Zingone, A. Green and golden seaweed tides on the rise. Nature 2013, 504, 84–88. [Google Scholar]
- Kang, E.J.; Han, A.R.; Kim, J.H.; Kim, I.N.; Lee, S.; Min, J.O.; Nam, B.R.; Choi, Y.J.; Edwards, M.S.; Diaz-Pulido, G.; et al. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming. Sci. Total Environ. 2021, 769, 144443. [Google Scholar]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar]
- Garcia-Gonzalez, J.; Sommerfeld, M. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J. Appl. Phycol. 2016, 28, 1051–1061. [Google Scholar]
- Suchithra, M.R.; Muniswami, D.M.; Sri, M.S.; Usha, R.; Rasheeq, A.A.; Preethi, B.A.; Dineshkumar, R. Effectiveness of green microalgae as biostimulants and biofertilizer through foliar spray and soil drench method for tomato cultivation. S. Afr. J. Bot. 2022, 146, 740–750. [Google Scholar]
- Revilla-Lovano, S.; Sandoval-Gil, J.M.; Zertuche-Gonzalez, J.A.; Belando-Torrentes, M.D.; Bernardeau-Esteller, J.; Rangel-Mendoza, L.K.; Ferreira-Arrieta, A.; Guzmán-Calderón, J.M.; Camacho-Ibar, V.F.; Muñiz-Salazar, R.; et al. Physiological responses and productivity of the seaweed Ulva ohnoi (Chlorophyta) under changing cultivation conditions in pilot large land-based ponds. Algal Res. 2021, 56, 102316. [Google Scholar]
- Gupta, A.; Rakhasiya, B.; Depani, P.; Bhagiya, B.K.; Kaushik, A.; Bodar, P.A.; Mantri, V.A. Effect of Ascophyllum extract on cell division, proximate composition, antioxidant response and internal plant hormone composition in green seaweed Ulva ohnoi (Chlorophyta). J. Appl. Phycol. 2024, 36, 3623–3636. [Google Scholar]
- AOAC. Association of Official Analytical Chemists, Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Liava, V.; Chaski, C.; Añibarro-Ortega, M.; Pereira, A.; Pinela, J.; Barros, L.; Petropoulos, S.A. The effect of biostimulants on fruit quality of processing tomato grown under deficit irrigation. Horticulturae 2023, 9, 1184. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon. Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar]
- Cimpoiu, C.; Cristea, M.; Hosu, A.; Sandru, M.; Seserman, L. Antioxidant activity prediction and classification of some teas using neutral networks. Food Chem. 2011, 127, 1323–1328. [Google Scholar]
- Martínez-Cruz, N.; Arévalo-Niño, K.; Verde-Star, M.; Rivas-Morales, C.; Oranday-Cárdenas, A.; Núñez-González, M.; Morales-Rubio, M. Antocianinas y actividad anti radicales libres de Rubusa denotrichus Schltdl (zarzamora). Rev. Mex. Cienc. Farm. 2011, 42, 66–71. [Google Scholar]
- Curifuta, M.; Vidal, J.; Sánchez-Venegas, J.; Contreras, A.; Salazar, L.; Alvear, M. The in vitro antifungal evaluation of a commercial extract of Chilean propolis against six fungi of agricultural importance. Cienc. Investig. Agrar. 2012, 39, 347–359. [Google Scholar]
- Matkowski, A.; Tasarz, P.; Szypuła, E. Antioxidant activity of herb extracts from five medicinal plants from Lamiaceae, subfamily Lamioideae. J. Med. Plant Res. 2008, 2, 321–330. [Google Scholar]
- Ricco, R.; Agudelo, I.; Garcés, M.; Evelson, P.; Wagner, M.; Gurni, A. Polifenoles y actividad antioxidante en Equisetum giganteum L. (Equisetaceae). Bol. Latinoam. Caribe Plantas Med. Aromát. 2011, 10, 325–332. [Google Scholar]
- Zodape, S.T.; Gupta, A.; Bhandari, S.C.; Rawat, U.S.; Chaudhary, D.R.; Eswaran, K.; Chikara, J. Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). J. Sci. Ind. Res. 2011, 70, 215–219. [Google Scholar]
- Yao, Y.; Wang, X.; Chen, B.; Zhang, M.; Ma, J. Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.). ACS Omega 2020, 5, 4242–4249. [Google Scholar] [PubMed]
- Baghdadi, A.; Della Lucia, M.C.; Borella, M.; Bertoldo, G.; Ravi, S.; Zegada-Lizarazu, W.; Chiodi, C.; Pagani, E.; Hermans, C.; Stevanato, P.; et al. A dual-omics approach for profiling plant responses to biostimulant applications under controlled and field conditions. Front. Plant Sci. 2022, 13, 983772. [Google Scholar]
- Layek, J.; Dutta, S.K.; Krishnappa, R.; Das, A.; Ghosh, A.; Mishra, V.K.; Panwar, A.S.; Hazarika, S.; Devi, S.; Kumar, M.; et al. Productivity, quality and profitability enhancement of French bean, okra and tomato with seaweed extract application under North-Eastern Himalayan condition. Sci. Hortic. 2023, 309, 111626. [Google Scholar]
- Idowu, M.K.; Aduayi, E.A. Effects of Sodium and Potassium Application on Water Content and Yield of Tomato in Southwestern Nigeria. J. Plant Nutr. 2006, 29, 2131–2145. [Google Scholar]
- Mattner, S.W.; Wite, D.; Riches, D.A.; Porter, I.J.; Arioli, T. The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biol. Agric. Hortic. 2013, 29, 258–270. [Google Scholar]
- Rodrigues, M.; Baptistella, J.L.C.; Horz, D.C.; Bortolato, L.M.; Mazzafera, P. Organic plant biostimulants and fruit quality—A review. Agronomy 2020, 10, 988. [Google Scholar] [CrossRef]
- Gonzali, S.; Perata, P. Anthocyanins from Purple Tomatoes as Novel Antioxidants to Promote Human Health. Antioxidants 2020, 9, 1017. [Google Scholar] [CrossRef]
- Mengel, K.; Viro, M. Effects of potassium supply on the transport of photosynthates to the fruits of tomato (Lycopersicon esculentum). Physiol. Plant. 1974, 30, 295–300. [Google Scholar]
- Javaria, S.; Khan, M.Q.; Bakhsh, I. Effect of potassium on chemical and sensory attributes of tomato fruits. J. Anim. Plant Sci. 2012, 22, 1081–1085. [Google Scholar]
- Li, Z.; Qiu, Q.; Chen, Y.; Lin, D.; Huang, J.; Huang, T. Metabolite alteration in response to low phosphorus stress in developing tomato fruits. Plant Physiol. Biochem. 2021, 159, 234–243. [Google Scholar]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.P.; Lutts, S. Tomato fruit development and metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar]
- Kabaş, A.; Ercan, U.; Kabas, O.; Moiceanu, G. Prediction of Total Soluble Solids Content Using Tomato Characteristics: Comparison Artificial Neural Network vs. Multiple Linear Regression. Appl. Sci. 2024, 14, 7741. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar]
- Paulson, K.N.; Stevens, M.A. Relationships among titratable acidity, pH and buffer composition of tomato fruits. J. Food Sci. 1974, 39, 354–357. [Google Scholar]
- Jones, J.B., Jr. Tomato Plant Culture: In the Field, Greenhouse, and Home Garden, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Frusciante, L.; Carli, P.; Ercolano, M.R.; Pernice, R.; Di Matteo, A.; Fogliano, V.; Pellegrini, N. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 2007, 51, 609–617. [Google Scholar]
- Mirdehghan, S.H.; Valero, D. Bioactive compounds in tomato fruit and its antioxidant activity as affected by incorporation of Aloe, eugenol, and thymol in fruit package during storage. Int. J. Food Prop. 2017, 20, 1798–1806. [Google Scholar]
- Meng, F.; Li, Y.; Li, S.; Chen, H.; Shao, Z.; Jian, Y.; Liu, L.; Wang, Q. Carotenoid biofortification in tomato products along whole agro-food chain from field to fork. Trends Food Sci. 2022, 124, 296–308. [Google Scholar]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef]
- Grabowska, A.; Kunicki, E.; Jezdinsky, A.; Kalisz, A.; Sekara, A. The effect of biostimulants on the quality parameters of tomato grown for the processing industry. Agrochimica 2015, 59, 203–217. [Google Scholar]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [PubMed]
- Bramley, P.M. Regulation of carotenoids formation during tomato fruit ripening and development. J. Exp. Bot. 2002, 53, 2107–2113. [Google Scholar]
- Ertani, A.; Schiavon, M.; Altissimo, A.; Franceschi, C.; Nardi, S. Phenol-containing organic substances stimulate phenylpropanoid metabolism in Zea mays. J. Plant Nutr. Soil Sci. 2011, 174, 496–503. [Google Scholar]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5, 375. [Google Scholar]
- Nardi, S.; Muscolo, A.; Vaccaro, S.; Baiano, S.; Spaccini, R.; Piccolo, A. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biol. Biochem. 2007, 39, 3138–3146. [Google Scholar]
- El-Mahrouk, M.E.; Dewir, Y.H.; Hafez, Y.M.; El-Banna, A.; Moghanm, F.S.; El-Ramady, H.; Mahmood, Q.; Elbehiry, F.; Brevik, E.C. Assessment of Bioaccumulation of Heavy Metals and Their Ecological Risk in Sea Lettuce (Ulva spp.) along the Coast Alexandria, Egypt: Implications for Sustainable Management. Sustainability 2023, 15, 4404. [Google Scholar] [CrossRef]
- Lee, K.J.; Kang, E.H.; Yoon, M.; Jo, M.R.; Yu, H.; Son, K.T.; Jeong, S.H.; Kim, J.H. Comparison of Heavy Metals and Arsenic Species in Seaweeds Collected from Different Regions in Korea. Appl. Sci. 2022, 12, 7000. [Google Scholar] [CrossRef]
- Aitta, A.; El-Ramady, H.; Alshaal, T.; El-Henawy, A.; Shams, M.; Talha, N.; Elbehiry, F.; Brevik, E.C. Seasonal and spatial distribution of soil trace elements around Kitchener drain in the northern Nile Delta, Egypt. Agriculture 2019, 9, 152. [Google Scholar] [CrossRef]
- Hashem, H.A.; Mansour, H.A.; El-Khawas, S.A.; Hassanein, R.A. The potentiality of marine macro-algae as bio-fertilizers to improve the productivity and salt stress tolerance of canola (Brassica napus L.) plants. Agronomy 2019, 9, 146. [Google Scholar] [CrossRef]
- Sekhouna, D.; Kies, F.; Elegbede, I.O.; Matemilola, S.; Zorriehzahra, J.; Hussein, E.K. Potential assay of two green algae Ulva lactuca and Ulva intestinalisas biofertilizers. Sustain. Agri. Food Environ. Res. 2021, 9, 567–580. [Google Scholar]
- Ersoy, B.; Yanar, Y.; Kucukgulmez, A.; Celik, M. Effects of four cooking methods on the heavy metal concentrations of sea bass fillets (Dicentrarchus labrax Linne, 1785). Food Chem. 2006, 99, 748–751. [Google Scholar] [CrossRef]
- Tengku Nur Alia, T.K.A.; Hing, L.S.; Sim, S.F.; Pradit, S.; Ahmad, A.; Ong, M.C. Comparative study of raw and cooked farmed sea bass (Lates calcarifer) in relation to metal content and its estimated human health risk. Mar. Pollut. Bul. 2020, 153, 111009. [Google Scholar] [CrossRef]
Analysis | SWS | SWE |
---|---|---|
pH | 5.97 | 5.50 |
Electrical conductivity (mS/cm) | 2.13 | 1.49 |
Density (g/cm3) | 2.00 | 1.00 |
Organic matter (%) | 0.47 | 0.27 |
Ash (%) | 28.74 | nd |
Carbon (%) | 0.27 | 0.16 |
Carbon/nitrogen ratio | 5.97 | 5.50 |
Anions (−) | (ppm) | (ppm) |
Nitrates (NO3−) | 70.86 | 35.43 |
Phosphates (P-PO4−) | 32.00 | 16.00 |
Phosphorus peroxide (P2O5) | 73.32 | 36.66 |
Sulfates (SO4−2) | 2400.00 | 1420.00 |
Sulfur sulphates (S-SO4−2) | 800.00 | 473.33 |
Chlorides (Cl−) | 2836.00 | 1418.00 |
Cations (+) | (ppm) | (ppm) |
Sodium (Na+) | 216.00 | 128.00 |
Potassium (K+) | 470.00 | 120.00 |
Potassium oxide (K2O) | 566.16 | 144.55 |
Calcium (Ca+2) | 184.00 | 85.00 |
Calcium oxide (CaO) | 257.6 | 119.00 |
Magnesium (Mg+2) | 308.00 | 93.00 |
Ammonium | 257.00 | 115.00 |
Microelements | (ppm) | (ppm) |
Iron (Fe+2) | 52.00 | 29.00 |
Zinc | 6.00 | 2.00 |
Copper | 2.00 | 1.00 |
Magnesium | 2.00 | 1.00 |
Boron | 10.00 | 8.00 |
Nitrogen | (ppm) | (ppm) |
Nitric nitrogen (N-NO3−) | 16.00 | 8.00 |
Ammoniacal nitrogen (N-NH4+) | 200.00 | 90.00 |
Urea nitrogen (N-NH2) | 920.00 | 330.00 |
Parameters | Control | SWS | SWE |
---|---|---|---|
Total fruits harvested | 178 | 228 | 189 |
Fruits harvested per plant | 14.0 ± 1.23 | 19.0 ± 0.87 * | 15.0 ± 1.25 |
Average fruit weight per plant | 50.80 ± 8.83 | 64.07 ± 6.48 * | 55.13 ± 10.46 |
Fruit yield (kg·plant−1) | 0.84 ± 0.08 | 1.24 ± 0.11 * | 0.99 ± 0.10 |
Number of seeds per fruit | 49.09 ± 3.22 | 56.21 ± 2.18 * | 48.55 ± 3.18 |
Characteristics | Control | SWS | SWE |
---|---|---|---|
Polar length (mm) | 60.95 ± 8.81 | 68.77 ± 8.47 * | 61.07 ± 8.43 |
Equatorial diameter (mm) | 43.38 ± 4.70 | 47.72 ± 4.75 * | 44.56 ± 3.75 |
Fruit shape index | 1.41 ± 0.18 | 1.44 ± 0.15 | 1.37 ± 0.16 |
Nutritional Content (g 100 g−1 DM) | Control | SWS | SWE |
---|---|---|---|
Protein content | 9.81 ± 0.15 | 10.12 ± 0.13 * | 10.26 ± 0.07 * |
Fat content | 0.05 ± 0.04 | 0.70 ± 0.06 * | 0.81 ± 0.16 * |
Crude fiber | 14.72 ± 0.28 | 16.93 ± 0.17 * | 16.44 ± 0.11 * |
Carbohydrates | 67.54 ± 0.22 | 63.54 ± 0.15 | 64.59 ± 0.09 |
Moisture content | 94.54 ± 0.13 | 93.86 ± 0.21 | 93.94 ± 0.20 |
Dry matter | 5.46 ± 0.13 | 6.13 ± 0.21 * | 5.79 ± 0.24 * |
Ashes | 7.87 ± 0.14 | 8.70 ± 0.07 * | 7.89 ± 0.14 |
TSS (°Brix) | 3.78 ± 0.28 | 5.10 ± 0.24 * | 4.64 ± 0.24 * |
pH | 5.12 ± 0.27 | 4.43 ± 0.10 * | 4.50 ± 0.16 * |
Energy (kcal 100 g−1 DM) | 309.69 ± 0.10 | 300.94 ± 0.15 | 279.69 ± 0.11 * |
Compound Content | Control | SWS | SWE |
---|---|---|---|
Lycopene (μg g−¹ DM) | 561.43 ± 8.61 | 657.46 ± 4.89 * | 611.99 ± 9.07 * |
Carotenoids (µg CE/100 g DM) | 76.84 ± 0.72 | 83.87 ± 0.80 * | 100.33 ± 0.94 * |
Total flavonoids (mg QE g−¹ DM) | 0.54 ± 0.09 | 1.16 ± 1.01 * | 1.28 ± 1.23 * |
Total anthocyanins (mg CGE g−¹ DM) | 2.97 ± 0.29 | 8.11 ± 0.3 * | 1.55 ± 0.65 * |
Total proanthocyanins (mg CTE g−¹ DM) | 2.97 ± 0.54 | 2.24 ± 4.98 | 2.75 ± 0.01 |
Total phenols (mg GAE g−¹ DM) | 3.17 ± 1.07 | 2.58 ± 0.23 * | 2.34 ± 0.27 * |
Total phenolic acids (mg CAE g−¹ DM) | 0.41 ± 0.09 | 0.84 ± 0.17 * | 0.73 ± 0.02 * |
Total tannins (mg GAE g−¹ DM) | 2.16 ± 0.13 | 2.19 ± 0.30 | 2.72 ± 0.00 * |
Total ascorbic acid (mg 100 g−¹ DM) | 349.33 ± 3.44 | 400.24 ± 4.97 * | 228.43 ± 2.98 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Antón, A.A.; Hernández-Herrera, R.M.; Velasco-Ramírez, S.F.; Ramírez-Anguiano, A.C.; Salcedo-Pérez, E. Productivity and Quality Characteristics of Tomato Fruits (Solanum lycopersicum) Are Improved by the Application of a Green Seaweed (Ulva ohnoi). Agriculture 2025, 15, 750. https://doi.org/10.3390/agriculture15070750
Espinosa-Antón AA, Hernández-Herrera RM, Velasco-Ramírez SF, Ramírez-Anguiano AC, Salcedo-Pérez E. Productivity and Quality Characteristics of Tomato Fruits (Solanum lycopersicum) Are Improved by the Application of a Green Seaweed (Ulva ohnoi). Agriculture. 2025; 15(7):750. https://doi.org/10.3390/agriculture15070750
Chicago/Turabian StyleEspinosa-Antón, Adrian Alejandro, Rosalba Mireya Hernández-Herrera, Sandra Fabiola Velasco-Ramírez, Ana Cristina Ramírez-Anguiano, and Eduardo Salcedo-Pérez. 2025. "Productivity and Quality Characteristics of Tomato Fruits (Solanum lycopersicum) Are Improved by the Application of a Green Seaweed (Ulva ohnoi)" Agriculture 15, no. 7: 750. https://doi.org/10.3390/agriculture15070750
APA StyleEspinosa-Antón, A. A., Hernández-Herrera, R. M., Velasco-Ramírez, S. F., Ramírez-Anguiano, A. C., & Salcedo-Pérez, E. (2025). Productivity and Quality Characteristics of Tomato Fruits (Solanum lycopersicum) Are Improved by the Application of a Green Seaweed (Ulva ohnoi). Agriculture, 15(7), 750. https://doi.org/10.3390/agriculture15070750