Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = water-lifting technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 4615 KB  
Article
Experimental Assessment and Digital Twin Modeling of Integrated AEM Electrolyzer–PEM Fuel Cell–BESS for Smart Hydrogen Energy Applications
by A. H. Samitha Weerakoon and Mohsen Assadi
Energies 2025, 18(23), 6318; https://doi.org/10.3390/en18236318 - 30 Nov 2025
Viewed by 553
Abstract
Rising energy demand, fossil fuel depletion, and global warming are accelerating research into sustainable energy solutions, with growing interest in hydrogen as a promising alternative. This research presents a detailed experimental investigation and novel digital twin (DT) models for an integrated hydrogen-based energy [...] Read more.
Rising energy demand, fossil fuel depletion, and global warming are accelerating research into sustainable energy solutions, with growing interest in hydrogen as a promising alternative. This research presents a detailed experimental investigation and novel digital twin (DT) models for an integrated hydrogen-based energy system consisting of an Anion Exchange Membrane Electrolyzer (AEMEL), Proton Exchange Membrane Fuel Cell (PEMFC), hydrogen storage, and Battery Energy Storage System (BESS). Conducted at a real-world facility in Risavika, Norway, the study employed commercial units: the Enapter EL 4.1 AEM electrolyzer and Intelligent Energy IE-Lift 1T/1U PEMFC. Experimental tests under dynamic load conditions demonstrated stable operation, achieving hydrogen production rates of up to 512 NL/h and a specific power consumption of 4.2 kWh/Nm3, surpassing the manufacturer’s specifications. The PEMFC exhibited a unique cyclic operational mechanism addressing cathode water flooding, a critical issue in fuel cell systems, achieving steady-state efficiencies around 43.6% under prolonged (190 min) rated-power operation. Subsequently, advanced DT models were developed for both devices: a physics-informed interpolation model for the AEMEL, selected due to its linear and steady operational behavior, and an ANN-based model for the PEMFC to capture its inherently nonlinear, dynamically fluctuating characteristics. Both models were validated, showing excellent predictive accuracy (<3.8% deviation). The DTs integrated manufacturer constraints, accurately modeling transient behaviors, safety logic, and operational efficiency. The round-trip efficiency of the integrated system was calculated (~27%), highlighting the inherent efficiency trade-offs for autonomous hydrogen-based energy storage. This research significantly advances our understanding of integrated H2 systems, providing robust DT frameworks for predictive diagnostics, operational optimization, and performance analysis, supporting the broader deployment and management of hydrogen technologies. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

19 pages, 4083 KB  
Article
Design and Analysis of a Dual-Screw Propelled Robot for Underwater and Muddy Substrate Operations in Agricultural Ponds
by Yan Xu, Pengchao Dai, Mingjin Xin, Liyan Wu and Yuqiu Song
Actuators 2025, 14(9), 450; https://doi.org/10.3390/act14090450 - 12 Sep 2025
Cited by 1 | Viewed by 876
Abstract
Conventional underwater vehicles, which are typically equipped with oscillating fins or standard propellers, are incapable of effective locomotion within the viscous, high-resistance environment of muddy substrates common in agricultural ponds. To address this operational limitation, this paper presents a compact dual-screw propelled robot [...] Read more.
Conventional underwater vehicles, which are typically equipped with oscillating fins or standard propellers, are incapable of effective locomotion within the viscous, high-resistance environment of muddy substrates common in agricultural ponds. To address this operational limitation, this paper presents a compact dual-screw propelled robot capable of traversing both the water column and soft substrate layers. The robot’s locomotion is driven by two optimized helical screw propellers, while depth control and roll stability are actively managed by a control fin. A dynamic model of the robot–fluid interaction was developed to optimize the screw configuration that achieves a maximum theoretical thrust of 40 N with a calculated 16% slippage rate in mud. Computational fluid dynamics simulations were employed to determine the optimal angle for the control fin, which was found to be 9°, maximizing the lift-to-drag ratio at 12.09 for efficient depth maneuvering. A cable-free remote control system with a response time of less than 0.5 s governs all operations. Experimental validation in a controlled tank environment confirmed the robot’s performance, demonstrating stable locomotion at 0.4 m/s in water and 0.3 m/s in a simulated mud substrate. This dual-screw propelled robot represents a promising technological solution for comprehensive monitoring and operational tasks in agricultural pond environments. Full article
(This article belongs to the Special Issue Design and Control of Agricultural Robotics)
Show Figures

Figure 1

29 pages, 6011 KB  
Review
Research Progress on Polyurethane-Based Grouting Materials: Modification Technologies, Performance Characterization, and Engineering Applications
by Langtian Qin, Dingtao Kou, Xiao Jiang, Shaoshuai Yang, Ning Hou and Feng Huang
Polymers 2025, 17(17), 2313; https://doi.org/10.3390/polym17172313 - 27 Aug 2025
Cited by 1 | Viewed by 1638
Abstract
Polyurethane grouting materials are polymer materials formed through the reaction of polyisocyanates and polyols. They play important roles in underground engineering, tunnel construction, and mining due to their fast reaction rate, high bonding strength, and excellent impermeability. However, traditional polyurethane grouting materials have [...] Read more.
Polyurethane grouting materials are polymer materials formed through the reaction of polyisocyanates and polyols. They play important roles in underground engineering, tunnel construction, and mining due to their fast reaction rate, high bonding strength, and excellent impermeability. However, traditional polyurethane grouting materials have shortcomings such as high reaction heat release, high brittleness, and poor flame retardancy, which limit their applications in high-demand engineering projects. This paper systematically reviews the research progress on modified polyurethane grouting materials. Four major modification technologies are summarized: temperature reduction modification, flame retardant modification, mechanical enhancement, and environmental adaptability improvement. A multi-dimensional performance characterization system is established, covering slurry properties, solidified body performance, microstructure characteristics, thermal properties and flame retardancy, diffusion grouting performance, and environmental adaptability. The application effects of modified polyurethane grouting materials in grouting reinforcement, grouting water plugging, and grouting lifting are analyzed. Future development directions are projected. This review is particularly valuable for researchers and engineers working in tunneling, mining, geotechnical engineering, and infrastructure rehabilitation. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 5547 KB  
Article
Study of Performance and Engineering Application of D-RJP Jet Grouting Technology in Anchorage Foundation Reinforcement for Deep Suspension Bridge Excavations
by Xiaoliang Zhu, Wenqing Zhao, Sheng Fang, Junchen Zhao, Guoliang Dai, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(16), 8985; https://doi.org/10.3390/app15168985 - 14 Aug 2025
Viewed by 1305
Abstract
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground [...] Read more.
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground improvement. Its effectiveness is systematically validated through a case study of the South Anchorage Foundation Pit for the North Channel Bridge of the Zhangjinggao Yangtze River Bridge. The D-RJP method led to the successful construction of a composite foundation within the soft soil that satisfies the permeability coefficient, interface friction coefficient, bearing capacity, and shear strength requirements, significantly improving the geotechnical performance of the anchorage foundation. A series of field experiments were conducted to optimize the critical construction parameters, including the lifting speed, water–cement ratio, and stroke spacing. Core sampling and laboratory testing revealed the grout columns to have good structural integrity. The unconfined compressive strength of the high-pressure jet grout columns reached 5.45 MPa in silty clay layers and 8.21 MPa in silty sand layers. The average permeability coefficient ranged from 1.67 × 10−7 to 2.52 × 10−7 cm/s. The average density of the columns was 1.66 g/cm3 in the silty clay layer and 2.08 g/cm3 in the silty sand layer. The cement content in the return slurry varied between 18% and 27%, with no significant soil squeezing effect observed. The foundation interface friction coefficient ranged from 0.44 to 0.52. After excavation, the composite foundation formed by D-RJP columns was subjected to static load and direct shear testing. The results showed a characteristic bearing capacity value of 1200 kPa, the internal friction angle exceeded 24.23°, and the cohesion exceeded 180 kPa. This study successfully verifies the feasibility of applying D-RJP technology to construct high-performance artificial composite foundations in complex strata characterized by deep soft soils and high-pressure confined groundwater, providing valuable technical references and practical insights for similar ultra-deep foundation pit projects involving suspension bridge anchorages. Full article
Show Figures

Figure 1

22 pages, 6823 KB  
Article
Design Optimization of Valve Assemblies in Downhole Rod Pumps to Enhance Operational Reliability in Oil Production
by Seitzhan Zaurbekov, Kadyrzhan Zaurbekov, Doszhan Balgayev, Galina Boiko, Ertis Aksholakov, Roman V. Klyuev and Nikita V. Martyushev
Energies 2025, 18(15), 3976; https://doi.org/10.3390/en18153976 - 25 Jul 2025
Viewed by 794
Abstract
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, [...] Read more.
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, i.e., a problem that accounts for approximately 15% of all failures, as identified in a statistical analysis of the 2022 operational data from the Uzen oilfield in Kazakhstan. The leakage is primarily attributed to the accumulation of mechanical impurities and paraffin deposits between the valve ball and seat, leading to concentrated surface wear and compromised sealing. To mitigate this issue, a novel valve assembly design was developed featuring a flow turbulizer positioned beneath the valve seat. The turbulizer generates controlled vortex motion in the fluid flow, which increases the rotational frequency of the valve ball during operation. This motion promotes more uniform wear across the contact surfaces and reduces the risk of localized degradation. The turbulizers were manufactured using additive FDM technology, and several design variants were tested in a full-scale laboratory setup simulating downhole conditions. Experimental results revealed that the most effective configuration was a spiral plate turbulizer with a 7.5 mm width, installed without axis deviation from the vertical, which achieved the highest ball rotation frequency and enhanced lapping effect between the ball and the seat. Subsequent field trials using valves with duralumin-based turbulizers demonstrated increased operational lifespans compared to standard valves, confirming the viability of the proposed solution. However, cases of abrasive wear were observed under conditions of high mechanical impurity concentration, indicating the need for more durable materials. To address this, the study recommends transitioning to 316 L stainless steel for turbulizer fabrication due to its superior tensile strength, corrosion resistance, and wear resistance. Implementing this design improvement can significantly reduce maintenance intervals, improve pump reliability, and lower operating costs in mature oilfields with high water cut and solid content. The findings of this research contribute to the broader efforts in petroleum engineering to enhance the longevity and performance of artificial lift systems through targeted mechanical design improvements and material innovation. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

31 pages, 5988 KB  
Article
Influence of the Upstream Channel of a Ship Lift on the Hydrodynamic Performance of a Fleet Entry Chamber and Design of Traction Scheme
by Haichao Chang, Qiang Zheng, Zuyuan Liu, Yu Yao, Xide Cheng, Baiwei Feng and Chengsheng Zhan
J. Mar. Sci. Eng. 2025, 13(7), 1375; https://doi.org/10.3390/jmse13071375 - 18 Jul 2025
Viewed by 653
Abstract
This study investigates the hydrodynamic performance of ships entering a ship lift compartment that is under the influence of upstream channel geometry and proposes a mechanical traction scheme to enhance operational safety and efficiency. Utilizing a Reynolds-averaged Navier–Stokes (RANS)-based computational fluid dynamics (CFD) [...] Read more.
This study investigates the hydrodynamic performance of ships entering a ship lift compartment that is under the influence of upstream channel geometry and proposes a mechanical traction scheme to enhance operational safety and efficiency. Utilizing a Reynolds-averaged Navier–Stokes (RANS)-based computational fluid dynamics (CFD) approach with overlapping grid technology, numerical simulations were conducted for both single and grouped ships navigating through varying water depths, speeds, and shore distances. The results revealed significant transverse force oscillations near the floating navigation wall due to unilateral shore effects, posing risks of deviation. The cargo ship experienced drastic resistance fluctuations in shallow-to-very-shallow-water transitions, while tugboats were notably affected by hydrodynamic interactions during group entry. A mechanical traction system with a four-link robotic arm was designed and analyzed kinematically and statically, demonstrating structural feasibility under converted real-ship traction forces (55.1 kN). The key findings emphasize the need for collision avoidance measures in wall sections and validate the proposed traction scheme for safe and efficient ship entry/exit. This research provides critical insights for optimizing ship lift operations in restricted waters. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

37 pages, 863 KB  
Systematic Review
Sustainable Water Resource Management to Achieve Net-Zero Carbon in the Water Industry: A Systematic Review of the Literature
by Jorge Alejandro Silva
Water 2025, 17(14), 2136; https://doi.org/10.3390/w17142136 - 17 Jul 2025
Viewed by 2057
Abstract
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This [...] Read more.
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This paper, using a systematic literature review that complies with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA), aims to propose sustainable water resource management (SWRM) strategies that may assist water utilities in decarbonizing their value chains and achieving net-zero carbon. In total, 31 articles were included from SCOPUS, ResearchGate, ScienceDirect, and Springer. The findings show that water utilities are responsible for 3% of global greenhouse gas emissions and could reduce these emissions by more than 45% by employing a few strategies, including the electrification of transport fleets, the use of renewables, advanced oxidation processes (AOPs) and energy-efficient technologies. A broad-based case study from Scottish Water shows a 254,000-ton CO2 reduction in the period since 2007, indicative of the potential of these measures. The review concludes that net-zero carbon is feasible through a mix of decarbonization, wastewater reuse, smart systems and policy-led innovation, especially if customized to both large and small utilities. To facilitate a wider and a more scalable transition, research needs to focus on development of low-cost and flexible strategies for underserved utilities. Full article
Show Figures

Figure 1

14 pages, 6772 KB  
Article
Water Impact on Superhydrophobic Surface: One Hydrophilic Spot Morphing and Controlling Droplet Rebounce
by Jiali Guo, Haoran Zhao, Ching-Wen Lou and Ting Dong
Biomimetics 2025, 10(5), 319; https://doi.org/10.3390/biomimetics10050319 - 15 May 2025
Cited by 2 | Viewed by 1054
Abstract
Motion control of droplets undergoing collisions with solid surface is required in a number of technological and industrial situations. Droplet dynamics after lifting off is often unpredictable, leading to a major problem in many technologies that droplets move in uncontrolled and potentially undesirable [...] Read more.
Motion control of droplets undergoing collisions with solid surface is required in a number of technological and industrial situations. Droplet dynamics after lifting off is often unpredictable, leading to a major problem in many technologies that droplets move in uncontrolled and potentially undesirable ways. Herein, this work shows that well-designed surface chemistry can produce an accurate control of force transmission to impinging droplets, permitting precise controlled droplet rebounce. The non-wetting surfaces (superhydrophobic), which mimics the water-repellent mechanism of lotus leaves via micro-to-nanoscale hierarchical morphology, with patterned “defect” of extreme wettability (hydrophilic), are synthesized by photolithography using only one inexpensive fluorine-free reagent (methyltrichlorosilane). The contact line of impinging droplet during flatting and receding is free to move on the superhydrophobic region and pinned as it meets with the hydrophilic defect, which introduces a net surface tension force allowing patterned droplet deposition, controlled droplet splitting, and directed droplet rebound. The work also achieves controlled vertical rebound of impinging droplets on inclined surfaces by controlling defect’s size, impact position, and impact velocity. This research demonstrates pinning forces as a general strategy to attain sophisticated droplet motions, which opens an avenue in future explorations, such as matter transportation, energy transformation, and object actuation. Full article
Show Figures

Figure 1

17 pages, 30373 KB  
Article
Experimental Investigation of Heat Pump Modules Limited to 150 g of Refrigerant R290 and a Dedicated Test Rig
by Stephan Preisinger, Michael Lauermann, Micha Schwarzfurtner, Sebastian Fischer, Stephan Kling, Heinz Moisi and Christoph Reichl
Energies 2025, 18(10), 2455; https://doi.org/10.3390/en18102455 - 10 May 2025
Cited by 1 | Viewed by 872
Abstract
Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge despite [...] Read more.
Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge despite its immense potential to lower urban greenhouse gas emissions. To address this, the following paper describes the development of a compact, modular heat pump system designed to replace conventional gas boilers, focusing on the building and testing of a prototype for such a modular heat pump system. The prototype supports multiple functionalities, including space heating, cooling, and domestic hot water production. The performance advantages of two different compressor technologies were exploited to optimize the efficiency of the complete system and the pressure lifts associated with applications for heating and domestic hot water production. Thus, measurements were conducted across a range of operating points, comparing different heat pump module types. In the case of the piston compressor module, the Carnot efficiency was in the range of 47.2% to 50.4%. The total isentropic efficiency for floor heating and domestic hot water production was above 0.45 for both piston and rotary compressors. Full article
(This article belongs to the Special Issue Advances in Refrigeration and Heat Pump Technologies)
Show Figures

Figure 1

21 pages, 7771 KB  
Article
Experimental Study on the Uplift Correction of Raft Foundations in Saturated Silty Clay
by Tengyue Cui, Yingguang Shi and Feng Huang
Buildings 2025, 15(9), 1415; https://doi.org/10.3390/buildings15091415 - 23 Apr 2025
Cited by 1 | Viewed by 867
Abstract
Although grouting technology has been widely applied for lifting and rectifying tilted structures, theoretical research remains underdeveloped and lags behind the practical demands of engineering applications. In this study, a self-developed experimental setup was utilized to conduct model tests on the lifting and [...] Read more.
Although grouting technology has been widely applied for lifting and rectifying tilted structures, theoretical research remains underdeveloped and lags behind the practical demands of engineering applications. In this study, a self-developed experimental setup was utilized to conduct model tests on the lifting and rectification of a raft foundation in saturated silty clay. The evolution patterns of ground surface displacement, excess pore water pressure, and foundation-additional pressure induced by grouting were systematically analyzed. Furthermore, the influence of grouting depth and injection rate on surface displacement, excess pore water pressure, foundation-additional pressure, and grouting parameters (grout volume and pressure) was investigated. The key findings are summarized as follows: The grouting efficiency (η) ranged between 0.72 and 0.81. A power-exponential dual-function model was proposed to quantify the spatiotemporal evolution of excess pore water pressure, achieving a distance–decay power function with R2 > 0.89 and a time-dependent dissipation exponential function with R2 > 0.94. The maximum surface uplift displacement decreased by 20.6% and 8.9% with increasing grouting rates, respectively. The dissipation time of excess pore water pressure exhibited a negative correlation with the grouting rate, and grouting efficiency declined as excess pore water pressure dissipated. The maximum foundation-additional pressure occurred directly above the grouting center and gradually diminished as the horizontal distance from the grouting location increased. Variations in surface displacement, excess pore water pressure, and additional base pressure induced by grouting were systematically analyzed. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 14879 KB  
Article
The Vortex Characteristics and Anti-Vortex Mechanism in a Lateral Agricultural Irrigation Pump Station with a Symmetrical Inlet-Distributed Method
by Zeyu Huang, Can Luo, Yajun Wang, Haojie Liang, Li Cheng, Kangzhu Jing, Rui Zhu and Bowen Zhang
Agriculture 2024, 14(12), 2170; https://doi.org/10.3390/agriculture14122170 - 28 Nov 2024
Cited by 1 | Viewed by 1342
Abstract
Symmetric lateral inlet pumping stations are commonly utilized for water lifting in agricultural multi-crop irrigation districts, but they often share non-ideal flow patterns, which can easily cause pump vibration and sediment deposition. In this paper, a symmetrical lateral pumping station in an irrigation [...] Read more.
Symmetric lateral inlet pumping stations are commonly utilized for water lifting in agricultural multi-crop irrigation districts, but they often share non-ideal flow patterns, which can easily cause pump vibration and sediment deposition. In this paper, a symmetrical lateral pumping station in an irrigation district is taken as the research object, and CFD (Computational Fluid Dynamics) technology is used to study it. The model test used a model scale ratio of λL = 1:18. Results: By comparing the CFD data and test data, the average relative error for the left station is found to be 3.213%, while that for the right station is 5.107%, indicating that the numerical simulation method is reliable. Six different rectification measures are proposed, the cross sectional flow pattern of the pumping station is observed, and the longitudinal profile of axial velocity distribution in the sump is analyzed. The velocity-weighted average angle and hydraulic loss of each case study are also analyzed. The flow operates smoothly in case study 7. The vortex in the approach channel disappears when the columns and bottom sill are finally installed. Compared to the original case study, the velocity-weighted average angle at the 5# station in case study 7 increased by 14%, and it increased by 13.9% at station #9. The flow became more stable, and hydraulic losses were minimized. The simulated hydraulic loss in case study 7 decreased by 14.2%. These findings can serve as a reference for similar pump station projects. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

26 pages, 14021 KB  
Review
A Review of Plume Research in the Collection Process of Deep-Sea Polymetallic Nodules
by Lixin Xu, Xiu Li, Yajiao Liu, Peilin Dou, Zhichao Hong and Chaoshuai Han
Water 2024, 16(23), 3379; https://doi.org/10.3390/w16233379 - 24 Nov 2024
Cited by 1 | Viewed by 4180
Abstract
The plumes generated during the collection of polymetallic nodules in the deep sea may have a significant impact on the marine ecosystem. Therefore, this article reviews the progress in deep-sea mining and monitoring technologies related to plumes. It is suggested that specific areas [...] Read more.
The plumes generated during the collection of polymetallic nodules in the deep sea may have a significant impact on the marine ecosystem. Therefore, this article reviews the progress in deep-sea mining and monitoring technologies related to plumes. It is suggested that specific areas of environmental interest (APEIs) and positive altitude characteristic regions (such as seamounts and hills) in the process of polymetallic nodule collection can serve as refuges for benthic organisms and provide a biological basis for the recovery of biodiversity in mining areas. Water-supported vessels, pipeline lifting systems, and hydraulic collection methods are the least disruptive and most promising methods. By sorting out the deep-sea mining process, plumes can be roughly classified into seabed disturbance plumes and tailing plumes. The best way to address plume formation is at the source when developing environmentally friendly mining vehicles. The evaluation of plumes is crucial for the sustainable development of the environment and seabed resources. However, the mechanism is not clear at present. Therefore, laboratory simulation and in situ monitoring need to be coordinated, and attention should be paid to the impact on benthic marine organisms as much as possible during original operations. Plume research in the deep-sea mining process will also provide favorable support for the possible future development of seabed resources. Full article
(This article belongs to the Special Issue Emerging Challenges in Ocean Engineering and Environmental Effects)
Show Figures

Figure 1

17 pages, 3571 KB  
Article
Geospatially Informed Water Pricing for Sustainability: A Mixed Methods Approach to the Increasing Block Tariff Model for Groundwater Management in Arid Regions of Northwest Bangladesh
by Ragib Mahmood Shuvo, Radwan Rahman Chowdhury, Sanchoy Chakroborty, Anutosh Das, Abdulla Al Kafy, Hamad Ahmed Altuwaijri and Muhammad Tauhidur Rahman
Water 2024, 16(22), 3298; https://doi.org/10.3390/w16223298 - 17 Nov 2024
Cited by 4 | Viewed by 2245
Abstract
Groundwater depletion in arid regions poses a significant threat to agricultural sustainability and rural livelihoods. This study employs geospatial analysis and economic modeling to address groundwater depletion in the arid Barind region of Northwest Bangladesh, where 84% of the rural population depends on [...] Read more.
Groundwater depletion in arid regions poses a significant threat to agricultural sustainability and rural livelihoods. This study employs geospatial analysis and economic modeling to address groundwater depletion in the arid Barind region of Northwest Bangladesh, where 84% of the rural population depends on agriculture. Using remote sensing and GIS, we developed an elevation map revealing areas up to 60 m above sea level, exacerbating evaporation and aquifer dryness. Field data collected through Participatory Rural Appraisal tools showed farmers exhibiting “ignorant myopic” behavior, prioritizing short-term profits over resource conservation. To address this, an Increasing Block Tariff (IBT) water pricing model was developed, dividing water usage into three blocks based on irrigation hours: 1–275 h, 276–550 h, and 551+ h. The proposed IBT model significantly increases water prices across the three blocks: 117 BDT/hour for the first block (from current 100–110 BDT/hour), 120 BDT/hour for the second block, and 138 BDT/hour for the third block. A demand function (y = −0.1178x + 241.8) was formulated to evaluate the model’s impact. The results show potential reductions in groundwater consumption: 59 h in the first block, 26 h in the second block, and 158 h in the third block. These reductions align with the principles of integrated water resource management (IWRM): social equity, economic efficiency, and environmental integration. The model incorporates economic externalities (e.g., well lifting costs) and environmental externalities (e.g., crop pattern shifts), with total costs reaching 92,709,049 BDT for environmental factors. This research provides a framework for sustainable groundwater management in arid regions, potentially reducing overextraction while maintaining agricultural productivity. The proposed IBT model offers a locally driven solution to balance resource conservation with the livelihood needs of farming communities in the Barind tract. By combining remote sensing, GIS, and economic modeling, this research provides a framework for sustainable groundwater management in arid regions, demonstrating the power of geospatial technologies in addressing complex water resource challenges. Full article
Show Figures

Figure 1

22 pages, 2614 KB  
Article
China–U.S. Trade Friction and China’s Agricultural Machinery Imports: Mechanism and Empirical Evidence
by Xinyi Li and Meng Zhang
Agriculture 2024, 14(9), 1517; https://doi.org/10.3390/agriculture14091517 - 4 Sep 2024
Cited by 3 | Viewed by 6126
Abstract
Based on the monthly panel data of China’s imports of agricultural machinery products from 2016–2022, this paper uses a multi-period double-difference model to assess the impact of China’s imposition of counter-tariffs on China’s imports of agricultural machinery in the context of U.S.–China trade [...] Read more.
Based on the monthly panel data of China’s imports of agricultural machinery products from 2016–2022, this paper uses a multi-period double-difference model to assess the impact of China’s imposition of counter-tariffs on China’s imports of agricultural machinery in the context of U.S.–China trade friction. It is found that China’s implementation of counter-tariffs significantly reduces China’s imports of agricultural machinery products from the U.S. and significantly increases imports from 16 other countries, but the trade diversion effect is lower than the trade suppression effect. Mechanism analysis finds that China–U.S. trade friction affects the technological innovation capacity of agricultural machinery enterprises and the degree of uncertainty in the Chinese economy, which in turn affects China’s agricultural machinery imports. Heterogeneity analysis finds that China–U.S. trade friction has a more significant inhibitory effect on seeding and planting and fertilizing machinery, drainage, irrigation, and water lifting machinery, and other machinery imported from the U.S., and a more significant diversionary effect on agricultural primary processing machinery and harvesting machinery imported from 16 other countries. The imposition of countervailing tariffs mainly affected imports of complete machinery products rather than machinery spare parts. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

24 pages, 6311 KB  
Article
Air-Lift Pumping System for Hybrid Mining of Rare-Earth Elements-Rich Mud and Polymetallic Nodules around Minamitorishima Island
by Yoshiyuki Shimizu, Masatoshi Sugihara, Koichiro Fujinaga, Kentaro Nakamura and Yasuhiro Kato
J. Mar. Sci. Eng. 2024, 12(9), 1470; https://doi.org/10.3390/jmse12091470 - 23 Aug 2024
Cited by 5 | Viewed by 3120
Abstract
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to [...] Read more.
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to renewable energies based on green technologies. Numerical analysis using a one-dimensional drift–flux model for gas–liquid–solid three-phase flow and gas–liquid two-phase flow was conducted to examine the characteristics of an air-lift pumping system for mining these mineral resources. Empirical equations of REE-rich mud and the physical properties of polymetallic nodules around Minamitorishima island were utilized in the analysis. As a result, the characteristics, i.e., the performance of the system, were clarified in three cases: REE-rich mud, polymetallic nodules, and both. The time transient, i.e., the unsteady characteristics of the system, was also shown, such as the start-up and feeding slurry with REE-rich mud and polymetallic nodules. The findings from the unsteady characteristics will be useful in considering the operation of a real project or a commercial system in the future. Full article
(This article belongs to the Special Issue Deep-Sea Mining Technologies: Recent Developments and Challenges)
Show Figures

Figure 1

Back to TopTop