Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (927)

Search Parameters:
Keywords = waste information system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 19752 KiB  
Article
Phase Characterisation for Recycling of Shredded Waste Printed Circuit Boards
by Laurance Donnelly, Duncan Pirrie, Matthew Power and Andrew Menzies
Recycling 2025, 10(4), 157; https://doi.org/10.3390/recycling10040157 - 6 Aug 2025
Abstract
In this study, we adopt a geometallurgical analytical approach common in mineral processing in the characterization of samples of shredded waste printed circuit board (PCB) E-waste, originating from Europe. Conventionally, bulk chemical analysis provides a value for E-waste; however, chemical analysis alone does [...] Read more.
In this study, we adopt a geometallurgical analytical approach common in mineral processing in the characterization of samples of shredded waste printed circuit board (PCB) E-waste, originating from Europe. Conventionally, bulk chemical analysis provides a value for E-waste; however, chemical analysis alone does not provide information on the textural variability, phase complexity, grain size, particle morphology, phase liberation and associations. To address this, we have integrated analysis using binocular microscopy, manual scanning electron microscopy, phase, textural and compositional analyses by automated (SEM-EDS), phase analysis based on (Automated Material Identification and Classification System (AMICS) software, and elemental analysis using micro-XRF. All methods used have strengths and limitations, but an integration of these analytical tools allows the detailed characterization of the texture and composition of the E-waste feeds, ahead of waste reprocessing. These data can then be used to aid the design of optimized processing circuits for the recovery of the key payable components, and assist in the commercial trading of e-scrap. Full article
Show Figures

Figure 1

27 pages, 815 KiB  
Article
Material Flow Analysis for Demand Forecasting and Lifetime-Based Inflow in Indonesia’s Plastic Bag Supply Chain
by Erin Octaviani, Ilyas Masudin, Amelia Khoidir and Dian Palupi Restuputri
Logistics 2025, 9(3), 105; https://doi.org/10.3390/logistics9030105 - 5 Aug 2025
Abstract
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined [...] Read more.
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined framework of material flow analysis (MFA) and sustainable supply chain planning to improve demand forecasting and inflow management across the plastic bag lifecycle. Method: the research adopts a quantitative method using the XGBoost algorithm for forecasting and is supported by a polymer-based MFA framework that maps material flows from production to end-of-life stages. Result: the findings indicate that while production processes achieve high efficiency with a yield of 89%, more than 60% of plastic bag waste remains unmanaged after use. Moreover, scenario analysis demonstrates that single interventions are insufficient to achieve circularity targets, whereas integrated strategies (e.g., reducing export volumes, enhancing waste collection, and improving recycling performance) are more effective in increasing recycling rates beyond 35%. Additionally, the study reveals that increasing domestic recycling capacity and minimizing dependency on exports can significantly reduce environmental leakage and strengthen local waste management systems. Conclusions: the study’s novelty lies in demonstrating how machine learning and material flow data can be synergized to inform circular supply chain decisions and regulatory planning. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

23 pages, 1211 KiB  
Review
Dealuminated Metakaolin in Supplementary Cementitious Material and Alkali-Activated Systems: A Review
by Mostafa Elsebaei, Maria Mavroulidou, Amany Micheal, Maria Astrid Centeno, Rabee Shamass and Ottavia Rispoli
Appl. Sci. 2025, 15(15), 8599; https://doi.org/10.3390/app15158599 (registering DOI) - 2 Aug 2025
Viewed by 182
Abstract
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the [...] Read more.
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the context of waste valorisation in concrete, the review aims to establish a critical understanding of DK formation, properties, and reactivity, particularly its pozzolanic potential, to assess its suitability for use as a supplementary cementitious material (SCM), or as a precursor in alkali-activated cement (AAC) systems for concrete. A systematic methodology is used to extract and synthesise relevant data from existing literature concerning DK and its potential applications in cement and concrete. The collected information is organised into thematic sections exploring key aspects of DK, beginning with its formation from kaolinite ores, followed by studies on its pozzolanic reactivity. Applications of DK are then reviewed, focusing on its integration into SCMs and alkali-activated cement (AAC) systems. The review consolidates existing knowledge related to DK, identifying scientific gaps and practical challenges that limit its broader adoption for cement and concrete applications, and outlines future research directions to provide a solid foundation for future studies. Overall, this review highlights the potential of DK as a low-carbon, circular-economy material and promotes its integration into efforts to enhance the sustainability of construction practices. The findings aim to support researchers’ and industry stakeholders’ strategies to reduce cement clinker content and mitigate the environmental footprint of concrete in a circular-economy context. Full article
(This article belongs to the Special Issue Applications of Waste Materials and By-Products in Concrete)
Show Figures

Figure 1

46 pages, 2160 KiB  
Review
Potential of Plant-Based Oil Processing Wastes/By-Products as an Alternative Source of Bioactive Compounds in the Food Industry
by Elifsu Nemli, Deniz Günal-Köroğlu, Resat Apak and Esra Capanoglu
Foods 2025, 14(15), 2718; https://doi.org/10.3390/foods14152718 - 2 Aug 2025
Viewed by 327
Abstract
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) [...] Read more.
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) with proven health-promoting effects. The utilization of them as natural, cost-effective, and food-grade functional ingredients in novel food formulations holds considerable potential. This review highlights the potential of waste/by-products generated during plant-based oil processing as a promising source of bioactive compounds and covers systematic research, including recent studies focusing on innovative extraction and processing techniques. It also sheds light on their promising potential for valorization as food ingredients, with a focus on specific examples of food fortification. Furthermore, the potential for value creation in the food industry is emphasized, taking into account associated challenges and limitations, as well as future perspectives. Overall, the current information suggests that the valorization of plant-based oil industry waste and by-products for use in the food industry could substantially reduce malnutrition and poverty, generate favorable health outcomes, mitigate environmental concerns, and enhance economic profit in a sustainable way by developing health-promoting, environmentally sustainable food systems. Full article
Show Figures

Figure 1

28 pages, 2266 KiB  
Review
Uncovering Plastic Pollution: A Scoping Review of Urban Waterways, Technologies, and Interdisciplinary Approaches
by Peter Cleveland, Donna Cleveland, Ann Morrison, Khoi Hoang Dinh, An Nguyen Pham Hai, Luca Freitas Ribeiro and Khanh Tran Duy
Sustainability 2025, 17(15), 7009; https://doi.org/10.3390/su17157009 - 1 Aug 2025
Viewed by 236
Abstract
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, [...] Read more.
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, addressed, and reconceptualized. Drawing from the literature across environmental science, technology, and social studies, we identify four interconnected areas of focus: urban pollution pathways, innovations in monitoring and methods, community-based interventions, and interdisciplinary perspectives. Our analysis combines qualitative synthesis with visual mapping techniques, including keyword co-occurrence networks, to explore how real-time tools, such as IoT sensors, multi-sensor systems, and geospatial technologies, are transforming the ways plastic waste is tracked and analyzed. The review also considers the growing use of novel theoretical frameworks, such as post-phenomenology and ecological materialism, to better understand the role of plastics as both pollutants and ecological agents. Despite progress, the literature reveals persistent gaps in longitudinal studies, regional representation, and policy translation, particularly across the Global South. We emphasize the value of participatory models and community-led research in bridging these gaps and advancing more inclusive and responsive solutions. These insights inform the development of plastic tracker technologies currently being piloted in Vietnam and contribute to broader sustainability goals, including SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), and SDG 14 (Life Below Water). Full article
Show Figures

Figure 1

23 pages, 3075 KiB  
Article
Building an Agent-Based Simulation Framework of Smartphone Reuse and Recycling: Integrating Privacy Concern and Behavioral Norms
by Wenbang Hou, Dingjie Peng, Jianing Chu, Yuelin Jiang, Yu Chen and Feier Chen
Sustainability 2025, 17(15), 6885; https://doi.org/10.3390/su17156885 - 29 Jul 2025
Viewed by 188
Abstract
The rapid proliferation of electronic waste, driven by the short lifecycle of smartphones and planned obsolescence strategies, presents escalating global environmental challenges. To address these issues from a systems perspective, this study develops an agent-based modeling (ABM) framework that simulates consumer decisions and [...] Read more.
The rapid proliferation of electronic waste, driven by the short lifecycle of smartphones and planned obsolescence strategies, presents escalating global environmental challenges. To address these issues from a systems perspective, this study develops an agent-based modeling (ABM) framework that simulates consumer decisions and stakeholder interactions within the smartphone reuse and recycling ecosystem. The model incorporates key behavioral drivers—privacy concerns, moral norms, and financial incentives—to examine how social and economic factors shape consumer behavior. Four primary agent types—consumers, manufacturers, recyclers, and second-hand retailers—are modeled to capture complex feedback and market dynamics. Calibrated using empirical data from Jiangsu Province, China, the simulation reveals a dominant consumer tendency to store obsolete smartphones rather than engage in reuse or formal recycling. However, the introduction of government subsidies significantly shifts behavior, doubling participation in second-hand markets and markedly improving recycling rates. These results highlight the value of integrating behavioral insights into environmental modeling to inform circular economy strategies. By offering a flexible and behaviorally grounded simulation tool, this study supports the design of more effective policies for promoting responsible smartphone disposal and lifecycle extension. Full article
Show Figures

Graphical abstract

21 pages, 1011 KiB  
Article
Characterizing the Green Watershed Index (GWI) in the Razey Watershed, Meshginshahr County, NW Iran
by Akbar Irani, Roghayeh Jahdi, Zeinab Hazbavi, Raoof Mostafazadeh and Abazar Esmali Ouri
Sustainability 2025, 17(15), 6841; https://doi.org/10.3390/su17156841 - 28 Jul 2025
Viewed by 301
Abstract
This paper presents the Green Watershed Index (GWI) methodology, focusing on the 17 sustainability indicators selected in the Razey watershed, NW Iran. Field surveys and data collection have provided the possibility of field inspection and measurement of the present condition of the watershed [...] Read more.
This paper presents the Green Watershed Index (GWI) methodology, focusing on the 17 sustainability indicators selected in the Razey watershed, NW Iran. Field surveys and data collection have provided the possibility of field inspection and measurement of the present condition of the watershed and the indicators taken. Based on the degree of compliance with the required process, each indicator was scored from 0 to 10 and classified into three categories: unsustainable, semi-sustainable, and sustainable. Using the Entropy method to assign weight to each indicator and formulating a proportional mathematical relationship, the GWI score for each sub-watershed was derived. Spatial changes regarding the selected indicators and, consequently, the GWI were detected in the study area. Development of water infrastructure, particularly in the upstream sub-watersheds, plays a great role in increasing the GWI score. The highest weight is related to environmental productivity (0.26), and the five indicators of water footprint, knowledge management and information quality system, landscape attractiveness, waste recycling, and corruption control have approximately zero weight due to their monotonous spatial distribution throughout sub-watersheds. Only sub-watershed R1 has the highest score (5.13), indicating a semi-sustainable condition. The rest of the sub-watersheds have unsustainable conditions (score below 5). Concerning the GWI, the watershed is facing a critical situation, necessitating the implementation of management and conservation strategies that align with the sustainability level of each sub-watershed. Full article
(This article belongs to the Special Issue Sustainable Environmental Analysis of Soil and Water)
Show Figures

Figure 1

29 pages, 1682 KiB  
Article
Polish Farmers′ Perceptions of the Benefits and Risks of Investing in Biogas Plants and the Role of GISs in Site Selection
by Anna Kochanek, Józef Ciuła, Mariusz Cembruch-Nowakowski and Tomasz Zacłona
Energies 2025, 18(15), 3981; https://doi.org/10.3390/en18153981 - 25 Jul 2025
Viewed by 262
Abstract
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological [...] Read more.
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological or regulatory issues. This study aims to examine how Polish farmers perceive the risks and expected benefits associated with investing in biogas plants and which of these perceptions influence their willingness to invest. The research was conducted in the second quarter of 2025 among farmers planning to build micro biogas plants as well as owners of existing biogas facilities. Geographic Information System (GIS) tools were also used in selecting respondents and identifying potential investment sites, helping to pinpoint areas with favorable spatial and environmental conditions. The findings show that both current and prospective biogas plant operators view complex legal requirements, social risk, and financial uncertainty as the main obstacles. However, both groups are primarily motivated by the desire for on-farm energy self-sufficiency and the environmental benefits of improved agricultural waste management. Owners of operational installations—particularly small and medium-sized ones—tend to rate all categories of risk significantly lower than prospective investors, suggesting that practical experience and knowledge-sharing can effectively alleviate perceived risks related to renewable energy investments. Full article
(This article belongs to the Special Issue Green Additive for Biofuel Energy Production)
Show Figures

Figure 1

42 pages, 2167 KiB  
Systematic Review
Towards Sustainable Construction: Systematic Review of Lean and Circular Economy Integration
by Abderrazzak El Hafiane, Abdelali En-nadi and Mohamed Ramadany
Sustainability 2025, 17(15), 6735; https://doi.org/10.3390/su17156735 - 24 Jul 2025
Viewed by 474
Abstract
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer [...] Read more.
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer complementary frameworks for enhancing process performance and reducing environmental impacts. However, their combined implementation remains underdeveloped and fragmented. This study conducts a systematic literature review (SLR) of 18 peer-reviewed articles published between 2010 and 2025, selected using PRISMA 2020 guidelines and sourced from Scopus and Web of Science databases. A mixed-method approach combines bibliometric mapping and qualitative content analysis to investigate how LC and CE are jointly operationalized in construction contexts. The findings reveal that LC improves cost, time, and workflow reliability, while CE enables reuse, modularity, and lifecycle extension. Integration is further supported by digital tools—such as Building Information Modelling (BIM), Design for Manufacture and Assembly (DfMA), and digital twins—which enhance traceability and flow optimization. Nonetheless, persistent barriers—including supply chain fragmentation, lack of standards, and regulatory gaps—continue to constrain widespread adoption. This review identifies six strategic enablers for LC-CE integration: crossdisciplinary competencies, collaborative governance, interoperable digital systems, standardized indicators, incentive-based regulation, and pilot demonstrator projects. By consolidating fragmented evidence, the study provides a structured research agenda and practical insights to guide the transition toward more circular, efficient, and sustainable construction practices. Full article
Show Figures

Figure 1

21 pages, 4399 KiB  
Article
Integrating Digital Twin and BIM for Special-Length-Based Rebar Layout Optimization in Reinforced Concrete Construction
by Daniel Darma Widjaja, Jeeyoung Lim and Sunkuk Kim
Buildings 2025, 15(15), 2617; https://doi.org/10.3390/buildings15152617 - 23 Jul 2025
Viewed by 333
Abstract
The integration of Building Information Modeling (BIM) and Digital Twin (DT) technologies offers new opportunities for enhancing reinforcement design and on-site constructability. This study addresses a current gap in DT applications by introducing an intelligent framework that simultaneously automates rebar layout generation and [...] Read more.
The integration of Building Information Modeling (BIM) and Digital Twin (DT) technologies offers new opportunities for enhancing reinforcement design and on-site constructability. This study addresses a current gap in DT applications by introducing an intelligent framework that simultaneously automates rebar layout generation and reduces rebar cutting waste (RCW), two challenges often overlooked during the construction execution phase. The system employs heuristic algorithms to generate constructability-aware rebar configurations and leverages Industry Foundation Classes (IFC) schema-based data models for interoperability. The framework is implemented using Autodesk Revit and Dynamo for rebar modeling and layout generation, Microsoft Project for schedule integration, and Autodesk Navisworks for clash detection. Real-time scheduling synchronization is achieved through IFC schema-based BIM models linked to construction timelines, while embedded clash detection and constructability feedback loops allow for iterative refinement and improved installation feasibility. A case study on a high-rise commercial building demonstrates substantial material savings, improved constructability, and reduced layout time, validating the practical advantages of BIM–DT integration for RC construction. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Graphical abstract

24 pages, 2960 KiB  
Review
Driving Sustainable Energy Co-Production: Gas Transfer and Pressure Dynamics Regulating Hydrogen and Carboxylic Acid Generation in Anaerobic Systems
by Xiao Xiao, Meng He, Yanning Hou, Bilal Abdullahi Shuaibu, Wenjian Dong, Chao Liu and Binghua Yan
Processes 2025, 13(8), 2343; https://doi.org/10.3390/pr13082343 - 23 Jul 2025
Viewed by 208
Abstract
To achieve energy transition, hydrogen and carboxylic acids have attracted much attention due to their cleanliness and renewability. Anaerobic fermentation technology is an effective combination of waste biomass resource utilization and renewable energy development. Therefore, the utilization of anaerobic fermentation technology is expected [...] Read more.
To achieve energy transition, hydrogen and carboxylic acids have attracted much attention due to their cleanliness and renewability. Anaerobic fermentation technology is an effective combination of waste biomass resource utilization and renewable energy development. Therefore, the utilization of anaerobic fermentation technology is expected to achieve efficient co-production of hydrogen and carboxylic acids. However, this process is fundamentally affected by gas–liquid mass transfer kinetics, bubble behaviors, and system partial pressure. Moreover, the related studies are few and unfocused, and no systematic research has been developed yet. This review systematically summarizes and discusses the basic mathematical models used for gas–liquid mass transfer kinetics, the relationship between gas solubility and mass transfer, and the liquid-phase product composition. The review analyzes the roles of the headspace gas composition and partial pressure of the reaction system in regulating co-production. Additionally, we discuss strategies to optimize the metabolic pathways by modulating the gas composition and partial pressure. Finally, the feasibility of and prospects for the realization of hydrogen and carboxylic acid co-production in anaerobic fermentation systems are outlined. By exploring information related to gas mass transfer and system pressure, this review will surely provide an important reference for promoting cleaner production of sustainable energy. Full article
(This article belongs to the Special Issue Green Hydrogen Production: Advances and Prospects)
Show Figures

Figure 1

34 pages, 2311 KiB  
Review
Decoding Stress Responses in Farmed Crustaceans: Comparative Insights for Sustainable Aquaculture Management
by Fitriska Hapsari, Muhammad Agus Suprayudi, Dean M. Akiyama, Julie Ekasari, Parisa Norouzitallab and Kartik Baruah
Biology 2025, 14(8), 920; https://doi.org/10.3390/biology14080920 - 23 Jul 2025
Viewed by 590
Abstract
Aquaculture is a crucial food-producing sector that can supply more essential nutrients to nourish the growing human population. However, it faces challenges, including limited water quality and space competition. These constraints have led to the intensification of culture systems for more efficient resource [...] Read more.
Aquaculture is a crucial food-producing sector that can supply more essential nutrients to nourish the growing human population. However, it faces challenges, including limited water quality and space competition. These constraints have led to the intensification of culture systems for more efficient resource use while maintaining or increasing production levels. However, intensification introduces stress risks to cultured organisms by, for instance, overcrowding, waste accumulation, and water quality deterioration, which can negatively affect the growth, health, and immunity of animals and cause diseases. Additionally, environmental changes due to climate and anthropogenic activities further intensify the environmental stress for aquaculture organisms, including crustaceans. Shrimp are one of the most widely cultured and consumed farmed crustacea. Relative to aquatic vertebrates such as fish, the physiology of crustaceans has simpler physiological structures, as they lack a spinal cord. Consequently, their stress response mechanisms follow a single pathway, resulting in less complex responses to stress exposure compared to those of fish. While stress is considered a primary factor influencing the growth, health, and immunity of shrimp, comprehensive research on crustacean stress responses remains limited. Understanding the stress response at the organismal and cellular levels is essential to identify sensitive and effective stress biomarkers which can inform the development of targeted intervention strategies to mitigate stress. This review provides a comprehensive overview of the physiological changes that occur in crustaceans under stress, including hormonal, metabolic, hematological, hydromineral, and phenotypic alterations. By synthesizing current knowledge, this article aims to bridge existing gaps and provide insights into the stress response mechanisms, paving the way for advancements in crustacean health management. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

36 pages, 2939 KiB  
Systematic Review
A Systematic Review and Bibliometric Analysis for the Design of a Traceable and Sustainable Model for WEEE Information Management in Ecuador Based on the Circular Economy
by Marlon Copara, Angel Pilamunga, Fernando Ibarra, Silvia-Melinda Oyaque-Mora, Diana Morales-Urrutia and Patricio Córdova
Sustainability 2025, 17(14), 6402; https://doi.org/10.3390/su17146402 - 12 Jul 2025
Viewed by 601
Abstract
The rapid increase in waste electrical and electronic equipment (WEEE) creates major environmental and governance issues in developing countries like Ecuador struggle because they with minimal formal collection and recycling rates. This research presents a potential sustainable management approach that tracks products through [...] Read more.
The rapid increase in waste electrical and electronic equipment (WEEE) creates major environmental and governance issues in developing countries like Ecuador struggle because they with minimal formal collection and recycling rates. This research presents a potential sustainable management approach that tracks products through their life cycles while following circular economy principles that include product extension and material extraction and waste minimization. A systematic literature review (SLR) using the PRISMA methodology combined with a bibliometric analysis found essential global strategies and technological frameworks and regulatory frameworks. The analysis of articles demonstrates that information management systems (IMSs) together with digital technologies and consistent regulations serve as essential elements for enhancing traceability and material recovery and formal recycling processes. A WEEE management IMS model was developed for the Ecuadorian market through an analysis of the findings; it follows a five-stage development process, starting from the technological infrastructure setup to complete data visualization integration. The proposed model is designed to enable public–private–community partnerships using digital tools that promote sustainable practices. The combination of circular strategies with traceability technologies and strong regulatory frameworks leads to improved WEEE governance, which supports sustainable system transitions in emerging economies. Full article
Show Figures

Figure 1

26 pages, 2217 KiB  
Review
A Scientific Review of Recycling Practices and Challenges for Autoclaved Aerated Concrete in Sustainable Construction
by Shuxi (Hiro) Wang, Guomin Zhang, Chamila Gunasekara, David Law, Yongtao Tan and Weihan Sun
Buildings 2025, 15(14), 2453; https://doi.org/10.3390/buildings15142453 - 12 Jul 2025
Viewed by 531
Abstract
Autoclaved Aerated Concrete (AAC) is a lightweight, thermally insulating, and fire-resistant building material that has become prominent in sustainable construction due to its reduced production energy demands and minimal environmental impact. As an increasing number of AAC-based structures reach end-of-life, the effective recycling [...] Read more.
Autoclaved Aerated Concrete (AAC) is a lightweight, thermally insulating, and fire-resistant building material that has become prominent in sustainable construction due to its reduced production energy demands and minimal environmental impact. As an increasing number of AAC-based structures reach end-of-life, the effective recycling and reuse of AAC waste present both challenges and opportunities within the context of sustainable building practices and circular economy frameworks. This study presents a scientometric review of AAC recycling research published between 2014 and 2024, using the Web of Science database and bibliometric tools such as CiteSpace. Key trends, techniques, and knowledge gaps in AAC recycling are identified, highlighting issues such as high energy consumption, limited practical implementation, and the absence of standardized recovery protocols. The study also outlines emerging research pathways, including detailed material characterization, development of recycling standards, innovative reuse techniques, hybrid material systems, and the integration of recycled AAC in new construction. These insights provide a foundation for advancing sustainable building material strategies and inform policy and practice in construction waste management. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

26 pages, 2032 KiB  
Review
A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling
by Mustafa Rezaei, Gabriela Sanchez-Lecuona and Omid Abdolazimi
Minerals 2025, 15(7), 720; https://doi.org/10.3390/min15070720 - 9 Jul 2025
Viewed by 954
Abstract
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This [...] Read more.
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This review presents a comprehensive overview of REE geochemistry, mineralogy, and major deposit types including carbonatites, alkaline igneous rocks, laterites, placer deposits, coal byproducts, and marine sediments. It also highlights the global distribution and economic potential of key REE projects. The integration of machine learning has further enhanced exploration by enabling deposit classification and geochemical modeling, especially in data-limited regions. Environmental and health challenges associated with REE mining, processing, and electronic waste (e-waste) recycling are studied, along with the expanding use of REEs in agriculture and medicine. Some recycling efforts offer promise for supply diversification, but significant technological and economic barriers remain. Ensuring a secure and sustainable REE supply will require integrated approaches combining advanced analytics, machine learning, responsible extraction, and coordinated policy efforts. The present review offers a general overview that can be useful for informing future studies and resource-related discussions. Full article
Show Figures

Figure 1

Back to TopTop