Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = water vapour profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6190 KiB  
Article
Calibration of Upper Air Water Vapour Profiles Using the IPRAL Raman Lidar and ERA5 Model Results and Comparison to GRUAN Radiosonde Observations
by Dunya Alraddawi, Philippe Keckhut, Florian Mandija, Alain Sarkissian, Christophe Pietras, Jean-Charles Dupont, Antoine Farah, Alain Hauchecorne and Jacques Porteneuve
Atmosphere 2025, 16(3), 351; https://doi.org/10.3390/atmos16030351 - 20 Mar 2025
Viewed by 650
Abstract
Accurate measurements of upper troposphere humidity are essential to enhance understanding of contrail formation and guiding mitigation efforts. This study evaluates the ability of the IPRAL Raman Lidar, located south of Paris, to provide high-resolution water vapour mixing ratio (WVMR) profiles at contrail-relevant [...] Read more.
Accurate measurements of upper troposphere humidity are essential to enhance understanding of contrail formation and guiding mitigation efforts. This study evaluates the ability of the IPRAL Raman Lidar, located south of Paris, to provide high-resolution water vapour mixing ratio (WVMR) profiles at contrail-relevant altitudes. Raman signals are screened on hourly bases, and a universal calibration method, independent of acquisition mode, is proposed towards operational Lidar water vapour profiles, using co-located ERA5 data. Calibration factors are derived from comparisons between 4 and 6 km, and nightly coefficients determined from hourly factors. Instrumental stability is monitored through the temporal evolution of calibration factors, and stable-period medians are adopted as final values. The uncertainty of calibrated WVMR profiles is assessed by comparison with GRUAN processed Meteomodem M10 radiosondes and ERA5 data. Results show a high agreement (>90%), with IPRAL exhibiting a small negative bias (~10%) below 8 km, reducing to ~5% up to 10.5 km to radiosondes. ERA5 systematically underestimates water vapour at cruise altitudes, with a dry bias increasing from 10% at 9 km to >20% at 11 km. Recent IAGOS corrections to ERA5, improving supersaturation representation, are validated over Paris. This calibrated Lidar data set supports improved atmospheric modelling and contributes to future air traffic management strategies. Full article
Show Figures

Figure 1

18 pages, 4324 KiB  
Article
Performance and Accelerated Ageing of an Industrial Hydraulic Lime Mortar Applied on Different Substrates
by Rafael Travincas, Dora Silveira, Poliana Bellei, João Gouveia, Gina Matias, Isabel Torres and Inês Flores-Colen
Coatings 2024, 14(7), 819; https://doi.org/10.3390/coatings14070819 - 1 Jul 2024
Cited by 1 | Viewed by 1167
Abstract
Mortar that is typically employed for interior or exterior coatings can be characterised using laboratory-prepared specimens according to specific test standards; however, its performance undergoes changes following application on substrates. When selecting mortar, it is vital to anticipate its in-service behaviour after its [...] Read more.
Mortar that is typically employed for interior or exterior coatings can be characterised using laboratory-prepared specimens according to specific test standards; however, its performance undergoes changes following application on substrates. When selecting mortar, it is vital to anticipate its in-service behaviour after its application on substrates to make the most informed choice. Most of the research work carried out to date analyses the characteristics of mortar in laboratory specimens. Some studies analyse these characteristics after its application to support, but very few exist that compare both behaviours. With this objective in mind, this research determined the properties of mortar when cured within laboratory moulds and assessed the behaviour of the same mortar after application on diverse substrate types. This study specifically evaluated the behaviour of a pre-dosed hydraulic lime mortar when applied on concrete blocks, lightweight concrete blocks, concrete slabs, hollow ceramic bricks, and solid ceramic bricks. Later, this behaviour was compared to the same type of mortar hardened in laboratory moulds and the same type of mortar applied on substrates and subjected to accelerated ageing. Moreover, data from previous experimental work were used to compare the behaviour of the pre-dosed hydraulic lime mortar with that of pre-dosed cement mortar when applied on similar substrates. The research drew upon a comprehensive characterisation of the physical and mechanical parameters of mortar, revealing that the performance of these types of mortar undergoes significant changes after application on substrates under in-service conditions, mainly when applied on more porous substrates. It was concluded that the application of mortar to substrates increased bulk density, decreased open porosity, enhanced compressive strength, and resulted in faster capillary absorption. For mortars subjected to accelerated ageing, a notable reduction in water vapour permeability was observed, which was attributed to changes in the pore profile. Full article
(This article belongs to the Special Issue Recent Progress in Reinforced Concrete and Building Materials)
Show Figures

Figure 1

14 pages, 1053 KiB  
Article
A Sensory Shelf-Life Study for the Evaluation of New Eco-Sustainable Packaging of Single-Portion Croissants
by Roberta Tolve, Lucia Sportiello, Giada Rainero, Andrea Pelattieri, Marco Trezzi and Fabio Favati
Foods 2024, 13(9), 1390; https://doi.org/10.3390/foods13091390 - 30 Apr 2024
Cited by 1 | Viewed by 2150
Abstract
Understanding the correlation between straightforward analytical methods and sensory attributes is pivotal for transitioning to sustainable packaging while improving product quality. In this context, the viability of eco-sustainable packaging alternatives for single-packaged croissants has been investigated through examining the correlations between analytical methods, [...] Read more.
Understanding the correlation between straightforward analytical methods and sensory attributes is pivotal for transitioning to sustainable packaging while improving product quality. In this context, the viability of eco-sustainable packaging alternatives for single-packaged croissants has been investigated through examining the correlations between analytical methods, sensory attributes, employing quantitative descriptive analysis (QDA), and consumer survival analysis. The performance of biaxially oriented polypropylene (BOPP), a petrochemical plastic film, against paper-based, compostable, and biodegradable films over a 150-day croissant storage period was compared in this study, examining both physiochemical and sensory perspectives. The results showed a correlation between a lower water vapour barrier in packaging materials and increased moisture migration and croissant hardness, as assessed by the Avrami kinetic model. Notably, given its reduced barrier properties, the compostable film accelerated sensory profile deterioration, as evidenced by QDA results. Shelf-life estimation, assessed by consumer rejection, underscored the viability of the biodegradable film for up to 185 days, surpassing BOPP, paper-based, and other biodegradable alternatives. Using linear regression, physiochemical parameters associated with predicted shelf-life were elucidated. Overall, croissants were rejected by 50% of consumers when they reached humidity levels below 18%, water activity below 0.81, firmness exceeding 1064 N, pH above 4.4, and acidity below 4.5. Based on the results of this study, biodegradable packaging emerges as a promising alternative to traditional BOPP, offering a sustainable opportunity to extend the shelf-life of croissants. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

23 pages, 11604 KiB  
Article
A Fast Forward Modelling Method for Simulating Satellite Observations Using Observing Path Tracking
by Xiaofang Guo, Zongru Yang, Gang Ma, Yi Yu, Peng Zhang and Banglin Zhang
Remote Sens. 2024, 16(6), 1030; https://doi.org/10.3390/rs16061030 - 14 Mar 2024
Viewed by 1381
Abstract
The higher the atmosphere is, the larger the deviations in atmospheric temperature and humidity are between the vertical column atmosphere above the cross-section of a satellite instrument and a ray’s trajectory from the cross-section to the satellite. In general, satellite instruments that observe [...] Read more.
The higher the atmosphere is, the larger the deviations in atmospheric temperature and humidity are between the vertical column atmosphere above the cross-section of a satellite instrument and a ray’s trajectory from the cross-section to the satellite. In general, satellite instruments that observe using cross-orbit scanning result in the difference between the observed radiance and the simulations using this method becoming incrementally larger and larger as the cross-section moves to the edge of the satellite’s orbit. The deviations depend on the distance from the column to the ray trajectory and on the horizontal gradient of variables in the distance. In fact, the horizontal gradient of water vapour is larger than the gradient of temperature in clear scenarios, which could introduce an impact of temperature and water vapour on the simulated radiance of a satellite. In this study, a new method to simulate upgoing and downgoing radiation synchronously was developed, using the observing path tracking method. The conventional vertical initial atmospheric profile (Exp.1) and the profiles along the upgoing and downgoing rays of the satellite’s observation (Exp.2) were established, in order to simulate the observed radiance of MWHS-II of FY-3D using global numerical forecasts with resolutions of 15 km and 25 km. The results showed that, for channels in the oxygen and water vapour absorption line on the microwave spectrum, deviations of the two atmospheric profiles were larger at the scan edge (0.01 K) than those at the nadir (0.001 K), and were larger in the upper atmosphere than in the lower atmosphere. The deviation was usually negative in low-latitude regions and was positive in southern high-latitude regions. Such results were obtained in experiments using both the numerical forecast method with 15 km grids and the forecast method with 25 km grids. Deviations were analysed for representative channels at 118 GHz and 183 GHz. Then, the results indicated that bigger deviations between the two experiments were observed in the water vapour absorption line than in the oxygen absorption line in the microwave spectrum. In conclusion, this indicates that, because of the greater horizontal gradient of water vapour, the stronger localisation of water vapour makes the atmospheric profile along the satellite’s observing ray have more increments in the simulated radiance at the scan edge, compared to the atmospheric column profile. Full article
(This article belongs to the Special Issue Advancements in Microwave Radiometry for Atmospheric Remote Sensing)
Show Figures

Figure 1

18 pages, 2653 KiB  
Article
Quantifying Raindrop Evaporation Deficit in General Circulation Models from Observed and Model Rain Isotope Ratios on the West Coast of India
by Saikat Sengupta, Sourendra Kumar Bhattacharya, Nimya Sheena Sunil and Sumit Sonar
Atmosphere 2023, 14(7), 1147; https://doi.org/10.3390/atmos14071147 - 14 Jul 2023
Cited by 1 | Viewed by 1955
Abstract
Raindrop evaporation is an important sub-cloud process that modifies rainfall amount and rainwater isotope values. Earlier studies have shown that various general circulation models (GCMs) do not incorporate this process properly during the simulation of water isotope ratios (oxygen and hydrogen). Our recent [...] Read more.
Raindrop evaporation is an important sub-cloud process that modifies rainfall amount and rainwater isotope values. Earlier studies have shown that various general circulation models (GCMs) do not incorporate this process properly during the simulation of water isotope ratios (oxygen and hydrogen). Our recent study has demonstrated that an inadequate estimation of this process for the Indian Summer Monsoon (ISM) results in significant biases (model-observed values) in the simulation of various GCMs on a monthly scale. However, a quantitative estimation was lacking. The magnitude of raindrop evaporation depends upon ambient humidity and temperature, which vary considerably during the ISM. Consequently, the isotope biases would also vary over various time scales. The present study aims to investigate the magnitude of the monthly scale variation in raindrop evaporation in the simulations and its causal connection with the corresponding variation in isotope biases. Towards this, we compare an 11-year-long (1997–2007) dataset of rain isotope ratios (both oxygen and hydrogen) from an Indian station, Kozhikode (Kerala), obtained under the Global Network of Isotopes in Precipitation (GNIP) programme of the International Atomic Energy Agency (IAEA) with the corresponding outputs of two isotope-enabled nudged GCMs—ISOGSM and LMDZ4. The raindrop evaporation fractions are estimated for 44 ISM months (June–September) of the study period using the Stewart (1975) formalism. Using a simple condensation–accretion model based on equilibrium fractionation from vapour, obtained from two adopted vapour isotope profiles, we estimate the liquid water isotope ratios at the cloud base. Considering this water as the initial rain, the raindrop evaporation fractions are estimated using the observed oxygen and hydrogen isotope ratios of Kozhikode surface rain samples. The estimated fractions show strong positive correlations with the isotope biases (R2 = 0.60 and 0.66). This suggests that lower estimates of raindrop evaporation could be responsible for the rain isotope biases in these two GCMs. Full article
(This article belongs to the Section Meteorology)
Show Figures

Graphical abstract

15 pages, 1573 KiB  
Review
‘Follow the Water’: Microbial Water Acquisition in Desert Soils
by Don A Cowan, S. Craig Cary, Jocelyne DiRuggiero, Frank Eckardt, Belinda Ferrari, David W. Hopkins, Pedro H. Lebre, Gillian Maggs-Kölling, Stephen B. Pointing, Jean-Baptiste Ramond, Dana Tribbia and Kimberley Warren-Rhodes
Microorganisms 2023, 11(7), 1670; https://doi.org/10.3390/microorganisms11071670 - 27 Jun 2023
Cited by 4 | Viewed by 3506
Abstract
Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are [...] Read more.
Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions. It, therefore, follows that other, less obvious sources of water may sustain the microbial cellular and community functionality in desert soil niches. Such sources include a range of precipitation and condensation processes, including rainfall, snow, dew, fog, and nocturnal distillation, all of which may vary quantitatively depending on the location and geomorphological characteristics of the desert ecosystem. Other more obscure sources of bioavailable water may include groundwater-derived water vapour, hydrated minerals, and metabolic hydro-genesis. Here, we explore the possible sources of bioavailable water in the context of microbial survival and function in xeric desert soils. With global climate change projected to have profound effects on both hot and cold deserts, we also explore the potential impacts of climate-induced changes in water availability on soil microbiomes in these extreme environments. Full article
Show Figures

Figure 1

17 pages, 5459 KiB  
Article
Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract
by Ngoc-Thang Nguyen, Tien-Hieu Vu and Van-Huan Bui
Polymers 2023, 15(12), 2634; https://doi.org/10.3390/polym15122634 - 9 Jun 2023
Cited by 12 | Viewed by 3580
Abstract
Leather is often used to make comfortable shoes due to its soft and breathable nature. However, its innate ability to retain moisture, oxygen and nutrients renders it a suitable medium for the adsorption, growth, and survival of potentially pathogenic microorganisms. Consequently, the intimate [...] Read more.
Leather is often used to make comfortable shoes due to its soft and breathable nature. However, its innate ability to retain moisture, oxygen and nutrients renders it a suitable medium for the adsorption, growth, and survival of potentially pathogenic microorganisms. Consequently, the intimate contact between the foot skin and the leather lining surface in shoes, which are subject to prolonged periods of sweating, may result in the transmission of pathogenic microorganisms and cause discomfort for the wearer. To address such issues, we modified pig leather with silver nanoparticles (AgPBL) that were bio-synthesized from Piper betle L. leaf extract as an antimicrobial agent via the padding method. The evidence of AgPBL embedded into the leather matrix, leather surface morphology and element profile of AgPBL-modified leather samples (pLeAg) was investigated using colorimetry, SEM, EDX, AAS and FTIR analyses. The colorimetric data confirmed that the pLeAg samples changed to a more brown color with higher wet pickup and AgPBL concentration, owing to the higher quantity of AgPBL uptake onto the leather surfaces. The antibacterial and antifungal activities of the pLeAg samples were both qualitatively and quantitatively evaluated using AATCC TM90, AATCC TM30 and ISO 16187:2013 test methods, approving a good synergistic antimicrobial efficiency of the modified leather against Escherichia coli and Staphylococcus aureus bacteria, a yeast Candida albicans and a mold Aspergillus niger. Additionally, the antimicrobial treatments of pig leather did not negatively impact its physico-mechanical properties, including tear strength, abrasion resistance, flex resistance, water vapour permeability and absorption, water absorption and desorption. These findings affirmed that the AgPBL-modified leather met all the requirements of upper lining according to the standard ISO 20882:2007 for making hygienic shoes. Full article
Show Figures

Figure 1

26 pages, 11841 KiB  
Article
Towards Space Deployment of the NDSA Concept for Tropospheric Water Vapour Measurements
by Luca Facheris, Andrea Antonini, Fabrizio Argenti, Flavio Barbara, Ugo Cortesi, Fabrizio Cuccoli, Samuele Del Bianco, Federico Dogo, Arjan Feta, Marco Gai, Anna Gregorio, Giovanni Macelloni, Agnese Mazzinghi, Samantha Melani, Francesco Montomoli, Alberto Ortolani, Luca Rovai, Luca Severin and Tiziana Scopa
Atmosphere 2023, 14(3), 550; https://doi.org/10.3390/atmos14030550 - 14 Mar 2023
Viewed by 2079
Abstract
A novel measurement concept specifically tuned to monitoring tropospheric water vapour’s vertical distribution has been demonstrated on a theoretical basis and is currently under development for space deployment. The NDSA (Normalised Differential Spectral Attenuation) technique derives the integrated water vapour (IWV) along the [...] Read more.
A novel measurement concept specifically tuned to monitoring tropospheric water vapour’s vertical distribution has been demonstrated on a theoretical basis and is currently under development for space deployment. The NDSA (Normalised Differential Spectral Attenuation) technique derives the integrated water vapour (IWV) along the radio link between a transmitter and a receiver carried by two LEO satellites, using the linear correlation between the IWV and a parameter called spectral sensitivity. This is the normalised incremental ratio of the spectral attenuation at two frequencies in the Ku and K bands, with the slope of the water vapour absorption line at 22.235 GHz. Vertical profiles of WV can be retrieved by inverting a set of IWV measurements acquired in limb geometry at different tangent altitudes. This paper provides a comprehensive insight into the NDSA approach for sounding lower tropospheric WV, from the theoretical investigations in previous ESA studies, to the first experimental developments and testing, and to the latest advancements achieved with the SATCROSS project of the Italian Space Agency. The focus is on the new results from SATCROSS activities; primarily, on the upgrading of the instrument prototype, with improved performance in terms of its power stability and the time resolution of the measurements. Special emphasis is also placed on discussing tomographic inversion methods capable of retrieving tropospheric WV content from IWV measurements, i.e., the least squares and the external reconstruction approaches, showing results with different spatial features when applied to a given atmospheric scenario. The ultimate goal of deploying the NDSA measurement technique from space is thoroughly examined and conclusions are drawn after presenting the results of an Observing System Simulation Experiment conducted to assess the impact of NDSA data assimilation on environmental model simulations. Full article
(This article belongs to the Special Issue Advanced Technologies in Satellite Observations)
Show Figures

Figure 1

12 pages, 4562 KiB  
Communication
Observation of an Extremely Dry Atmospheric Air Column above Bern
by Klemens Hocke and Wenyue Wang
Climate 2023, 11(3), 63; https://doi.org/10.3390/cli11030063 - 10 Mar 2023
Viewed by 1962
Abstract
The water vapour column density or vertically integrated water vapour (IWV) ranges from about 8 mm in winter to about 25 mm in summer in Bern, Switzerland. However, there can be day episodes when IWV drops to 2 mm or even less so [...] Read more.
The water vapour column density or vertically integrated water vapour (IWV) ranges from about 8 mm in winter to about 25 mm in summer in Bern, Switzerland. However, there can be day episodes when IWV drops to 2 mm or even less so that the atmosphere is extremely dry. We selected an event in February 2021 when the tropospheric water radiometer TROWARA measured a mean IWV value of about 1.5 ± 0.2 mm for a time interval of about one day in Bern. The ECMWF reanalysis ERA5 indicated a slightly higher IWV value of about 2.2 ± 0.4 mm where the uncertainty is the standard deviation of IWV during the time of IWV depression. The ERA5 profiles of relative humidity and specific humidity during this episode are reduced by 50% and more compared to the monthly mean profiles. On a global map, it can be seen that Bern is within a mesoscale dry region on that day with descending wind. Back trajectory analysis gives the result that the dry air masses in Bern came from the North and the trajectories are descending in altitude so that dry air from the mid troposphere came into the lower troposphere. These descending air masses from the North explain the minimum of IWV observed in Bern on 13–14 February 2021. The surface climate in Switzerland was dominated by a cold wave at that time. At the same time, severe cold waves occurred in Greece and Northern America. Full article
(This article belongs to the Special Issue Climate: 10th Anniversary)
Show Figures

Figure 1

22 pages, 20383 KiB  
Article
Evaluation and Global-Scale Observation of Nitrous Oxide from IASI on Metop-A
by Rémi Chalinel, Jean-Luc Attié, Philippe Ricaud, Jérôme Vidot, Yannick Kangah, Didier Hauglustaine and Rona Thompson
Remote Sens. 2022, 14(6), 1403; https://doi.org/10.3390/rs14061403 - 14 Mar 2022
Cited by 2 | Viewed by 3798
Abstract
Nitrous oxide (N2O) is a greenhouse gas difficult to estimate by satellite because of its weak spectral signature in the infra-red band and its low variability in the troposphere. Nevertheless, this study presents the evaluation of new tropospheric N2O [...] Read more.
Nitrous oxide (N2O) is a greenhouse gas difficult to estimate by satellite because of its weak spectral signature in the infra-red band and its low variability in the troposphere. Nevertheless, this study presents the evaluation of new tropospheric N2O observations from the Infrared Atmospheric Sounder Interferometer (IASI) on Metop-A using the Toulouse N2O Retrieval Version 2.0 tool. This tool is based on the Radiative Transfer for Tiros Operational Vertical sounder (RTTOV) model version 12.3 coupled to the Levenberg-Marquardt optimal estimation method enabling the simultaneous retrieval of methane, water vapour, temperature profiles together with surface temperature and emissivity within the 1240–1350 cm1 window. In this study, we focused on the upper troposphere (300 hPa) where the sensitivity of IASI is significant. The IASI N2O data has been evaluated using aircraft N2O observations from the High-performance Instrumented Airborne Platform for Environmental Research Pole-to-Pole Observations (HIPPO) campaigns in 2009, 2010, and 2011 and from the National Oceanic and Atmospheric Administration’s (NOAA) Global Greenhouse Gas Reference Network (GGGRN) in 2011. In addition, we evaluated the IASI N2O using ground-based N2O measurements from 9 stations belonging to the Network for the Detection of Atmospheric Composition Change (NDACC). We found a total random error of ∼2 ppbv (0.6%) for one single retrieval at 300 hPa. Under favorable conditions, this error is also found in the vertical level pressure range 300–500 hPa. It decreases rapidly to ∼0.4 ppbv (0.1%) when we average on a 1° × 1° box. In addition, independent observations allows the estimation of bias with the IASI TN2OR v2.0 N2O. The bias between IASI and aircraft N2O data at 300 hPa is ∼1.0 ppbv (∼0.3%). We found an estimated random error of ∼2.3 ppbv (∼0.75%). This study also shows relatively high correlations between IASI data and aircraft in situ profiles but more varying correlations over the year 2011 depending on the location between IASI and NDACC remote sensing data. Finally, we present daily, monthly, and seasonal IASI N2O horizontal distributions in the upper troposphere as well as cross sections for different seasons that exhibit maxima in the Tropical band especially over Africa and South America. Full article
(This article belongs to the Special Issue Advances in Infrared Observation of Earth's Atmosphere)
Show Figures

Figure 1

15 pages, 3813 KiB  
Article
Geothermal Energy Potential for Cooling/Heating Greenhouses in Hot Arid Regions
by Ibrahim Al-Helal, Abdullah Alsadon, Samy Marey, Abdullah Ibrahim, Mohamed Shady and Ahmed Abdel-Ghany
Atmosphere 2022, 13(1), 105; https://doi.org/10.3390/atmos13010105 - 10 Jan 2022
Cited by 18 | Viewed by 4439
Abstract
In arid regions, drastic seasonal variations in the climatic parameters are common; thus, a high potential of geothermal effects for heating/cooling applications is expected. However, such applications are very limited in these regions due to the lack of information about underground temperature profiles [...] Read more.
In arid regions, drastic seasonal variations in the climatic parameters are common; thus, a high potential of geothermal effects for heating/cooling applications is expected. However, such applications are very limited in these regions due to the lack of information about underground temperature profiles of the surface and shallow zones. Therefore, this study aims to (i) measure the underground temperature profile for one year to determine the optimum depth for burying EAHE pipes; (ii) examine the possibility of water vapour condensation occurring in the buried EAHE pipes, if the air let into the pipes was humid; and (iii) quantify the maximum cooling/heating capacity, if an EAHE was implemented. The results show that a 3-m depth is optimal to bury EAHE pipes, where the ground temperature is 32 °C in the summer and 29 °C in the winter. These temperatures would provide a maximum cooling/heating capacity of 1000/890 MJ day−1 for each 1 m3 of humid air exhausted from a greenhouse. If the EAHE were to operate in a closed loop with a greenhouse, the condensation of water vapour in the EAHE pipes would be impossible during the cooling process. The results of this study are useful for designers using geothermal effects for indoor space cooling and heating in arid regions. Full article
(This article belongs to the Special Issue Advanced Climate Simulation and Observation)
Show Figures

Figure 1

18 pages, 7571 KiB  
Article
On the Use of Sap Flow Measurements to Assess the Water Requirements of Three Australian Native Tree Species
by Xi Sun, Jie Li, Donald Cameron and Gregory Moore
Agronomy 2022, 12(1), 52; https://doi.org/10.3390/agronomy12010052 - 27 Dec 2021
Cited by 23 | Viewed by 5567
Abstract
The measurement of sap movement in xylem sapwood tissue using heat pulse velocity sap flow instruments has been commonly used to estimate plant transpiration. In this study, sap flow sensors (SFM1) based on the heat ratio method (HRM) were used to assess the [...] Read more.
The measurement of sap movement in xylem sapwood tissue using heat pulse velocity sap flow instruments has been commonly used to estimate plant transpiration. In this study, sap flow sensors (SFM1) based on the heat ratio method (HRM) were used to assess the sap flow performance of three different tree species located in the eastern suburbs of Melbourne, Australia over a 12-month period. A soil moisture budget profile featuring potential evapotranspiration and precipitation was developed to indicate soil moisture balance while the soil-plant-atmosphere continuum was examined at the study site using data obtained from different monitoring instruments. The comparison of sap flow volume for the three species clearly showed that the water demand of Corymbia maculata was the highest when compared to Melaleuca styphelioides and Lophostemon confertus and the daily sap flow volume on the north side of the tree on average was 63% greater than that of the south side. By analysing the optimal temperature and vapour pressure deficit (VPD) for transpiration for all sampled trees, it was concluded that the Melaleuca styphelioides could better cope with hotter and drier weather conditions. Full article
(This article belongs to the Special Issue Molecular Genetic Improvement of Crop Drought Tolerance)
Show Figures

Figure 1

12 pages, 2917 KiB  
Article
Characteristic Decrease in the Value of Rapeseed Evapotranspiration after Its Ripening
by Jacek Leśny, Leszek Kuchar, Monika Panfil, Dmitri V. Vinogradov and Ewa Dragańska
Agronomy 2021, 11(12), 2523; https://doi.org/10.3390/agronomy11122523 - 13 Dec 2021
Cited by 5 | Viewed by 2342
Abstract
This paper presents the methodology of taking measurements of active surface energy balance components using the Bowen method. It discusses the applied measurement system, an important part of which are HMD 50U/50Y measurement sensors from Vaisala, adapted to work in the field. Their [...] Read more.
This paper presents the methodology of taking measurements of active surface energy balance components using the Bowen method. It discusses the applied measurement system, an important part of which are HMD 50U/50Y measurement sensors from Vaisala, adapted to work in the field. Their operation is a source of data for determining vertical profiles of temperature and water vapour pressure. These data are used to determine the turbulence components of the energy balance, i.e., sensible and latent heat. Measurements taken during the vegetative season on rape field showed that intensive evaporation occurred in the period until the end of June and that its decrease coincided with the decrease in the value of the degree of plant development determined on the basis of LAI records. In spring, during the period of intensive plant development, the decade sums of evaporation reached 30 mm, after which their quantities fell to the range of 10–15 mm. They became higher only in the periods of precipitation, when the water from the interception was available. Full article
Show Figures

Figure 1

22 pages, 13490 KiB  
Article
Evaluation of a Prototype Broadband Water-Vapour Profiling Differential Absorption Lidar at Cardington, UK
by Catherine Gaffard, Zhihong Li, Dawn Harrison, Raisa Lehtinen and Reijo Roininen
Atmosphere 2021, 12(11), 1521; https://doi.org/10.3390/atmos12111521 - 18 Nov 2021
Cited by 6 | Viewed by 2418
Abstract
For a one-month period in summer 2020, a prototype Vaisala broadband differential absorption lidar (BB-DIAL) was deployed at a Met Office research site. It was compared with in-situ observations of humidity (93 radiosonde ascents and 27 of uncrewed aerial vehicle flights) and the [...] Read more.
For a one-month period in summer 2020, a prototype Vaisala broadband differential absorption lidar (BB-DIAL) was deployed at a Met Office research site. It was compared with in-situ observations of humidity (93 radiosonde ascents and 27 of uncrewed aerial vehicle flights) and the Met Office 1.5 km resolution numerical weather prediction (NWP) model: UK Variable resolution model (UKV). The BB-DIAL was able to collect data up to the cloud base, in all-weather situations including rain, when it was possible to reach 3 km. The average maximum height was 1300 m, with 75% of the data reaching 1000 m and 35% extending to 1500 m. Compared with radiosondes, the standard deviation for the water vapour is between 5% and 10%. The comparison with the UKV is very encouraging, with a correlation of 0.90. The error against the radiosonde is smaller than against the UKV, which is encouraging for assimilation the BB-DIAL data in UKV. Some data quality issues, such as an increase in error and variable bias in the region of overlap between the far field and close field, spurious oscillations and an unrealistic dry layer above fog are identified. Despite these issues, the overall results from this assessment are promising in terms of potential benefit, instrument reliability and capturing significant humidity changes in the boundary layer. Full article
Show Figures

Figure 1

11 pages, 1875 KiB  
Article
Risk of Using Capillary Active Interior Insulation in a Cold Climate
by David Antolinc, Katarina Černe and Zvonko Jagličić
Energies 2021, 14(21), 6890; https://doi.org/10.3390/en14216890 - 20 Oct 2021
Cited by 6 | Viewed by 2509
Abstract
The retrofitting of cultural heritage buildings for energy efficiency often requires the internal thermal insulation of external walls. Most of the in situ studies of capillary active interior insulation were performed in mild oceanic climate regions, and they showed an excellent performance. However, [...] Read more.
The retrofitting of cultural heritage buildings for energy efficiency often requires the internal thermal insulation of external walls. Most of the in situ studies of capillary active interior insulation were performed in mild oceanic climate regions, and they showed an excellent performance. However, as a large part of Central–Eastern Europe belongs to a continental climate with cold winters and long periods of temperatures below the freezing temperature, the applicability of the capillary active interior insulation in cold climate was studied. The hydrothermal behaviour of the three walls was determined—each consists of one of three different interior insulations—and the original wall is made of historic regular solid bricks. Two interior thermal insulations were capillary active (aerated cellular concrete, calcium silicate) and one vapour-tight (glass foam). A hot box–cold box experiment and a steady-state model were used to demonstrate an increase in the original wall mass due to the water condensation only when the capillary active interior insulation is used. The combination of the water condensation and the low sub-zero temperature may lead to a risk of freeze–thaw damage to the original wall. The numerical simulation of the water vapour condensation for the considered walls for the Slovenian town Bled with sub-zero average winter temperatures was performed to obtain the whole temperature and moisture profile. It showed good agreement between an experimentally and numerically obtained amount of water condensation. The capillary active interior insulation proved to be unsuitable for improving the thermal insulation of buildings in cold continental climate, and only a vapour-tight system can be recommended. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

Back to TopTop