Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (159)

Search Parameters:
Keywords = water table variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Viewed by 460
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

20 pages, 4028 KiB  
Article
Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions
by Tayyab Zafar, Muhammad Saeed Zafar and Maryam Hojati
Materials 2025, 18(14), 3327; https://doi.org/10.3390/ma18143327 - 15 Jul 2025
Viewed by 344
Abstract
This study investigates the feasibility of pumice-based internal curing based on the 3D printability of engineered cementitious composites (ECCs) for water-scarce environments and arid regions. Natural river sand was partially replaced with the presoaked pumice lightweight aggregates (LWAs) at two different levels, 30% [...] Read more.
This study investigates the feasibility of pumice-based internal curing based on the 3D printability of engineered cementitious composites (ECCs) for water-scarce environments and arid regions. Natural river sand was partially replaced with the presoaked pumice lightweight aggregates (LWAs) at two different levels, 30% and 60% by volume, and 50% of the cement was replaced with slag to enhance sustainability. Furthermore, 2% polyethylene (PE) fibers were used to improve the mechanical characteristics and 1% methylcellulose (MC) was used to increase the rheological stability. Pumice aggregates, presoaked for 24 h, were used as an internal curing agent to assess their effect on the printability. Three ECC mixes, CT-PE2-6-10 (control), P30-PE2-6-10 (30% pumice), and P60-PE2-6-10 (60% pumice), were printed using a 3D gantry printing system. A flow table and rheometer were used to evaluate the flowability and rheological properties. Extrudability was measured in terms of dimensional consistency and the coefficient of variation (CV%) to evaluate printability, whereas buildability was determined in terms of the maximum number of layers stacked before failure. All of the mixes met the extrudability criterion (CV < 5%), with P30-PE2-6-10 demonstrating superior printing quality and buildability, having 16 layers, which was comparable with the control mix that had 18 layers. Full article
Show Figures

Figure 1

21 pages, 5234 KiB  
Article
Effects of Variations in Water Table Orientation on LNAPL Migration Processes
by Huiming Yu, Qingqing Guan, Xianju Zhao, Hongguang He, Li Chen and Yuan Gao
Water 2025, 17(13), 1989; https://doi.org/10.3390/w17131989 - 2 Jul 2025
Viewed by 289
Abstract
Light non-aqueous phase liquids (LNAPLs) are significant groundwater contaminants whose migration in aquifers is governed by dynamic groundwater level fluctuations. This study establishes a multiphase flow coupling model integrating hydraulic, gaseous, LNAPL, and chemical fields, utilizing continuous multi-point water level data to quantify [...] Read more.
Light non-aqueous phase liquids (LNAPLs) are significant groundwater contaminants whose migration in aquifers is governed by dynamic groundwater level fluctuations. This study establishes a multiphase flow coupling model integrating hydraulic, gaseous, LNAPL, and chemical fields, utilizing continuous multi-point water level data to quantify water table orientation variations. Key findings demonstrate that (1) LNAPL migration exhibits directional dependence on water table orientation: flatter gradients reduce migration rates, while steeper gradients accelerate movement. (2) Saturation dynamics correlate with gradient steepness, showing minimal variation under flattened gradients but significant fluctuations under steeper conditions. (3) Water table reorientation induces vertical mixing, homogenizing temperature distributions near the interface. (4) Dissolution and volatilization rates of LNAPLs decrease progressively with water table fluctuations. These results elucidate the critical role of hydraulic gradient dynamics in controlling multiphase transport mechanisms at LNAPL-contaminated sites, providing insights for predictive modeling and remediation strategies. Full article
Show Figures

Figure 1

19 pages, 5422 KiB  
Article
Influence of Shaking Sequence on Liquefaction Resistance and Shear Modulus of Sand Through Shaking Table Tests
by Roohollah Farzalizadeh, Abdolreza Osouli and Prabir K. Kolay
Geosciences 2025, 15(7), 235; https://doi.org/10.3390/geosciences15070235 - 20 Jun 2025
Viewed by 351
Abstract
Case histories have shown that the liquefaction behavior of soils can differ depending on the pre-seismic history of sites. Assessing the shear modulus in soils subjected to seismic events is critical for advancing the fundamental understanding of soil behavior and enhancing the accuracy [...] Read more.
Case histories have shown that the liquefaction behavior of soils can differ depending on the pre-seismic history of sites. Assessing the shear modulus in soils subjected to seismic events is critical for advancing the fundamental understanding of soil behavior and enhancing the accuracy of soil modeling applications. This paper aims to study the effect of small and large pre-shaking sequences on the liquefaction resistance and shear modulus of sand through shaking table tests. The experimental results indicated that small shakings increase liquefaction resistance and shear modulus. Although large shakings leading to liquefaction cause significant densification, they significantly reduce the liquefaction resistance and shear modulus of sand at shallow depths due to the upward water flow during excess pore water pressure dissipation. The high upward flow of water during liquefaction changes the soil structure and increases the horizontal displacement of densified soil in the subsequent shaking. The amplification factor of acceleration was found to be primarily influenced by the excess pore water pressure generated in the soil instead of its relative density at the start of shaking. This paper presents the variations in Ru with shear strain and the relationship between a normalized shear modulus and shear strain considering the pre-shaking history of sand for shallow depths. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering and Geohazard Prevention)
Show Figures

Figure 1

16 pages, 2426 KiB  
Article
Seasonal Distribution of Microbial Community and n-Alkane Functional Genes in Diesel-Contaminated Groundwater: Influence of Water Table Fluctuation
by Xuefeng Xia, Wenjuan Jia, Kai Wang and Aizhong Ding
Water 2025, 17(11), 1710; https://doi.org/10.3390/w17111710 - 4 Jun 2025
Viewed by 444
Abstract
Water table fluctuation alters environment properties and n-alkane transformation, leading to shifts in the groundwater microbial community and functions. A diesel-contaminated aquifer column experiment of seasonal water table fluctuation was designed to explore the mechanisms. Temporal changes in geochemical parameters, n-alkane concentration, bacterial [...] Read more.
Water table fluctuation alters environment properties and n-alkane transformation, leading to shifts in the groundwater microbial community and functions. A diesel-contaminated aquifer column experiment of seasonal water table fluctuation was designed to explore the mechanisms. Temporal changes in geochemical parameters, n-alkane concentration, bacterial community and functional gene composition were investigated. The results showed that water table fluctuation accelerated the depletion of the diesel n-alkane leakage point. Owing to the variations in the water table, the electron donors (dissolved organic carbon) and electron acceptors (dissolved oxygen, nitrate and sulfate) underwent regular changes, and the bacterial community structure was altered. Dissolved oxygen was the major parameter correlating with the abundance of aerobic functional genes (the sum of the alk_A, alk_R and alk_P) and was beneficial for enhancing the aerobic biodegradation function potential of n-alkanes. However, the static retention of the water table at the highest level inducing water saturation and hypoxia was the critical factor influencing the abundance of anaerobic functional genes (the sum of assA and mcrA) and was favorable for the anaerobic biodegradation function potential of n-alkane. Overall, this study links seasonal water table dynamics to n-alkane biodegradation function potential in aquifers, and suggests that the quality of recharge water, which impacts microbial community assembly and function, should be considered. Full article
(This article belongs to the Special Issue Application of Bioremediation in Groundwater and Soil Pollution)
Show Figures

Figure 1

20 pages, 2692 KiB  
Article
Hydraulic Disconnection Between Aquifers: Assessing the Hydrogeologic Controls on Inter-Aquifer Exchange and Induced Recharge in Pumped, Multi-Aquifer Systems
by Kristen E. Cognac and Michael J. Ronayne
Water 2025, 17(11), 1635; https://doi.org/10.3390/w17111635 - 28 May 2025
Viewed by 479
Abstract
Unprecedented, long-term pumping is occurring in aquifers worldwide, necessitating a greater understanding of the impacts from significant water table drawdown. Drawdown-induced hydraulic disconnection can significantly alter rates of inter-aquifer exchange and recharge, yet it remains an understudied phenomenon in multi-aquifer systems. This study [...] Read more.
Unprecedented, long-term pumping is occurring in aquifers worldwide, necessitating a greater understanding of the impacts from significant water table drawdown. Drawdown-induced hydraulic disconnection can significantly alter rates of inter-aquifer exchange and recharge, yet it remains an understudied phenomenon in multi-aquifer systems. This study investigates the potential for drawdown-induced hydraulic disconnection and its impact on inter-aquifer fluxes between a perennially recharged alluvial aquifer and a heavily pumped bedrock aquifer. We employed three-dimensional, transient, variably saturated flow modeling, incorporating multiple realizations of varying sandstone channel fraction (20–75%), to simulate evolving saturation patterns and alluvium-to-bedrock (A-B) flow rates. The results demonstrate the initiation and propagation of inter-aquifer unsaturated zones within sandstone channels underlying thinner low-permeability mudstones, leading to a substantial reduction in A-B flow, with the normalized flow response function (ABRF) decreasing by up to 98%. Complex saturation patterns, dictated by sandstone–mudstone heterogeneity, emerged as controls for water table elevation, disconnection status, and flow pathways. Multiple linear regression (R2 up to 0.88) identified the bedrock aquifer sandstone fraction and the vertical span of saturated, connected channels as significant predictors of maximum A-B flow. Substantial variability in maximum A-B flow rates across scenarios with identical sandstone fractions (coefficient of variation 0.17 to 0.29) demonstrates the impact of geologic heterogeneity and saturation state on inter-aquifer exchange rates. The results of this study illustrate that hydraulic disconnection is not limited to near-surface environments and that geologic heterogeneity is a key factor controlling inter-aquifer fluxes in heavily pumped multi-aquifer systems. Full article
(This article belongs to the Special Issue Groundwater Flow and Transport Modeling in Aquifer Systems)
Show Figures

Figure 1

18 pages, 12080 KiB  
Article
Synergistic Regulation of Soil Salinity and Ion Transport in Arid Agroecosystems: A Field Study on Drip Irrigation and Subsurface Drainage in Xinjiang, China
by Qianqian Zhu, Hui Wang, Honghong Ma, Feng Ding, Wanli Xu, Xiaopeng Ma and Yanbo Fu
Water 2025, 17(9), 1388; https://doi.org/10.3390/w17091388 - 5 May 2025
Viewed by 579
Abstract
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating [...] Read more.
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating surface salinity, often leads to secondary salinization due to elevated water tables and inefficient leaching. Recent studies highlight the potential of integrating drip irrigation with subsurface drainage systems to address these challenges, yet the synergistic mechanisms governing ion transport dynamics, hydrochemical thresholds, and their interaction with crop physiology remain poorly understood. In this study, we analyzed the effects of spring irrigation during the non-fertile period, soil hydrochemistry variations, and salt ion dynamics across three arid agroecosystems in Xinjiang. By coupling drip irrigation with optimized subsurface drainage configurations (burial depths: 1.4–1.6 m; lateral spacing: 20–40 m), we reveal a layer-domain differentiation in salt migration, Cl and Na+ were leached to 40–60 cm depths, while SO42− formed a “stagnant salt layer” at 20–40 cm due to soil colloid adsorption. Post-irrigation hydrochemical shifts included a 40% decline in conductivity, emphasizing the risk of adsorbed ion retention. Subsurface drainage systems suppressed capillary-driven salinity resurgence, maintaining salinity at 8–12 g·kg−1 in root zones during critical growth stages. This study establishes a “surface suppression–middle blocking–deep leaching” three-dimensional salinity control model, providing actionable insights for mitigating secondary salinization in arid agroecosystems. Full article
(This article belongs to the Special Issue Advanced Technologies in Agricultural Water-Saving Irrigation)
Show Figures

Figure 1

27 pages, 7784 KiB  
Article
Machine Learning-Driven Groundwater Potential Zoning Using Geospatial Analytics and Random Forest in the Pandameru River Basin, South India
by Ravi Kumar Pappaka, Anusha Boya Nakkala, Pradeep Kumar Badapalli, Sakram Gugulothu, Ramesh Anguluri, Fahdah Falah Ben Hasher and Mohamed Zhran
Sustainability 2025, 17(9), 3851; https://doi.org/10.3390/su17093851 - 24 Apr 2025
Cited by 4 | Viewed by 980
Abstract
The Pandameru River Basin, South India, is affected by high levels of contamination from human activities and the over-exploitation of groundwater for agriculture, both of which pose significant threats to water quality and its availability for drinking and irrigation. To explore sustainable groundwater [...] Read more.
The Pandameru River Basin, South India, is affected by high levels of contamination from human activities and the over-exploitation of groundwater for agriculture, both of which pose significant threats to water quality and its availability for drinking and irrigation. To explore sustainable groundwater management, this study presents a machine learning-driven approach to basin-scale groundwater potential zone (GWPZ) mapping by integrating remote sensing (RS), a geographic information system (GIS), and the random forest (RF) algorithm. The research leverages ten thematic layers—including lithology, geomorphology, soil type, lineament density, slope, drainage density, land use/land cover (LULC), NDVI, SAVI, and rainfall—to assess groundwater availability. The RF model, trained with well-distributed groundwater data, provides an optimized classification of GWPZs into five categories: very good (5.84%), good (15.21%), moderate (27.25%), poor (27.22%), and very poor (24.47%). The results indicate that excellent groundwater zones are predominantly located along highly permeable alluvial deposits, whereas low-potential zones coincide with impermeable geological formations and steep terrains. Field validation using piezometric readings and well data confirmed significant variations in water table depths, ranging from 5 m to over 150 m. The groundwater potential map achieved an accuracy of 86%, underscoring the effectiveness of the RF model in predicting groundwater availability. This high-precision mapping technique enhances decision-making for sustainable groundwater management, supporting long-term water conservation, equitable resource allocation, and climate-resilient water strategies. By providing reliable insights into groundwater distribution, this study contributes to the sustainable utilization of groundwater resources in semiarid regions, aiding policymakers and planners in mitigating water scarcity challenges and ensuring water security for future generations. Full article
Show Figures

Figure 1

43 pages, 26833 KiB  
Article
Estimation of Infiltration Parameters for Groundwater Augmentation in Cape Town, South Africa
by Kgomoangwato Paul Mavundla, John Okedi, Denis Kalumba and Neil Philip Armitage
Hydrology 2025, 12(4), 87; https://doi.org/10.3390/hydrology12040087 - 13 Apr 2025
Viewed by 868
Abstract
In early 2018, Cape Town, South Africa, experienced severe water shortages during the worst drought in nearly a century (2015–2017), underscoring the need to diversify water resources, including groundwater. This study evaluated infiltration rates and hydraulic properties of three representative stormwater ponds in [...] Read more.
In early 2018, Cape Town, South Africa, experienced severe water shortages during the worst drought in nearly a century (2015–2017), underscoring the need to diversify water resources, including groundwater. This study evaluated infiltration rates and hydraulic properties of three representative stormwater ponds in the Zeekoe Catchment, Cape Town, to assess their feasibility as recharge basins for transferring detained stormwater runoff into the underlying aquifer. Field infiltration data were analysed to estimate hydraulic properties, while laboratory permeability tests and material classification on 36 soil samples provided inputs for numerical modelling using HYDRUS 2-D software. Simulations estimated recharge rates and indicated wetting front movement from pond surfaces to the water table (~5.5 m depth) ranged between 15 and 140 h. The results revealed field hydraulic conductivity values of 0.3 to 19.9 cm/h, with laboratory estimates up to 103% higher due to controlled conditions. Simulated infiltration rates were 67–182% higher than field measurements, attributed to idealised assumptions. Despite these variations, ponds in the central catchment exhibited the highest infiltration rates, indicating suitability for artificial recharge. Explicit recognition of pond-specific infiltration variability significantly contributes to informed urban water security planning, enabling targeted interventions to optimise groundwater recharge initiatives. Full article
Show Figures

Figure 1

21 pages, 10040 KiB  
Article
An Experimental Study on the Seismic Response of Vertical and Batter Pile Foundations at Coral Sand Sites
by Zhen Huang, Ben Liang, Ziming Xiong, Hao Lu, Minqian Sun and Xiao Guo
J. Mar. Sci. Eng. 2025, 13(4), 640; https://doi.org/10.3390/jmse13040640 - 23 Mar 2025
Viewed by 483
Abstract
Liquefaction and earthquake damage to coral sand sites can cause engineering structure failure. Both testing and analyzing the seismic response characteristics of pile groups on coral sand sites are highly important for the seismic design of engineering structures. To address the lack of [...] Read more.
Liquefaction and earthquake damage to coral sand sites can cause engineering structure failure. Both testing and analyzing the seismic response characteristics of pile groups on coral sand sites are highly important for the seismic design of engineering structures. To address the lack of research on the seismic dynamic response of group pile foundations in coral sand sites, this study analyzes the characteristics of the seismic dynamic response of vertical and batter pile foundations for bridges in coral sand liquefaction foundations via the shaking table model test and investigates the variation patterns of acceleration, excess pore water pressure (EPWP), and the bending moment and displacement of foundations, soil, and superstructures under different vibration intensities. Results show that the excitation wave type significantly affects liquefaction: at 0.1 g of peak acceleration, only high-frequency sine wave tests liquefied, with small EPWP ratios, while at 0.2 g, all tests liquefied. Vertical pile foundations had lower soil acceleration than batter piles due to differences in bearing mechanisms. Before liquefaction, batter piles had smaller EPWP ratios but experienced greater bending moments under the same horizontal force. Overall, batter piles showed higher dynamic stability and anti-tilt capabilities but endured larger bending moments compared to vertical piles in coral sand foundations. In conclusion, batter pile foundations demonstrate superior seismic performance in coral sand sites, offering enhanced stability and resistance to liquefaction-induced failures. Full article
Show Figures

Figure 1

23 pages, 21288 KiB  
Article
Analysis of Detailed Series Based on the Estimation of Hydrogeological Parameters by Indirect Methods Based on Fluvial and Piezometric Fluctuations
by José Luis Herrero-Pacheco, Javier Carrasco and Pedro Carrasco
Water 2025, 17(4), 576; https://doi.org/10.3390/w17040576 - 17 Feb 2025
Viewed by 576
Abstract
Piezometers located near watercourses experiencing periodic fluctuations provide a means to analyse soil properties and derive key hydrogeological parameters through pressure wave transmission analysis, which is affected in amplitude and time (lag). These techniques are invaluable for hydrogeological characterizations, such as assessing pollutant [...] Read more.
Piezometers located near watercourses experiencing periodic fluctuations provide a means to analyse soil properties and derive key hydrogeological parameters through pressure wave transmission analysis, which is affected in amplitude and time (lag). These techniques are invaluable for hydrogeological characterizations, such as assessing pollutant diffusion, conducting construction projects below the water table, and evaluating flood zones. While traditionally applied to study tidal influences in coastal areas, this research introduces their application to channels indirectly affected by tidal oscillations due to downstream confluences with tidal waterways. This innovative approach combines the analysis of tidal barriers with the effects of storms and droughts. This study synthesises findings from an experimental monitoring field equipped with advanced recording technologies, allowing for high-resolution, long-term analysis. The dataset, spanning dry periods, major storms, and channel overflows, offers unprecedented precision and insight into aquifer responses. This study analyses the application of wave transmission calculations using continuous level recording in a river and in observation piezometers. Two methods of analysis are applied to the series generated, one based on the variation in the amplitude and the other based on the phase shift produced by the transmission of the wave through the aquifer, both related to the hydrogeological characteristics of the medium. This study concludes that the determination of the fluctuation period is key in the calculation, being particularly more precise in the analysis of the amplitude than in the analysis of the phase difference, which has led to disparate results in previous studies. The results obtained make it possible to reconstruct and extrapolate real or calculated series of rivers and piezometers as a function of distance from the diffusivity obtained. Using the fluctuation period and diffusivity, it is possible to construct the wave associated with any event based on data from just one river or piezometer. Full article
Show Figures

Figure 1

22 pages, 8248 KiB  
Article
Integrating Water Quality Index and Advanced Geographic Information System for Groundwater Quantity and Quality Mapping: Insights from Islamabad’s Aquifer
by Hina Basharat, Toqeer Ahmed, Sheikh Saeed Ahmad, Muhammad Zahir and Miklas Scholz
Sustainability 2025, 17(4), 1373; https://doi.org/10.3390/su17041373 - 7 Feb 2025
Cited by 3 | Viewed by 2341
Abstract
Groundwater management (quantity and quality) is a pressing concern in Islamabad amid the challenges posed by climate change and urbanization. This study leverages the Water Quality Index (WQI), coupled with advanced remote sensing (RS) and geographic information system (GIS) applications, to provide a [...] Read more.
Groundwater management (quantity and quality) is a pressing concern in Islamabad amid the challenges posed by climate change and urbanization. This study leverages the Water Quality Index (WQI), coupled with advanced remote sensing (RS) and geographic information system (GIS) applications, to provide a comprehensive assessment of groundwater dynamics in the city. Groundwater samples from 40 tube wells were analyzed using standard methods, and spatial distribution patterns of water quality variables were mapped applying an integrated GIS framework. Geological and hydrological data collected from the Capital Development Authority (CDA) supported the mapping of water table depths, bore depths, and water quality features. Key findings revealed significant hydrogeological variations, with sectors G-8, G-7, G-9, and G-11 exhibiting elevated electrical conductivity (EC) levels, peaking at 1054.5 µS/cm, surpassing permissible limits. The WQI indicated excellent to good quality of all the collected samples except one found unfit for drinking. Land use and land cover (LULC) analysis revealed extensive urbanization, exacerbating groundwater contamination risks. This study underscores the interconnectedness of urban growth, geological features, groundwater quality deterioration, and sustainability. The findings provide actionable insights for policymakers and urban planners to mitigate groundwater contamination and ensure sustainable resource management in Islamabad. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

20 pages, 7434 KiB  
Article
Characterizing and Modeling Infiltration and Evaporation Processes in the Shallow Loess Layer: Insight from Field Monitoring Results of a Large Undisturbed Soil Column
by Ye Tan, Fuchu Dai, Zhiqiang Zhao, Cifeng Cheng and Xudong Huang
Water 2025, 17(3), 364; https://doi.org/10.3390/w17030364 - 27 Jan 2025
Viewed by 753
Abstract
Frequent agricultural irrigation events continuously raise the groundwater table on loess platforms, triggering numerous loess landslides and significantly contributing to soil erosion in the Chinese Loess Plateau. The movement of irrigation water within the surficial loess layer is crucial for comprehending the mechanisms [...] Read more.
Frequent agricultural irrigation events continuously raise the groundwater table on loess platforms, triggering numerous loess landslides and significantly contributing to soil erosion in the Chinese Loess Plateau. The movement of irrigation water within the surficial loess layer is crucial for comprehending the mechanisms of moisture penetration into thick layers. To investigate the infiltration and evaporation processes of irrigation water, a large undisturbed soil column with a 60 cm inner diameter and 100 cm height was extracted from the surficial loess layer. An irrigation simulation event was executed on the undisturbed soil column and the ponding infiltration and subsequent evaporation processes were systematically monitored. A ruler placed above the soil column recorded the ponding height during irrigation. Moisture probes and tensiometers were installed at five depths to monitor the temporal variations in volumetric water content (VWC) and matric suction. Additionally, an evaporation gauge and an automatic weighing balance measured the potential and actual evaporation. The results revealed that the initially high infiltration rate rapidly decreased to a stable value slightly below the saturated hydraulic conductivity (Ks). A fitted Mezencev model successfully replicated the ponding infiltration process with a high correlation coefficient of 0.995. The monitored VWC of the surficial 15 cm-thick loess approached a saturated state upon the advancing of the wetting front, while the matric suction sharply decreased from an initial high value of 65 kPa to nearly 0 kPa. The monitored evaporation process of the soil column was divided into an initial constant rate stage and a subsequent decreasing rate stage. During the constant rate stage, the actual evaporation closely matched or slightly exceeded the potential evaporation rate. In the decreasing rate stage, the actual evaporation rate fell below the potential evaporation rate. The critical VWC ranged from 26% to 28%, with the corresponding matric suction recovering to approximately 25 kPa as the evaporation process transitioned between stages. The complete evaporation process was effectively modeled using a fitted Rose model with a high correlation coefficient (R2 = 0.971). These findings provide valuable insights into predicting water infiltration and evaporation capacities in loess layers, thereby enhancing the understanding of water movement within thick loess deposits and the processes driving soil erosion. Full article
(This article belongs to the Special Issue Monitoring and Control of Soil and Water Erosion)
Show Figures

Figure 1

19 pages, 31778 KiB  
Article
Effect of Microsize and Nanosize TiO2 on Porous Mullite-Alumina Ceramic Prepared by Slip Casting
by Ludmila Mahnicka-Goremikina, Maris Rundans, Vadims Goremikins, Ruta Svinka, Visvaldis Svinka, Liga Orlova and Inna Juhnevica
Materials 2024, 17(24), 6171; https://doi.org/10.3390/ma17246171 - 17 Dec 2024
Cited by 1 | Viewed by 796
Abstract
Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha Al2O3, and amorphous SiO2, mainly by a solid-state reaction with the presence of a liquid phase. The [...] Read more.
Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha Al2O3, and amorphous SiO2, mainly by a solid-state reaction with the presence of a liquid phase. The modification of mullite ceramic is achieved by the use of micro- and nanosize TiO2 powders. The phase compositions were measured using an X-ray powder diffraction (XRD) Rigaku Ultima+ (Tokyo, Japan) and microstructures of the sintered specimens were analysed using scanning electron microscopy (SEM) Hitachi TM3000-TableTop (Tokyo, Japan). The shrinkage, bulk density, apparent porosity, and water uptake of the specimens was determined after firing using Archimedes’ principle. The apparent porosity of the modified mullite ceramic is 52–69 ± 1%, water uptake is 33–40 ± 1%, pore size distributions are 0.05–0.8 μm, 0.8–10 μm and 10–1000 μm, and bulk density are variated from 1.15 ± 0.05 to 1.4 ± 0.05 g/cm3. The microsize TiO2 and nanosize TiO2 speed up the mullitisation process and allow the decrease in the quantity used as raw material amorphous SiO2, which was the purpose of the study. The use of nanosize TiO2 additive increases the porosity of such a ceramic, decreasing the bulk density and linear thermal expansion. Full article
Show Figures

Figure 1

17 pages, 4479 KiB  
Article
Climate Change Impact on the Stability of Soil Slopes from a Hydrological and Geotechnical Perspective
by Prodromos N. Psarropoulos, Nikolaos Makrakis and Yiannis Tsompanakis
GeoHazards 2024, 5(4), 1190-1206; https://doi.org/10.3390/geohazards5040056 - 1 Nov 2024
Cited by 2 | Viewed by 3386
Abstract
Climate change (CC) is expected to cause significant changes in weather patterns, leading to extreme phenomena. Specifically, the intensity of precipitation extremes is continuously escalating, even in regions with decreasing average precipitation levels. Given that CC leads to long-term shifts in [...] Read more.
Climate change (CC) is expected to cause significant changes in weather patterns, leading to extreme phenomena. Specifically, the intensity of precipitation extremes is continuously escalating, even in regions with decreasing average precipitation levels. Given that CC leads to long-term shifts in weather patterns and may affect the precipitation characteristics (i.e., frequency, duration, and intensity) directly related to groundwater table fluctuations and soil erosion phenomena, it has the potential to significantly affect soil slope instabilities. In turn, slope stability and the structural integrity of nearby structures and infrastructure will be affected. Accordingly, the present paper focuses on the impact of CC on the geohazard of soil slope instability by considering both hydrological aspects, i.e., the impact on rainfall intensity on the groundwater table and the geotechnical aspects of this complex problem. The findings reveal that the impact of CC on potential slope instabilities can be detrimental or even beneficial, depending on the specific site and water conditions. Therefore, it is essential to do the following: (a) collect all the available data of the area of interest, (b) assess their variations over time, and (c) examine each potentially unstable slope on a case-by-case basis to properly mitigate this geohazard. Full article
(This article belongs to the Special Issue Landslide Research: State of the Art and Innovations)
Show Figures

Figure 1

Back to TopTop