An Experimental Study on the Seismic Response of Vertical and Batter Pile Foundations at Coral Sand Sites
Abstract
:1. Introduction
2. Experimental Methods
2.1. Experimental Design
2.2. Model Foundation Materials
2.3. Bridge Model
2.4. Data Collection
2.5. Exciting Wave Selection
3. Results and Analysis
3.1. Experimental Phenomena
3.2. Acceleration Response
3.3. Pore Water Pressure Response
3.4. Dynamic Bending Moment Response
3.5. Soil Settlement
3.6. Displacement of the Superstructure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, Z.; Ding, X.; Zhang, X.; Ou, Q.; Yang, F.; Zhang, T.; Cao, G. Experimental and numerical investigation of the bearing capacity and deformation behavior of coral sand foundations under shallow footing loads. Ocean Eng. 2024, 310, 118601. [Google Scholar] [CrossRef]
- Wang, X.; Ding, H.; Meng, Q.; Wei, H.; Wu, Y.; Zhang, Y. Engineering characteristics of coral reef and site assessment of hydraulic reclamation in the South China Sea. Constr. Build. Mater. 2021, 300, 124263. [Google Scholar] [CrossRef]
- Chee, S.Y.; Othman, A.G.; Sim, Y.K.; Mat Adam, A.N.; Firth, L.B. Land reclamation and artificial islands: Walking the tightrope between development and conservation. Glob. Ecol. Conserv. 2017, 12, 80–95. [Google Scholar] [CrossRef]
- Song, N.-q.; Wang, N.; Lin, W.-n. Assessment of the impact of artificial island airport reclamation on marine ecosystem health: A case study of the Dalian offshore airport, China. Ocean Coast. Manag. 2022, 226, 106281. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, J.-F.; Wang, R. Influence of geosynthetics reinforcement on liquefaction and post-liquefaction behaviors of calcareous sand. Ocean Eng. 2024, 293, 116598. [Google Scholar] [CrossRef]
- Han, Y.; Zang, Y.; Meng, L.; Wang, Y.; Deng, S.; Ma, Y.; Xie, M. A summary of seismic activities in and around China in 2021. Earthq. Res. Adv. 2022, 2, 100157. [Google Scholar] [CrossRef]
- Ma, W.; Qin, Y.; Chen, G.; Wu, Q.; Wang, M. Influences of cyclic stress paths on deformation behavior of saturated marine coral sand: An experimental study. Ocean Eng. 2023, 270, 113626. [Google Scholar] [CrossRef]
- Qin, Y.; Xu, Z.; Yang, Z.; Du, X.; Ma, W.; Chen, G. Experimental investigation of liquefaction characteristics of saturated coral sand subjected to complex cyclic stress paths: Effects of loading frequency. Appl. Ocean Res. 2023, 138, 103662. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Z.; Ye, Q.; Zha, J. Particle breakage evolution of coral sand using triaxial compression tests. J. Rock Mech. Geotech. Eng. 2021, 13, 321–334. [Google Scholar] [CrossRef]
- Ma, W.; Qin, Y.; Xu, Z.; Chen, G. Prediction model for generation trend of axial deformation of saturated coral sand under cyclic loading. Soil Dyn. Earthq. Eng. 2024, 184, 108861. [Google Scholar] [CrossRef]
- Bianchi, F.; Nascimbene, R.; Pavese, A. Experimental vs. Numerical Simulations: Seismic Response of a Half-Scale Three-Story Infilled RC Building Strengthened Using FRP Retrofit. Open Civ. Eng. J. 2017, 11, 1158–1169. [Google Scholar] [CrossRef]
- Song, J.; Yang, Y.; Jia, K.; Dou, P.; Ma, X.; Shen, H. Seismic response and instability analysis of the liquefiable soil-piles-superstructure interaction system. Structures 2023, 54, 134–152. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Han, B.; Jiang, Y.; Jeng, D.; Liu, H.; Liang, Z.; Cui, L. Distribution and dissipation laws of excess pore water pressure based on pile-soil interface during pile-sinking in saturated clay. Soil Dyn. Earthq. Eng. 2023, 167, 107807. [Google Scholar] [CrossRef]
- Peng, B.; Xu, L.; Connolly, D.P.; Li, Z.; He, X.; Xiao, Y.; Guo, Y. Railway bridge dynamics considering piled foundations in soft soil. Soil Dyn. Earthq. Eng. 2024, 184, 108844. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Lu, T.; Xu, H.; Yang, L. Closed-form dynamic stiffness formulation for modal and dynamic response analysis of pile group foundations. Comput. Geotech. 2023, 159, 105481. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, H.; Chen, Q.; Ma, Q.; Xiang, Y.; Zheng, Y. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech. 2017, 12, 1177–1184. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, X.; Zhang, Y.; Chen, Z. Comparative Study on Seismic Response of Pile Group Foundation in Coral Sand and Fujian Sand. J. Mar. Sci. Eng. 2020, 8, 189. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, X.; Chen, Z.; Zhang, Y. Shaking Table Tests on Seismic Responses of Pile-soil-superstructure in Coral Sand. J. Earthq. Eng. 2022, 26, 3461–3487. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, X.; Chen, Z.; Chen, Y.; Peng, Y. Experimental Study on the Seismic Response of Pile-Soil-Structure System in Coral Reef Sand Foundations under Different Earthquake. Rock Soil Mech. 2020, 41, 571–580. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, J.; Wu, W.; Wen, M.; Wang, K.; Muhammad Faheem, R.S. Bearing behaviors and design method of laterally loaded batter pile groups (BPGs) in sand. Ocean Eng. 2023, 287, 115685. [Google Scholar] [CrossRef]
- Iai, S. Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1g Gravitational Field. Soils Found. 1989, 29, 105–118. [Google Scholar] [CrossRef]
- Meymand, P.J. Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1998. [Google Scholar]
- Cheng, Y.; Pan, D.; Chen, Q.; Huang, Y.; Zhang, D. Shaking table test on underground structure-soil-aboveground structure interaction. Tunn. Undergr. Space Technol. 2023, 140, 105300. [Google Scholar] [CrossRef]
- Adampira, M.; Derakhshandi, M.; Ghalandarzadeh, A. Experimental Study on Seismic Response Characteristics of Liquefiable Soil Layers. J. Earthq. Eng. JEE 2021, 25, 1287–1315. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.; Wu, Q.; Chen, Z.; Wang, C. Shaking table tests on the seismic responses of underground structures in coral sand. Tunn. Undergr. Space Technol. 2021, 109, 103775. [Google Scholar] [CrossRef]
- Li, Z.; Escoffier, S.; Kotronis, P. Centrifuge modeling of batter pile foundations under earthquake excitation. Soil Dyn. Earthq. Eng. 2016, 88, 176–190. [Google Scholar] [CrossRef]
- Pennacchio, R.; De Filippi, F.; Bosetti, M.; Aoki, T.; Wangmo, P. Influence of Traditional Building Practices in Seismic Vulnerability of Bhutanese Vernacular Rammed Earth Architecture. Int. J. Archit. Herit. 2022, 16, 374–393. [Google Scholar] [CrossRef]
- Khazai, B.; Sitar, N. Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Eng. Geol. 2004, 71, 79–95. [Google Scholar] [CrossRef]
- Chau, K.T.; Shen, C.Y.; Guo, X. Nonlinear seismic soil–pile–structure interactions: Shaking table tests and FEM analyses. Soil Dyn. Earthq. Eng. 2009, 29, 300–310. [Google Scholar] [CrossRef]
- Ko, Y.-Y.; Chen, C.-H. On the variation of mechanical properties of saturated sand during liquefaction observed in shaking table tests. Soil Dyn. Earthq. Eng. 2020, 129, 105946. [Google Scholar] [CrossRef]
- Xu, C.; Dou, P.; Du, X.; El Naggar, M.H.; Miyajima, M.; Chen, S. Seismic performance of pile group-structure system in liquefiable and non-liquefiable soil from large-scale shake table tests. Soil Dyn. Earthq. Eng. 2020, 138, 106299. [Google Scholar] [CrossRef]
- Shibata, T.; Yukitomo, H.; Miyoshi, M. Liquefaction Process of Sand During Cyclic Loading. Soils Found. 1972, 12, 1–16. [Google Scholar] [CrossRef]
- Kirkwood, P.; Dashti, S. Influence of prefabricated vertical drains on the seismic performance of similar neighbouring structures founded on liquefiable deposits. Geotechnique 2019, 69, 971–985. [Google Scholar] [CrossRef]
- Montoya-Noguera, S.; Lopez-Caballero, F. Effect of coupling excess pore pressure and deformation on nonlinear seismic soil response. Acta Geotech. 2016, 11, 191–207. [Google Scholar] [CrossRef]
- Koutsourelakis, S.; Prévost, J.H.; Deodatis, G. Risk assessment of an interacting structure–soil system due to liquefaction. Earthq. Eng. Struct. Dyn. 2002, 31, 851–879. [Google Scholar] [CrossRef]
- Wang, Y.; Yubin, R.; Yang, Q. Experimental Study on the Hydraulic Conductivity of Calcareous Sand in South China Sea. Mar. Georesour. Geotechnol. 2017, 35, 1037–1047. [Google Scholar] [CrossRef]
- Lv, Y.; Li, F.; Liu, Y.; Fan, P.; Wang, M. Comparative study of coral sand and silica sand in creep under general stress states. Can. Geotech. J. 2017, 54, 1601–1611. [Google Scholar] [CrossRef]
- Elmamlouk, H.; Salem, M.; Agaiby, S. Liquefaction susceptibility of loose calcareous sand of Northern Coast in Egypt. In Proceedings of the 18th International Conference on Soil Mechanism and Geotechnical Engineering, Paris, Fance, 2–6 September 2013. [Google Scholar]
- Ashour, M.; Ardalan, H. Piles in fully liquefied soils with lateral spread. Comput. Geotech. 2011, 38, 821–833. [Google Scholar] [CrossRef]
- Xu, C.; Jia, K.; Du, X.; Wang, Z.; Song, J.; Zhang, X. A review of seismic research on liquefaction lateral expansion site pile foundation. J. Disaster Prev. Mitig. Eng. 2021, 41, 768–791. [Google Scholar] [CrossRef]
- Chaudhary, M.T.A. Sensitivity of seismic response of pile-supported, multi-span viaduct bridges to interaction between soil-foundation and structural parameters. Innov. Infrastruct. Solut. 2023, 8, 180. [Google Scholar] [CrossRef]
Physical Quantity | Physical Symbol | Similarity Relationship | Similarity Coefficient |
---|---|---|---|
Length | L | 1:50 | |
Elastic Modulus | E | 1:15 | |
Equivalent Density | ρ | 10:3 | |
Acceleration | A | 1 | |
Time | t | 0.141 | |
Frequency | f | 7.09 | |
Stress | σ | 1:15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Liang, B.; Xiong, Z.; Lu, H.; Sun, M.; Guo, X. An Experimental Study on the Seismic Response of Vertical and Batter Pile Foundations at Coral Sand Sites. J. Mar. Sci. Eng. 2025, 13, 640. https://doi.org/10.3390/jmse13040640
Huang Z, Liang B, Xiong Z, Lu H, Sun M, Guo X. An Experimental Study on the Seismic Response of Vertical and Batter Pile Foundations at Coral Sand Sites. Journal of Marine Science and Engineering. 2025; 13(4):640. https://doi.org/10.3390/jmse13040640
Chicago/Turabian StyleHuang, Zhen, Ben Liang, Ziming Xiong, Hao Lu, Minqian Sun, and Xiao Guo. 2025. "An Experimental Study on the Seismic Response of Vertical and Batter Pile Foundations at Coral Sand Sites" Journal of Marine Science and Engineering 13, no. 4: 640. https://doi.org/10.3390/jmse13040640
APA StyleHuang, Z., Liang, B., Xiong, Z., Lu, H., Sun, M., & Guo, X. (2025). An Experimental Study on the Seismic Response of Vertical and Batter Pile Foundations at Coral Sand Sites. Journal of Marine Science and Engineering, 13(4), 640. https://doi.org/10.3390/jmse13040640