Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = washed mineral waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2154 KB  
Article
Towards Zero-Waste Valorization of African Catfish By-Products Through Integrated Biotechnological Processing and Life Cycle Assessment
by Orsolya Bystricky-Berezvai, Miroslava Kovářová, Daniel Kašík, Ondřej Rudolf, Robert Gál, Jana Pavlačková and Pavel Mokrejš
Gels 2026, 12(1), 45; https://doi.org/10.3390/gels12010045 - 1 Jan 2026
Viewed by 419
Abstract
African catfish (Clarias gariepinus, AC) is one of the most widely farmed freshwater fish species in Central Europe. Processing operations generate up to 55% by-products (BPs), predominantly carcasses rich in proteins, lipids, and minerals. This study develops a comprehensive valorization process [...] Read more.
African catfish (Clarias gariepinus, AC) is one of the most widely farmed freshwater fish species in Central Europe. Processing operations generate up to 55% by-products (BPs), predominantly carcasses rich in proteins, lipids, and minerals. This study develops a comprehensive valorization process for ACBPs to recover gelatin, protein hydrolysate, fish oil, and pigments. The processing protocol consisted of sequential washing, oil extraction, demineralization, and biotechnological treatment to disrupt the collagen quaternary structure. A two-factor experimental design was employed to optimize the processing conditions. The factors included the extraction temperatures of the first (35–45 °C) and second fraction (50–60 °C). We hypothesized that enzymatic conditioning, combined with sequential hot-water extraction, would yield gelatin with properties comparable to those of mammalian- and fish-derived gelatins, while enabling a near-zero-waste process. The integrated process yielded 18.2 ± 1.2% fish oil, 9.8 ± 2.1% protein hydrolysate, 1.7 ± 0.7% pigment extract, and 25.3–37.8% gelatin. Optimal conditions (35 °C/60 °C) produced gelatin with gel strength of 168.8 ± 3.6 Bloom, dynamic viscosity of 2.48 ± 0.02 mPa·s, and yield of 34.76 ± 1.95%. Life cycle assessment (LCA) identified two primary environmental hotspots: water consumption and energy demand. This near-zero-waste biorefinery demonstrates the potential for comprehensive valorization of aquaculture BPs into multiple value-added bioproducts. Full article
(This article belongs to the Special Issue Advanced Gels in the Food System)
Show Figures

Figure 1

35 pages, 3095 KB  
Review
Biomass Conversion to Value-Added Chemicals and Fuels Using Natural Minerals as Catalysts or Catalytic Supports
by Sotiris Lycourghiotis and Eleana Kordouli
Catalysts 2025, 15(11), 1006; https://doi.org/10.3390/catal15111006 - 23 Oct 2025
Viewed by 2290
Abstract
Biofuels and value-added chemicals can be produced using biomass. These products can substitute the corresponding petroleum-based ones, reducing the carbon footprint, ensuring domestic production, and minimizing/exploiting organic wastes in a circular economy philosophy. Natural mineral-based catalysts seem to be a promising, eco-friendly, and [...] Read more.
Biofuels and value-added chemicals can be produced using biomass. These products can substitute the corresponding petroleum-based ones, reducing the carbon footprint, ensuring domestic production, and minimizing/exploiting organic wastes in a circular economy philosophy. Natural mineral-based catalysts seem to be a promising, eco-friendly, and low-cost approach for biomass valorization. This article attempts to highlight the potential of natural mineral-based catalysts for various processes targeting the above valorization. Natural zeolites and clays can be used as catalysts/CO2 adsorbents and catalytic supports in various biorefinery processes (pyrolysis, gasification, hydrothermal liquefaction, esterification/transesterification, hydrotreatment, cracking, isomerization, oxidation, condensation, etc.). Acid/base, redox, and textural properties of these materials are key factors for their catalytic performance and can be easily regulated by suitable treatments, like calcination, acid/base-washing, metal impregnation, doping, etc., which are discussed in this article. The application of natural minerals in biorefinery processes makes them greener, cost-effective, and easily scalable. Full article
(This article belongs to the Special Issue Advanced Catalysts for Biomass Pyrolysis)
Show Figures

Graphical abstract

26 pages, 10465 KB  
Article
Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials
by Jacek Kostrzewa, Łukasz Kaczmarek, Jan Bogacki, Agnieszka Dąbska, Małgorzata Wojtkowska and Paweł Popielski
Materials 2025, 18(14), 3384; https://doi.org/10.3390/ma18143384 - 18 Jul 2025
Cited by 2 | Viewed by 937
Abstract
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high [...] Read more.
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high usability in specific hydrotechnical applications. Key laboratory tests for material characterization included physical, permeability, mechanical, and chemical property analyses. The tested waste corresponds to uniformly graded medium sands (uniformity coefficient: 2.20) and weakly calcareous (calcium carbonate content: 2.25–3.29%) mineral soils with organic content ranging from 0.24% to 1.49%. The minimum heavy metal immobilization level reached 91.45%. At maximum dry density of the soil skeleton (1.78/1.79 g/cm3) and optimal moisture content (11.34/11.95%), the hydraulic conductivity reached 4.38/7.71 m/d. The mechanical parameters of washed mineral waste included internal friction angle (34.4/37.8°) and apparent cohesion (9.37/14.98 kPa). The values of the determined parameters are comparable to those of natural sands used as construction aggregates. As a result, washed mineral waste has a high potential for use as an alternative material to natural sand in the analyzed hydrotechnical applications, particularly for flood embankment construction, by applicable technical standards and construction guidelines. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

18 pages, 11608 KB  
Article
Waste Natural Pyrite Activation of Peroxymonosulfate for Degradation of Artificial Sweetener Acesulfame Potassium: Efficiency, Influencing Factors, Degradation Mechanisms, and Toxicity Evaluation
by Chengchen Jiang, Zehong Zeng, Liwen Jiang, Zhi Dang and Xiaohua Shu
Water 2025, 17(11), 1558; https://doi.org/10.3390/w17111558 - 22 May 2025
Cited by 2 | Viewed by 1365
Abstract
Acesulfame potassium (ACE) is an emerging pollutant with the potential to induce a range of health hazards. In this study, waste natural pyrite (with some oxides on its surface) was washed and used as an activator to activate potassium peroxomonosulfate (PMS) to degrade [...] Read more.
Acesulfame potassium (ACE) is an emerging pollutant with the potential to induce a range of health hazards. In this study, waste natural pyrite (with some oxides on its surface) was washed and used as an activator to activate potassium peroxomonosulfate (PMS) to degrade ACE in water. The experimental results demonstrate that waste natural pyrite with an oxidized layer exhibited a significant degradation effect on ACE. Under conditions of 0.7 g/L pyrite and 60 μM PMS, a degradation rate of 99.3% for ACE was achieved within 15 min, and the mineralization rate reached 15.3% within 30 min. In addition, concerning its applicability, waste natural pyrite demonstrates strong activation ability within a pH range of 3 to 7. It is important to note that while HCO3 and Ca2+ can influence the effectiveness, other common anions and cations do not significantly affect the degradation process. Mechanistic studies reveal that the primary active species in the waste natural pyrite/PMS system were sulfate radicals (SO4•−) as well as hydroxyl radicals (OH), which contributed 50.6% and 36.9%, respectively. In addition, the analysis of ACE degradation products indicates that no highly toxic intermediates were generated during the degradation process. Overall, this study underscores the outstanding performance of waste natural pyrite as an activator, providing a safe, efficient, and cost-effective approach for degrading organic pollutants like ACE. Full article
Show Figures

Figure 1

13 pages, 4018 KB  
Article
Kinetic Mechanisms and Efficient Leaching of Praseodymium, Neodymium, Fluorine, and Lithium from Molten-Salt Slag via Atmospheric Alkaline Leaching
by Mingming Yu, Guojun Huang and Tianyong Zhang
Processes 2025, 13(4), 1025; https://doi.org/10.3390/pr13041025 - 30 Mar 2025
Viewed by 891
Abstract
Rare-earth molten-salt electrolysis slag contains a substantial quantity of rare-earth elements, rendering it a valuable secondary resource for rare-earth recovery. To achieve the efficient recovery of praseodymium (Pr), neodymium (Nd), lithium (Li), and fluorine (F) from rare-earth molten-salt electrolysis slag, this paper proposes [...] Read more.
Rare-earth molten-salt electrolysis slag contains a substantial quantity of rare-earth elements, rendering it a valuable secondary resource for rare-earth recovery. To achieve the efficient recovery of praseodymium (Pr), neodymium (Nd), lithium (Li), and fluorine (F) from rare-earth molten-salt electrolysis slag, this paper proposes an atmospheric alkaline leaching method. The leaching efficiency of Nd, Pr, F (95.02%), and Li (95.87%) can be reached at a NaOH concentration of 80%, a reaction temperature of 180 °C, a reaction time of 2 h, and an alkali to slag ratio of 3:1. Leaching efficiency kinetic analysis shows that the leaching processes of fluorine and lithium are both controlled by interfacial chemical reactions, with apparent activation energies of 59.06 kJ/mol and 57.33 kJ/mol, respectively. The mineral phase transformation and morphological analysis were studied by X-ray diffractometer and scanning electron microscope. The results indicated that rare-earth fluoride (REF3) reacts with sodium hydroxide to form rare-earth hydroxide (RE(OH)3) and soluble sodium fluoride (NaF), while LiF is converted into LiOH and enters the liquid phase. High-efficiency separation was achieved by washing with water, avoiding high-temperature energy consumption and the problem of fluorine-containing waste gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 1243 KB  
Article
From Forest Berry Leaf Waste to Micellar Extracts with Cosmetic Applications
by Małgorzata Zięba, Millena Ruszkowska and Joanna Klepacka
Appl. Sci. 2025, 15(4), 2055; https://doi.org/10.3390/app15042055 - 16 Feb 2025
Cited by 1 | Viewed by 1843
Abstract
The fruit of berry plants is primarily used for industrial purposes, while the leaves are often regarded as waste. However, these leaves, rich in valuable bioactive compounds, have the potential to serve as raw materials for various industries, including cosmetics. This study compared [...] Read more.
The fruit of berry plants is primarily used for industrial purposes, while the leaves are often regarded as waste. However, these leaves, rich in valuable bioactive compounds, have the potential to serve as raw materials for various industries, including cosmetics. This study compared the content of micro- and macronutrients in the leaves of wild strawberry, blackberry, and blueberry plants. It revealed a high mineral content, particularly in the leaves of wild strawberry and blackberry plants. The plant leaves were also shown to contain vitamin C and exhibited antioxidant activity. The leaves of berry plants were used to obtain micellar extracts, which were then incorporated into the formulation of prototype bath washes. A cosmetic formulation without any extracts served as a reference. In the next step, the prototype cosmetics were evaluated for their chosen properties. The findings showed that incorporating micellar leaf extracts into cosmetic formulations reduced their viscosity and ability to generate long-lasting foam, even in the presence of model sebum. Furthermore, the cosmetics formulated with the extracts exhibited a reduced capacity to emulsify fatty soils compared to the reference formulation, which could present an advantageous option for individuals with sensitive skin. Full article
(This article belongs to the Special Issue Cosmetics Ingredients Research - 2nd Edition)
Show Figures

Graphical abstract

18 pages, 5918 KB  
Article
Citric Acid-Based Treatment for Refining Mineral Fractions Recovered from Processed MSW Incinerator Bottom Ash
by I. B. G. Sumbranang Adhiwiguna, Xinqi Yu, Ragnar Warnecke and Rüdiger Deike
Appl. Sci. 2025, 15(1), 249; https://doi.org/10.3390/app15010249 - 30 Dec 2024
Cited by 3 | Viewed by 3134
Abstract
This research examines the possibility of the washing process as a supplementary operation after extensive extended physical separation sequences for processed incinerator bottom ash (pr.IBA), which is the mineral fraction resulting from conventional separation operation of municipal solid waste (MSW) incinerator bottom ash [...] Read more.
This research examines the possibility of the washing process as a supplementary operation after extensive extended physical separation sequences for processed incinerator bottom ash (pr.IBA), which is the mineral fraction resulting from conventional separation operation of municipal solid waste (MSW) incinerator bottom ash (IBA) in Germany. Citric acid is employed as the only primary treatment agent in several variations of parameter combinations. It includes the type of solvent, washing duration, acid concentration, liquid-to-solid ratio, and introduction of external agitation (stirring and heating). The analysis results revealed that the concentration of copper, zinc, and manganese in the mineral phase of pr.IBA can be reduced by the citric acid washing process. The most significant change is observed in the zinc content, where a reduction of up to 50% is successfully achieved. In contrast, the silicon concentration is relatively unaffected during citric acid washing, but a concentration decrease is detected for calcium. The aluminum and iron contents in the studied fraction of pr.IBA are also soluble in citric acid solution, although the rates are expected to be exceptionally slow. In this instance, stirring and heating over a prolonged washing duration are necessary before a decrease in their concentration can eventually occur. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Recycling)
Show Figures

Figure 1

28 pages, 2282 KB  
Article
Variation in the Composition of Municipal Solid Waste Incineration Ash
by Bruno Valentim, Alexandra Guedes, Iwona Kuźniarska-Biernacka, Joana Dias and Georgeta Predeanu
Minerals 2024, 14(11), 1146; https://doi.org/10.3390/min14111146 - 12 Nov 2024
Cited by 3 | Viewed by 2952
Abstract
Unlike municipal solid waste bottom ash (MSWBA), fly ash (MSWFA) is landfilled due to its toxicity. However, MSWFA may also be a source of elements. Ash samples collected from a Portuguese MSW incinerator from different locations and over six months were analyzed. Their [...] Read more.
Unlike municipal solid waste bottom ash (MSWBA), fly ash (MSWFA) is landfilled due to its toxicity. However, MSWFA may also be a source of elements. Ash samples collected from a Portuguese MSW incinerator from different locations and over six months were analyzed. Their geochemical composition was normalized to the upper continental crust (UCC) and compared since metal enrichment may be used as an indicator for potential recovery. The potential recovery economic viability was also assessed for metals K, Sb, Cu, Pb, and Zn, considering the ore cut-off grade and minimum industrial grade (MIG) from Chinese geological and mineral industry standards. Compared to the global samples, only the Baghouse 1 FA size fraction’s coarse fraction showed a slight enrichment (1- to 5-fold) in Bi, Nb, and Zr. After wet sieving, most trace elements were enriched in all fractions, but Sb, Bi, Pb, Zn, Ag, As, Cd, Sn, Se, and Hg were depleted in the coarse fractions and enriched in the fine ones. For Baghouse 1 samples collected over 6 months, the normalization to the UCC showed enrichment of Zn and Pb between 10× and 50×, Zr, Cu, In, and Se between 50× and 100×, and Ag, Mn, Cd, Sb, and Bi at more than 100×. Over six months, the Baghouse 1 FA soluble fraction ranged between 21 wt.% and 30 wt.%, and its precipitates comprised 27% CaO, 6% Na2O, and 9% K2O. The K concentration in the MSWFA was above the cut-off and the MIG, and K could be concentrated in precipitates via simple washing. Full article
(This article belongs to the Special Issue Circular Economy of Remining Secondary Raw Materials)
Show Figures

Figure 1

16 pages, 4903 KB  
Article
Evaluation and Optimization of Phosphate Recovery from Coarse Rejects Using Reverse Flotation
by Khadija Lalam, Younes Chhiti, Mohamed El Khouakhi, Abdelmoughit Abidi and Ahmed Chebak
Sustainability 2024, 16(19), 8614; https://doi.org/10.3390/su16198614 - 4 Oct 2024
Cited by 2 | Viewed by 2289
Abstract
Phosphorus is a vital nutrient essential for plant development and numerous biological functions. It is primarily obtained from phosphate rock through a process known as beneficiation. However, the declining reserves of high-grade phosphate rock, combined with the uneven global distribution of phosphorus and [...] Read more.
Phosphorus is a vital nutrient essential for plant development and numerous biological functions. It is primarily obtained from phosphate rock through a process known as beneficiation. However, the declining reserves of high-grade phosphate rock, combined with the uneven global distribution of phosphorus and the environmental impacts associated with its extraction and use, highlight the need for a more efficient management of this critical resource. Increasingly, alternative sources of phosphorus, such as extraction from waste materials, are being explored. This study aims to assess the feasibility of recovering phosphorus from coarse rejects produced during phosphate beneficiation at a phosphate washing plant. Before conducting laboratory preparation and reverse flotation tests, the sample underwent initial laboratory examination and analysis. The sample was found to contain low-grade apatite minerals with a phosphorus pentoxide (P2O5) content ranging from 19% to 20%. Additionally, carbonate and quartz were identified as the primary accompanying minerals. Flotation experiments yielded a phosphorus recovery rate of 29% P2O5, with a carbonation rate of 1.6. Although this recovery rate is slightly below the commercial phosphate standard of 30% P2O5, it represents a significant improvement and demonstrates potential for further optimization to meet industry requirements. Consequently, these coarse discarded rejects could serve as a supplementary source of phosphorus in the future. Full article
Show Figures

Figure 1

12 pages, 2862 KB  
Article
Characterization of Spent Mushroom Compost and Evaluation of Its Potential for Thermochemical Valorization through Ash Reduction Treatments
by Carolina Restrepo Londoño, Pedro Alvarado Torres, Andrés Moreno and Alexander Giraldo Gil
Biomass 2024, 4(3), 978-989; https://doi.org/10.3390/biomass4030054 - 2 Sep 2024
Cited by 5 | Viewed by 2255
Abstract
This study focuses on applying ash reduction treatments in order to explore the potential for industrial-scale thermochemical utilization of Spent Mushroom Compost (SMC). SMC is a waste byproduct generated by the mushroom industry. Typically, for every kilogram of produced mushrooms, five kilograms of [...] Read more.
This study focuses on applying ash reduction treatments in order to explore the potential for industrial-scale thermochemical utilization of Spent Mushroom Compost (SMC). SMC is a waste byproduct generated by the mushroom industry. Typically, for every kilogram of produced mushrooms, five kilograms of SMC are discarded, with current disposal methods involving landfills or incineration, causing environmental problems. Utilizing SMC effectively presents challenges due to the inherent properties of this biomass type, characterized by high moisture and ash content, low fixed carbon content, and material heterogeneity. These attributes create difficulties when employing a thermochemical valorization route due to the low carbon content and mineral treatments involved. The results have unveiled the heterogeneous nature of the material and its individual components when physically separated. Among the three identified fractions (agglomerated, woody, and fines), the woody fraction showed the highest potential for thermochemical utilization. Notably, when subjected to washing with distilled water and citric acid treatments, it resulted in up to 66% ash reduction, a significant outcome. Other fractions of the material may find potential applications in agriculture. The effective utilization of such high-volume waste biomasses demands diverse and innovative approaches, underlining the urgency and complexity of the problem and the need to employ the principles of a circular economy. Full article
(This article belongs to the Special Issue Innovative Systems for Biomass Crop Production and Use)
Show Figures

Figure 1

26 pages, 3379 KB  
Article
Removal of Ethyl Xanthate Anions from Contaminated Aqueous Solutions Using Hazardous Waste Slag Generated by Lignite Combustion
by Andrijana Vasić, Jelena Gulicovski, Marija Stojmenović, Neda Nišić, Katarina Nikolić, Ivona Nuić and Milan Kragović
Water 2024, 16(14), 2037; https://doi.org/10.3390/w16142037 - 18 Jul 2024
Viewed by 1944
Abstract
This paper presents the results of the application of hazardous waste slag generated by lignite combustion for the adsorption of ethyl xanthate anions (EX) from aqueous solutions. The starting material (RWS) was washed (WWS) and modified (MWS) and then characterized in detail by [...] Read more.
This paper presents the results of the application of hazardous waste slag generated by lignite combustion for the adsorption of ethyl xanthate anions (EX) from aqueous solutions. The starting material (RWS) was washed (WWS) and modified (MWS) and then characterized in detail by using different chemical and physical–chemical techniques (determination of chemical composition and content of heavy metals, X-ray diffraction (XRD), infrared spectroscopy (FTIR), determination of textural properties and point of zero charge). Besides the chemical stability of EX, the influence of the initial pH, mass of the adsorbent, initial concentration, and time on the EX anion removal was tested. The characterization results showed that applied waste slag is a hazardous material with complex mineral and structural properties but with good buffer properties and pH stability, which is also characteristic of the MWS sample. The adsorption experiments showed that modification with Cu(NO3)2 and Fe(NO3)3 significantly increases the adsorption capacity of the starting slag. Under applied experimental conditions, the maximal adsorbed amount of EX anions on the MWS was 210 mg/g, while equilibrium was obtained after 700 min. The Freundlich model and pseudo-second-order model best fit the results, suggesting the complex mechanism of EX removal by the MWS sample. Full article
Show Figures

Figure 1

16 pages, 3884 KB  
Article
A Novel Technosol Formulation for Sustainable Landfill Top Covers Using Non-Hazardous Wastes
by Juan Carlos Fernández-Caliani, Julia Álvarez-Lozano, Encarnación García-Navarro, Sandra Fernández-Landero, Cristóbal Cantero and María Inmaculada Giráldez
Appl. Sci. 2024, 14(14), 6166; https://doi.org/10.3390/app14146166 - 15 Jul 2024
Cited by 2 | Viewed by 2028
Abstract
This study explores the potential of non-hazardous wastes for crafting an engineered soil-like material (Technosol) suitable for landfill capping applications. Three distinct materials—waste foundry sand (WFS), washing aggregate sludge (WAS), and composted biosolids (CBS)—were strategically combined to develop this innovative Technosol. The formulation [...] Read more.
This study explores the potential of non-hazardous wastes for crafting an engineered soil-like material (Technosol) suitable for landfill capping applications. Three distinct materials—waste foundry sand (WFS), washing aggregate sludge (WAS), and composted biosolids (CBS)—were strategically combined to develop this innovative Technosol. The formulation process involved a comprehensive analysis of their physical–chemical properties, mineral composition, leachate quality, and a series of geotechnical assessments to ensure compliance with landfill top cover construction standards. The blend 90WFS/10WAS showed optimal geotechnical properties for constructing a protective layer, including maximum dry density (1.77 g cm−3), void ratio (0.4), CBR index (23.2), cohesive strength (40 kPa), internal friction (ϕ = 30°), and permeability coefficient (k = 1.48 × 10−6 cm s−1). Further enhancement was achieved by adding 10% CBS, resulting in the development of a functional organo-mineral topsoil horizon (81WFS/9WAS/10CBS). Importantly, leachate analysis confirmed the negligible environmental footprint of this Technosol. Moreover, a pot-based experiment with Brassica juncea planting validated its capacity to support plant growth and establish a vegetative cover on the landfill surface. Full article
(This article belongs to the Special Issue Research Progress in Waste Resource Utilization)
Show Figures

Figure 1

17 pages, 3361 KB  
Article
Impact of Electronic Waste Glass on the Properties of Cementitious Materials
by Jurgita Malaiškienė and Karolina Bekerė
Buildings 2024, 14(5), 1218; https://doi.org/10.3390/buildings14051218 - 25 Apr 2024
Cited by 9 | Viewed by 1730
Abstract
The article analyses the impact of two different types of dispersive glass on cement hydration and compressive strength at 7 and 28 days. The study employed dispersive glass from various LCDs (TV sets, computer monitors, smart phones), characterised by a composition of approximately [...] Read more.
The article analyses the impact of two different types of dispersive glass on cement hydration and compressive strength at 7 and 28 days. The study employed dispersive glass from various LCDs (TV sets, computer monitors, smart phones), characterised by a composition of approximately 8% SrO, and dispersive glass from washing machines, which consists mainly of SiO2, Na2O, and CaO. The chemical composition and particle-size distribution of different types of dispersive glass were analysed. The study compares the effect of electronic waste glass on cement hydration by evaluating the amount and rate of heat released during the process. In addition, the results of X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) are provided. Different types of glass were determined to have a similar effect on the physical and mechanical properties as well as the mineral composition of cementitious samples: density and UPV decrease up to 6% and compressive strength decreases by about 30%, when 5–20% of cement was replaced by glass waste. However, more prominent differences were observed in the workability of the mixtures: the waste glass from home appliances increased the spread by up to 25%, while the waste glass from electronic devices decreased the spread compared to the reference sample by approximately 20%. The mixtures modified with the waste glass of electronic devices had a higher degree of early hydration (96%) due to the higher water absorption of the mixtures compared to the waste glass of home appliances (88%). Full article
(This article belongs to the Special Issue Study on Concrete Structures)
Show Figures

Figure 1

16 pages, 3316 KB  
Article
Geotechnical Properties of Washed Mineral Waste from Grit Chambers and Its Potential Use as Soil Backfill and Road Embankment Materials
by Jacek Kostrzewa, Paweł Popielski and Agnieszka Dąbska
Buildings 2024, 14(3), 766; https://doi.org/10.3390/buildings14030766 - 12 Mar 2024
Cited by 5 | Viewed by 1744
Abstract
The current practice of managing washed mineral waste from grit chambers under national legislation focuses primarily on its disposal, generating high costs for wastewater treatment plants. Other ways are being sought to enable its use, especially as a by-product in the construction industry. [...] Read more.
The current practice of managing washed mineral waste from grit chambers under national legislation focuses primarily on its disposal, generating high costs for wastewater treatment plants. Other ways are being sought to enable its use, especially as a by-product in the construction industry. This paper presents the results of laboratory tests of the geotechnical, physical and mechanical parameters of washed mineral waste from grit chambers. Research samples were taken from the largest, in terms of maximum daily capacity, wastewater treatment plant “Czajka” in Poland. The washed mineral waste was characterized by organic matter content (0.36% by Tyurin’s method or 1.04% by the loss on ignition method), fraction content (sand fraction was at least 90%; it corresponds in grain size to uniform-grained medium sand), specific density of solids (2.55 g/cm3), dry density, void ratio and porosity corresponding to the state of the loosest and densest possible composition of soil grains and particles (1.54 g/cm3, 0.656, 0.396 and 1.87 g/cm3, 0.364, 0.267, respectively), sand equivalent (93), passive capillarity (0.20 m), maximum dry density (1.78 g/cm3), optimal moisture content (11.23%), degree of saturation after compaction (0.66) and permeability coefficient (6.22·103cm/s). The mechanical parameters determined included internal friction angle (35.5°) and apparent cohesion (14.27 kPa). The possibility of using washed mineral waste as soil for the backfill of installation trenches, abutments and retaining structures, as well as road embankment material, was evaluated considering current standards and legislation. It was found that the values of the determined parameters of washed mineral waste coincide with the values of the geotechnical parameters of sand, and there is a possibility of using this waste as a material in the indicated applications after fulfilling the appropriate conditions. Full article
(This article belongs to the Special Issue Use of Post-processing Waste in Construction)
Show Figures

Figure 1

21 pages, 3960 KB  
Article
Dry and Hydrothermal Co-Carbonization of Mixed Refuse-Derived Fuel (RDF) for Solid Fuel Production
by Andrei Longo, Octávio Alves, Ali Umut Sen, Catarina Nobre, Paulo Brito and Margarida Gonçalves
Reactions 2024, 5(1), 77-97; https://doi.org/10.3390/reactions5010003 - 16 Jan 2024
Cited by 4 | Viewed by 3236
Abstract
The present study aims to test several conditions of the thermochemical pretreatment of torrefaction and carbonization to improve the physical and combustible properties of the Portuguese RDF. Therefore, two different types of RDF were submitted alone or mixed in 25%, 50%, and 75% [...] Read more.
The present study aims to test several conditions of the thermochemical pretreatment of torrefaction and carbonization to improve the physical and combustible properties of the Portuguese RDF. Therefore, two different types of RDF were submitted alone or mixed in 25%, 50%, and 75% proportions to dry carbonization processes in a range of temperatures between 250 to 350 °C and residence time between 15 and 60 min. Hydrothermal carbonization was also carried out with RDF samples and their 50% mixture at temperatures of 250 and 300 °C for 30 min. The properties of the 51 chars and hydrochars produced were analyzed. Mass yield, apparent density, proximate and elemental analysis, ash mineral composition, and higher heating value (HHV), among others, were determined to evaluate the combustion behavior improvement of the chars. The results show that after carbonization, the homogeneity and apparent density of the chars were increased compared to the raw RDF wastes. The chars and hydrochars produced present higher HHV and lower moisture and chlorine content. In the case of chars, a washing step seems to be essential to reduce the chlorine content to allow them to be used as an alternative fuel. In conclusion, both dry and wet carbonization demonstrated to be important pretreatments of the RDF to produce chars with improved physical and combustion properties. Full article
Show Figures

Figure 1

Back to TopTop