Biomass Conversion to Value-Added Chemicals and Fuels Using Natural Minerals as Catalysts or Catalytic Supports
Abstract
1. Introduction
2. The Use of Minerals as Catalysts for Lignocellulosic Biomass Valorization
2.1. Biomass Pyrolysis
2.2. Biomass Gasification
2.3. Other Treatments of Biomass
3. The Use of Minerals as Catalysts for Fatty Biomass Valorization
3.1. Biodiesel Production
3.2. Hydrotreated Vegetable Oil Production
3.3. Biofuels Produced by Deoxygenation
4. Biomass-Derived Platform Molecules Transformation into Value-Added Products
4.1. Hydrogenation of Bio-Based Molecules
4.2. Oxidation of Bio-Based Molecules
4.3. Dehydration of Bio-Based Saccharides
4.4. Isomerization of Bio-Based Saccharides
4.5. Other Transformation Reactions of Bio-Based Molecules
4.6. Terpenes Upgrading
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Oil Statistics-Worldometer. Available online: https://www.worldometers.info/oil/ (accessed on 19 June 2025).
- World Oil Statistics-Worldometer. Available online: https://www.worldometers.info/gas/ (accessed on 19 June 2025).
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Li, H.; Luijkx, I.T.; Olsen, A.; et al. Global Carbon Budget 2024. Earth Syst. Sci. Data 2025, 17, 965–1039. [Google Scholar] [CrossRef]
- Ning, P.; Yang, G.; Hu, L.; Sun, J.; Shi, L.; Zhou, Y.; Wang, Z.; Yang, J. Recent advances in the valorization of plant biomass. Biotechnol. Biofuels 2021, 14, 102. [Google Scholar] [CrossRef]
- Arandiyan, H.; Sudarsanam, P.; Bhargava, S.K.; Lee, A.F.; Wilson, K. Perovskite Catalysts for Biomass Valorization. ACS Catal. 2023, 13, 7879–7916. [Google Scholar] [CrossRef]
- Mohammad, M.; Rahman, M.M.; Rashid, U.; Taufiq-Yap, Y.H. Biochar-Based Heterogeneous Catalysts for Biodiesel Production: A Review. ACS Omega 2023, 8, 11234–11253. [Google Scholar] [CrossRef]
- Belluati, M.; Tabasso, S.; Gaudino, E.C.; Cravotto, G.; Manzoli, M. Biomass-derived carbon-based catalysts for lignocellulosic biomass and waste valorisation: A circular approach. Green Chem. 2024, 26, 8642–8668. [Google Scholar] [CrossRef]
- Liu, C.; Yan, G.; Gao, J.; Guo, H.; Hou, Q. Advances in Valorization of Biomass-Derived Glycolic Acid Toward Polyglycolic Acid Production. Catalysts 2024, 14, 903. [Google Scholar] [CrossRef]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Ao, S.; Changmai, B.; Vanlalveni, C.; Chhandama, M.V.L.; Wheatley, A.E.H.; Rokhum, S.L. Biomass waste-derived catalysts for biodiesel production: Recent advances and key challenges. Renew. Energy 2024, 223, 120031. [Google Scholar] [CrossRef]
- Güleç, F.; Parthiban, A.; Umenweke, G.C.; Musa, U.; Williams, O.; Mortezaei, Y.; Suk-Oh, H.; Lester, E.; Ogbaga, C.C.; Gunes, B.; et al. Progress in lignocellulosic biomass valorization for biofuels and value-added chemical production in the EU a focus on thermochemical conversion processes. Biofuels Bioprod. Biorefin. 2024, 18, 755–781. [Google Scholar] [CrossRef]
- Joshi, N.C.; Sinha, S.; Bhatnagar, P.; Nath, Y.; Negi, B.; Kumar, V.; Gururani, P. A concise review on waste biomass valorization through thermochemical conversion. Curr. Res. Microb. Sci. 2024, 6, 100237. [Google Scholar] [CrossRef]
- Joshi, M.; Manjare, S. Chemical approaches for the biomass valorisation: A comprehensive review of pretreatment strategies. Environ. Sci. Pollut. Res. 2024, 31, 48928–48954. [Google Scholar] [CrossRef]
- Alazaiza, M.Y.D.; Alzghoul, T.M.; Ramu, M.B.; Nassani, D.E. Catalysis in Biofuel Production and Biomass Valorization: Trends, Challenges, and Innovations Through a Bibliometric Analysis. Catalysts 2025, 15, 227. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Naseem, M.T.; Ali, S.; Zaman, W. Metal-Based Catalysts in Biomass Transformation: From Plant Feedstocks to Renewable Fuels and Chemicals. Catalysts 2025, 15, 40. [Google Scholar] [CrossRef]
- Fetisova, O.Y.; Mikova, N.M.; Chudina, A.I.; Kazachenko, A.S. Kinetic Study of Pyrolysis of Coniferous Bark Wood and Modified Fir Bark Wood. Fire 2023, 6, 59. [Google Scholar] [CrossRef]
- Hurst, G.; González-Carballo, J.M.; Tosheva, L.; Tedesco, S. Synergistic Catalytic Effect of Sulphated Zirconia—HCl System for Levulinic Acid and Solid Residue Production Using Microwave Irradiation. Energies 2021, 14, 1582. [Google Scholar] [CrossRef]
- Hurst, G.; Teklemariam, A.; Brierley, S.; De Rienzo, M.A.D.; Tedesco, S. Lignocellulosic biomass conversion to levulinic acid via acid catalysis: Current methods, opportunities and challenges for self-sustaining biorefineries. Int. J. Thermofluids 2025, 27, 101175. [Google Scholar] [CrossRef]
- Ochirkhuyag, A.; Temuujin, J. The Catalytic Potential of Modified Clays: A Review. Minerals 2024, 14, 629. [Google Scholar] [CrossRef]
- Bio-Based Industry and Biorefineries in the EU. Available online: https://knowledge4policy.ec.europa.eu/visualisation/bio-based-industry-biorefineries-eu_en (accessed on 28 August 2025).
- Baidoo, E.B.; Tulashie, S.K.; Alale, E.M.; Munumkum, C.A.; Acquah, D.; Agudah, P.Q.; Asante, P.A. Revolutionizing bioenergy production: A review on sustainable biomass feedstock. Biomass Bioenergy 2025, 201, 108113. [Google Scholar] [CrossRef]
- Konyannik, B.Y.; Lavie, J.D. Valorization techniques for biomass waste in energy Generation: A systematic review. Bioresour. Technol. 2025, 435, 132973. [Google Scholar] [CrossRef]
- Setioputro, N.T.; Muchammad, M.; Yohana, E.; Syaiful, S.; Ariyanto, H.D.; Kosim, M. Effect of soaked biomass on gasification temperature performance in an open-downdraft gasifier. Bioresour. Technol. 2025, 415, 131651. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.J.; Bilbao, A.J.; Olazar, M. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 2018, 82, 576–596. [Google Scholar] [CrossRef]
- Barahmand, Z.; Wang, L.; Holm-Nielsen, J.B.; Eikeland, M. Significance of pyrolysis in the circular economy: An integrative review of technologies, potential chemicals, and separation techniques. Fuel 2025, 398, 135539. [Google Scholar] [CrossRef]
- Wang, K.; Johnston, P.A.; Brown, R.C. Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system. Bioresour. Technol. 2014, 1, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Zulkafli, A.H.; Hassan, H.; Ahmad, M.A.; Din, A.T.M.; Wasli, S.M. Co-pyrolysis of biomass and waste plastics for production of chemicals and liquid fuel: A review on the role of plastics and catalyst types. Arab. J. Chem. 2023, 16, 104389. [Google Scholar] [CrossRef]
- Kumar, G.; Panda, A.K.; Singh, R.K. Optimization of process for the production of bio-oil from eucalyptus wood. J. Fuel Chem. Technol. 2010, 38, 162–167. [Google Scholar] [CrossRef]
- Kosivtsov, Y.; Sulman, E.; Lugovoy, Y.; Kosivtsova, A.; Stepacheva, A. Experimental Investigation of the Biomass Catalytic Pyrolysis Process to Produce the Combustible Gases with the High Calorific Value. Bull. Chem. React. Eng. Catal. 2015, 10, 324–331. [Google Scholar] [CrossRef]
- Salan, T.; Alma, M.H.; Altuntaş, E. The fuel properties of pyrolytic oils obtained from catalytic pyrolysis of non-recyclable pulper rejects using activated natural minerals. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 41, 1460–1473. [Google Scholar] [CrossRef]
- Gandidi, I.M.; Sukarni, S.; Permanasari, A.A.; Purnami, P.; Abdullah, T.A.T.; Johari, A.; Pambudi, N.A. Production of Light Fraction-Based Pyrolytic Fuel from Spirulina platensis Microalgae Using Various Low-Cost Natural Catalysts and Insertion. Energy Eng. 2024, 121, 3635–3648. [Google Scholar] [CrossRef]
- Merdun, H.; Sezgin, İ.V. Products distribution of catalytic co-pyrolysis of greenhouse vegetable wastes and coal. Energy 2018, 162, 953–963. [Google Scholar] [CrossRef]
- Vo, T.A.; Ly, H.V.; Hwang, I.; Hwang, H.T.; Kim, J.; Kim, S.-S. Enhancement of biofuel quality via conventional and catalytic co-pyrolysis of bamboo with polystyrene in a bubbling fluidized bed reactor: Coupled experiments and artificial neural network modeling. Fuel 2023, 346, 128403. [Google Scholar] [CrossRef]
- Vo, T.A.; Kim, J.; Hwang, H.T.; Kim, S.-S. Fast pyrolysis of cashew nut shells in a bubbling fluidized bed reactor for producing high-heating value bio-oil using dolomite as a catalyst and carbon capture sorbent. Fuel 2024, 364, 131024. [Google Scholar] [CrossRef]
- Charusiri, W. Fast Pyrolysis of Residues from Paper Mill Industry to Bio-oil and Value Chemicals: Optimization Studies. Energy Procedia 2015, 74, 933–941. [Google Scholar] [CrossRef]
- Veses, A.; Aznar, M.; López, J.M.; Callén, M.S.; Murillo, R.; García, T. Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel 2015, 141, 17–22. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X. Understanding catalytic effects of bentonite/clinoptilolite on biomass pyrolysis. Renew. Energy 2019, 142, 304–315. [Google Scholar] [CrossRef]
- Rijo, B.; Soares Dias, A.P.; de Jesus, N.; Pereira, M.F. Home Trash Biomass Valorization by Catalytic Pyrolysis. Environments 2023, 10, 186. [Google Scholar] [CrossRef]
- Sandoval-Rangel, L.; Ramírez-Murillo, C.J.; Dimas-Rivera, G.L.; De La Rosa, J.R.; Lucio-Ortiz, C.J.; Ahmad, E.; Nigam, K.D.P.; Montesinos-Castellanos, A.; Mendoza, A. Enhancing the quality of products from slow pyrolysis of an agro-industrial biomass waste with natural mineral additives. Ind. Crops Prod. 2024, 216, 118798. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, H.; Jia, J.; Yang, L.; Lv, W.; Bao, J.; Shu, X.; Gu, Q.; Zhang, P. Pyrolysis of municipal solid waste with iron-based additives: A study on the kinetic, product distribution and catalytic mechanisms. J. Clean. Prod. 2020, 258, 120682. [Google Scholar] [CrossRef]
- Syazaidah, I.; Bakar, M.S.A.; Reza, M.S.; Azad, A.K. Ex-situ catalytic pyrolysis of chicken litter for bio-oil production: Experiment and characterization. J. Environ. Manag. 2021, 297, 113407. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Karakoulia, S.A.; Kalogiannis, K.G.; Iliopoulou, E.F.; Delimitis, A.; Yiannoulakis, H.; Zampetakis, T.; Lappas, A.A.; Triantafyllidis, K.S. Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl. Catal. B Environ. 2016, 196, 155–173. [Google Scholar] [CrossRef]
- Karod, M.; Hubble, A.H.; Maag, A.R.; Pollard, Z.A.; Goldfarb, J.L. Clay-catalyzed in situ pyrolysis of cherry pits for upgraded biofuels and heterogeneous adsorbents as recoverable by-products. Biomass Convers. Biorefin. 2024, 14, 7873–7885. [Google Scholar] [CrossRef]
- Bisen, D.; Lanjewar, R.; Chouhan, A.P.S.; Pant, M.; Chakma, S. Catalytic co-pyrolysis of rice husk and high-density polyethylene using dolomite for enhancement of bio-oil production and quality. Environ. Sci. Pollut. Res. 2025, 32, 15676–15694. [Google Scholar] [CrossRef] [PubMed]
- Ly, H.V.; Lim, D.-H.; Sim, J.W.; Kim, S.-S.; Kim, J. Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst. Energy 2018, 162, 564–575. [Google Scholar] [CrossRef]
- Ly, H.V.; Tran, Q.K.; Kim, S.-S.; Kim, J.; Choi, S.S.; Oh, C. Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor. Environ. Pollut. 2021, 275, 116023. [Google Scholar] [CrossRef]
- Mysore Prabhakara, H.; Bramer, E.A.; Brem, G. Role of dolomite as an in-situ CO2 sorbent and deoxygenation catalyst in fast pyrolysis of beechwood in a bench scale fluidized bed reactor. Fuel Process. Technol. 2021, 224, 107029. [Google Scholar] [CrossRef]
- Duanguppama, K.; Pannucharoenwong, N.; Echaroj, S.; Pham, L.K.H.; Samart, C.; Rattanadecho, P. Integrated catalytic pyrolysis and catalytic upgrading of Leucaena leucocephala over natural catalysts. J. Energy Inst. 2023, 106, 101155. [Google Scholar] [CrossRef]
- Aljeradat, R.A.; Aljbour, S.H.; Jarrah, N.A. Natural minerals as potential catalysts for the pyrolysis of date kernels: Effect of catalysts on products yield and bio-oil quality. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 47, 2003485. [Google Scholar] [CrossRef]
- Venegas-Vásconez, D.; Orejuela-Escobar, L.; Valarezo-Garcés, A.; Guerrero, V.H.; Tipanluisa-Sarchi, L.; Alejandro-Martín, S. Biomass Valorization through Catalytic Pyrolysis Using Metal-Impregnated Natural Zeolites: From Waste to Resources. Polymers 2024, 16, 1912. [Google Scholar] [CrossRef]
- Nazari, L.; Yuan, Z.; Souzanchi, S.; Ray, M.B.; Xu, C. Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils. Fuel 2015, 162, 74–83. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, K.; Sudibyo, H.; Tester, J.W.; Huang, G.; Han, L.; Goldfarb, J.L. Production of upgraded biocrude from hydrothermal liquefaction using clays as in situ catalysts. Energy Convers. Manag. 2021, 247, 114764. [Google Scholar] [CrossRef]
- Wu, L.M.; Tong, D.S.; Li, C.S.; Ji, S.F.; Lin, C.X.; Yang, H.M.; Zhong, Z.K.; Xu, C.Y.; Yu, W.H.; Zhou, C.H. Insight into formation of montmorillonite-hydrochar nanocomposite under hydrothermal conditions. Appl. Clay Sci. 2016, 119, 116–125. [Google Scholar] [CrossRef]
- Sudibyo, H.; Cabrera, D.V.; Widyaparaga, A.; Budhijanto, B.; Celis, C.; Labatut, R. Reactivity and Stability of Natural Clay Minerals with Various Phyllosilicate Structures as Catalysts for Hydrothermal Liquefaction of Wet Biomass Waste. Ind. Eng. Chem. Res. 2023, 62, 12513–12529. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Y.; Tian, S.; Zhang, X.; Wei, X. Catalytic hydrothermal liquefaction of sewage sludge: Effect of metal support heterogeneous catalysts on products distribution. J. Energy Inst. 2022, 103, 154–159. [Google Scholar] [CrossRef]
- Chen, J.; Wang, D.; Lu, X. Effect of Cobalt(II) on Acid-Modified Attapulgite-Supported Catalysts on the Depolymerization of Alkali Lignin. Ind. Eng. Chem. Res. 2022, 61, 1675–1683. [Google Scholar] [CrossRef]
- Karod, M.; Pollard, Z.A.; Ahmad, M.T.; Dou, G.; Gao, L.; Goldfarb, J.L. Impact of Bentonite Clay on In Situ Pyrolysis vs. Hydrothermal Carbonization of Avocado Pit Biomass. Catalysts 2022, 12, 655. [Google Scholar] [CrossRef]
- Ciuffi, B.; Chiaramonti, D.; Rizzo, A.M.; Frediani, M.; Rosi, L. A Critical Review of SCWG in the Context of Available Gasification Technologies for Plastic Waste. Appl. Sci. 2020, 10, 6307. [Google Scholar] [CrossRef]
- Mohammed, M.A.A.; Salmiaton, A.; Azlina, W.W.; Amran, M.M.; Fakhru’L-Razi, A.; Taufiq-Yap, Y.H. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 1258–1270. [Google Scholar] [CrossRef]
- De Andrés, J.M.; Narros, A.; Rodríguez, M.E. Behaviour of dolomite, olivine and alumina as primary catalysts in air-steam gasification of sewage sludge. Fuel 2011, 90, 521–527. [Google Scholar] [CrossRef]
- Alper, D.; Babayiğit, E.; Zengin, G.E.; Okutan, H.C.; Sarıoğlan, A. The catalytic influence of low-cost natural minerals on sewage sludge gasification for hydrogen production. Int. J. Hydrogen Energy 2025, 142, 966–980. [Google Scholar] [CrossRef]
- Zhou, C.; Rosén, C.; Engvall, K. Use of in-bed primary catalyst in pressurized biomass fluidized bed gasification: Strategies for optimal use. Fuel 2025, 393, 134997. [Google Scholar] [CrossRef]
- Chang, G.; Shi, P.; Guo, Y.; Wang, L.; Wang, C.; Guo, Q. Enhanced pyrolysis of palm kernel shell wastes to bio-based chemicals and syngas using red mud as an additive. J. Clean. Prod. 2020, 272, 122847. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Zhang, X.; Li, J.; Chang, D.; Song, L. Effect of Additives on Catalytic Cracking of Biomass Gasification Tar over a Nickel-Based Catalyst. Chin. J. Catal. 2010, 31, 409–414. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Chang, D.; Chen, D.; Frost, R.L. Catalytic cracking of tars derived from rice hull gasification over goethite and palygorskite. Appl. Clay Sci. 2012, 70, 51–57. [Google Scholar] [CrossRef]
- Chiodo, V.; Urbani, F.; Zafarana, G.; Prestipino, M.; Galvagno, A.; Maisano, S. Syngas production by catalytic steam gasification of citrus residues. Int. J. Hydrogen Energy 2017, 42, 28048–28055. [Google Scholar] [CrossRef]
- Puig-Gamero, M.; Lara-Díaz, J.; Valverde, J.L.; Sanchez-Silva, L.; Sánchez, P. Dolomite effect on steam co-gasification of olive pomace, coal and petcoke: TGA-MS analysis, reactivity and synergistic effect. Fuel 2018, 234, 142–150. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, X.; Lin, S.; Ji, X.; Bai, J.; Xu, M. Syngas production from air-steam gasification of biomass with natural catalysts. Sci. Total Environ. 2018, 645, 518–523. [Google Scholar] [CrossRef]
- Latifi, M.; Berruti, F.; Briens, C. Jiggle bed reactor for testing catalytic activity of olivine in bio-oil gasification. Powder Technol. 2017, 316, 400–409. [Google Scholar] [CrossRef]
- Šuhaj, P.; Haydary, J.; Husár, J.; Steltenpohl, P.; Šupa, I. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals. Waste Manag. 2019, 85, 1–10. [Google Scholar] [CrossRef]
- Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L.F. Progress in Chemical-Looping Combustion and Reforming technologies. Prog. Energy Combust. Sci. 2012, 38, 215–282. [Google Scholar] [CrossRef]
- Xu, T.; Xu, F.; Moyo, G.G.; Sun, Y.; Chen, Z.; Xiao, B.; Wang, X.; Hu, Z. Comparative study of MxOy (M = Cu, Fe and Ni) supported on dolomite for syngas production via chemical looping reforming with toluene. Energy Convers. Manag. 2019, 199, 111937. [Google Scholar] [CrossRef]
- Veses, A.; Sanahuja-Parejo, O.; Callén, M.S.; Murillo, R.; García, T. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels. Waste Manag. 2020, 101, 171–179. [Google Scholar] [CrossRef]
- Veses, A.; Sanahuja-Parejo, O.; Martínez, I.; Callén, M.S.; López, J.M.; García, T.; Murillo, R. A pyrolysis process coupled to a catalytic cracking stage: A potential waste-to-energy solution for mattress foam waste. Waste Manag. 2021, 120, 415–423. [Google Scholar] [CrossRef]
- Ben Abdallah, A.; Ben Hassen Trabelsi, A.; Veses, A.; García, T.; López, J.M.; Navarro, M.V.; Mihoubi, D. Enhancing the Production of Syngas from Spent Green Tea Waste through Dual-Stage Pyrolysis and Catalytic Cracking. Catalysts 2023, 13, 1334. [Google Scholar] [CrossRef]
- Yang, C.; Pang, Y.; Li, G.; Chen, Y.; Li, H. Degradation of biomass tar catalyzed by Fe/Ce supported on diatomite-based foam ceramics. Biomass Conv. Biorefin. 2024, 14, 21107–21120. [Google Scholar] [CrossRef]
- Valle, B.; Aramburu, B.; Santiviago, C.; Bilbao, J.; Gayubo, A.G. Upgrading of Bio-Oil in a Continuous Process with Dolomite Catalyst. Energy Fuels 2014, 28, 6419–6428. [Google Scholar] [CrossRef]
- Valle, B.; García-Gómez, N.; Remiro, A.; Gayubo, A.G.; Bilbao, J. Cost-effective upgrading of biomass pyrolysis oil using activated dolomite as a basic catalyst. Fuel Process. Technol. 2019, 195, 106142. [Google Scholar] [CrossRef]
- Cruz, A.; Ramalho, E.; Ribeiro, A.; Pilão, R. Effect of catalyst on the producer gas composition from co-gasification of glycerol/fat mixtures. Energy Rep. 2022, 8, 139–144. [Google Scholar] [CrossRef]
- Villegas-Bolaños, P.A.; Gallego, J.; Dorkis, L.; Márquez, M.A. Glycerol valorization using Colombian olivine as a catalyst. Heliyon 2023, 9, e15561. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Chen, M.; Tang, Z.; Yang, Z.; Hu, J.; Zhang, H. Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts—Part I: Effect of nickel content. Fuel Process. Technol. 2019, 192, 227–238. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, T.; Liu, H.; Zhang, P.; Wang, C.; Dong, S.; Chen, D.; Xie, J.; Zou, X.; Suib, S.L.; et al. High catalytic performance of the Al-promoted Ni/Palygorskite catalysts for dry reforming of methane. Appl. Clay Sci. 2020, 188, 105498. [Google Scholar] [CrossRef]
- Del Grosso, M.; Sridharan, B.; Tsekos, C.; Klein, S.; de Jong, W. A modelling based study on the integration of 10 MWth indirect torrefied biomass gasification, methanol and power production. Biomass Bioenergy 2020, 136, 105529. [Google Scholar] [CrossRef]
- Dong, L.; Sharma, P.; Abass, R.R.; Al-shuwaili, S.J.; Kumar, A.; Al-Abdeen, S.H.Z.; Qassem, L.Y.; Alam, M.M. Optimization of biofuel production from biomass using montmorillonite catalyst by development of predictive models. J. Mol. Liq. 2024, 403, 124768. [Google Scholar] [CrossRef]
- Chen, L.; He, L.; Zheng, B.; Wei, G.; Li, H.; Zhang, H.; Yang, S. Bifunctional acid-activated montmorillonite catalyzed biodiesel production from non-food oil: Characterization, optimization, kinetic and thermodynamic studies. Fuel Process. Technol. 2023, 250, 107903. [Google Scholar] [CrossRef]
- Tiwari, M.S.; Dicks, J.S.; Keogh, J.; Ranade, V.V.; Manyar, H.G. Direct conversion of furfuryl alcohol to butyl levulinate using tin exchanged tungstophosphoric acid catalysts. J. Mol. Catal. 2020, 488, 110918. [Google Scholar] [CrossRef]
- Sumari, S.; Sulistyoningsih, D.A.; Aisyah, F.; Santoso, A.; Asrori, M.R.; Budianto, A.; Nurhadi, M.; Lai, S.Y. Catalytic transesterification of kapok seed oil by dual metal oxide (Na2O-K2O; MgO-CaO) impregnated active-natural mordenite under ultrasonic irradiation. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 6885–6900. [Google Scholar] [CrossRef]
- SathyaSelvabala, V.; Varathachary, T.K.; Selvaraj, D.K.; Ponnusamy, V.; Subramanian, S. Removal of free fatty acid in Azadirachta indica (Neem) seed oil using phosphoric acid modified mordenite for biodiesel production. Bioresour. Technol. 2010, 101, 5897–5902. [Google Scholar] [CrossRef] [PubMed]
- Çakırca, E.E.; Tekin, G.N.; İlgen, O.; Akın, A.N. Catalytic activity of CaO-based catalyst in transesterification of microalgae oil with methanol. Energy Environ. 2019, 30, 176–187. [Google Scholar] [CrossRef]
- Sudalai, S.; Devanesan, M.G.; Arumugam, A. Dolomite as A Potential Source of Heterogenous Catalyst for Biodiesel Production from Pongamia pinnata. Nat. Environ. Pollut. Technol. 2024, 23, 2391–2396. [Google Scholar] [CrossRef]
- Niu, S.; Zhang, X.; Ning, Y.; Zhang, Y.; Qu, T.; Hu, X.; Gong, Z.; Lu, C. Dolomite incorporated with cerium to enhance the stability in catalyzing transesterification for biodiesel production. Renew. Energy 2020, 154, 107–116. [Google Scholar] [CrossRef]
- Subramani, S.; Sambath, R.; Ponnuvel, A.; Kumaran, D.; Rajesh, S.; Murugesan, A.; Muruhan, S.; Sankar, R.; Ganesan, D.M.; Arumugam, A. Pilot scale production of biodiesel from Madhuca indica and comparative techno-economic analysis. Environ. Sci. Pollut. Res. 2025, 1–18. [Google Scholar] [CrossRef]
- Korkut, I.; Bayramoglu, M. Selection of catalyst and reaction conditions for ultrasound assisted biodiesel production from canola oil. Renew. Energy 2018, 116, 543–551. [Google Scholar] [CrossRef]
- Vargas, E.M.; Neves, M.C.; Tarelho, L.A.; Nunes, M.I. Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils. Renew. Energy 2019, 136, 873–883. [Google Scholar] [CrossRef]
- Sudalai, S.; Vairaprakash, P.; Devanesan, M.G.; Arumugam, A. Sustainable biodiesel production from Madhuca indica oil using a functionalized industrial waste as a catalyst: Ready to scale-up approach. Ind. Crops Prod. 2023, 193, 116233. [Google Scholar] [CrossRef]
- Zhang, W.; Li, M.; Wang, J.; Zhao, Y.; Zhou, S.; Xing, W. Heterogeneous poly (ionic liquids) catalyst on nanofiber-like palygorskite supports for biodiesel production. Appl. Clay Sci. 2017, 146, 167–175. [Google Scholar] [CrossRef]
- Casiello, M.; Savino, S.; Massaro, M.; Liotta, L.F.; Nicotra, G.; Pastore, C.; Fusco, C.; Monopoli, A.; D’Accolti, L.; Nacci, A.; et al. Multifunctional halloysite and hectorite catalysts for effective transformation of biomass to biodiesel. Appl. Clay Sci. 2023, 242, 107048. [Google Scholar] [CrossRef]
- Sudalai, S.; Prabakaran, S.; Devanesan, M.G.; Arumugam, A. Process Optimization for Madhuca indica Seed Kernel Oil Extraction and Evaluation of its Potential for Biodiesel Production. Nat. Environ. Pollut. Technol. 2024, 23, 2335–2345. [Google Scholar] [CrossRef]
- Fani, K.; Lycourghiotis, S.; Bourikas, K.; Kordouli, E. Biodiesel upgrading to renewable diesel over nickel supported on natural mordenite catalysts. Ind. Eng. Chem. Res. 2021, 60, 18695–18706. [Google Scholar] [CrossRef]
- Fani, K.; Lycourghiotis, S.; Bourikas, K.; Kordouli, E. Influence of natural mordenite activation mode on its efficiency as support of nickel catalysts for biodiesel upgrading to renewable diesel. Nanomaterials 2023, 13, 1603. [Google Scholar] [CrossRef] [PubMed]
- Putra, R.; Lestari, W.W.; Wibowo, F.R.; Susanto, B.H. Fe/Indonesian natural zeolite as hydrodeoxygenation catalyst in green diesel production from palm oil. Bull. Chem. React. Eng. Catal. 2018, 13, 245–255. [Google Scholar] [CrossRef]
- Putra, R.; Lestari, W.W.; Susanto, B.H.; Kadja, G.T. Green diesel rich product (C-15) from the hydro-deoxygenation of refined palm oil over activated NH4+-Indonesian natural zeolite. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 7483–7498. [Google Scholar] [CrossRef]
- Kurniawan, A.A.; Rustyawan, W.; Ibadurrohman, M. Performance Test of Various Indonesian Natural Zeolites as Composite Components of NiMo/Al2O3-Zeolite Catalysts for Hydrocracking Used Cooking Oil into Biohydrocarbons. Bull. Chem. React. Eng. Catal. 2025, 20, 99–108. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Kordouli, E.; Zafeiropoulos, J.; Kordulis, C.; Bourikas, K. Mineral montmorillonite valorization by developing Ni and Mo–Ni catalysts for third-generation green diesel production. Molecules 2022, 27, 643. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Kordouli, E.; Sygellou, L.; Bourikas, K.; Kordulis, C. Nickel catalysts supported on palygorskite for transformation of waste cooking oils into green diesel. Appl. Catal. B Environ. 2019, 259, 118059. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Kordouli, E.; Kordulis, C.; Bourikas, K. Transformation of residual fatty raw materials into third generation green diesel over a nickel catalyst supported on mineral palygorskite. Renew. Energy 2021, 180, 773–786. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Shamsuddin, A.H.; Ali, S.; Bahru, R.; Milano, J.; Tiong, S.K.; Fattah, I.M.R.; Raja Shahruzzaman, R.M.H. Recent Advances of Triglyceride Catalytic Pyrolysis via Heterogenous Dolomite Catalyst for Upgrading Biofuel Quality: A Review. Nanomaterials 2023, 13, 1947. [Google Scholar] [CrossRef] [PubMed]
- Abdulloh, A.; Rahmah, U.; Permana, A.J.; Mahdy, A.A.; Budiastanti, T.A.; Fahmi, M.Z. Cracking optimization of palmitic acid using Fe3+ modified natural mordenite for producing aviation fuel compounds. Chem. Chem. Technol. 2023, 17, 625–635. [Google Scholar] [CrossRef]
- Buyang, Y.; Suprapto, S.; Nugraha, R.E.; Holilah, H.; Bahruji, H.; Hantoro, R.; Jalil, A.A.; Oetami, T.P.; Prasetyoko, D. Catalytic pyrolysis of Reutealis trisperma oil using raw dolomite for bio-oil production. J. Anal. Appl. Pyrol. 2023, 169, 105852. [Google Scholar] [CrossRef]
- Hafriz, R.S.R.M.; Salmiaton, A.; Yunus, R.; Taufiq-Yap, Y.H. Green Biofuel Pro-duction via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst. Bull. Chem. React. Eng. Catal. 2018, 13, 489–501. [Google Scholar] [CrossRef]
- Hafriz, R.S.R.M.; Nor Shafizah, I.; Arifin, N.A.; Salmiaton, A.; Yunus, R.; Taufiq Yap, Y.H.; Shamsuddin, A.H. Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil. Renew. Energy 2021, 178, 128–143. [Google Scholar] [CrossRef]
- Ali, S.H.; Hafriz, R.S.R.M.; Shamsuddin, A.H.; Salmiaton, A. Production of liquid biofuel from sludge palm oil (SPO) using heterogeneous catalytic pyrolysis. J. Appl. Sci. Eng. 2022, 26, 529–538. [Google Scholar] [CrossRef]
- Hafriz, R.S.R.M.; Arifin, N.A.; Salmiaton, A.; Yunus, R.; Taufiq-Yap, Y.H.; Saifuddin, N.M.; Shamsuddin, A.H. Multiple-objective optimization in green fuel production via catalytic deoxygenation reaction with NiO-dolomite catalyst. Fuel 2022, 308, 122041. [Google Scholar] [CrossRef]
- Kanchanatip, E.; Chansiriwat, W.; Palalerd, S.; Khunphonoi, R.; Kumsaen, T.; Wantala, K. Light biofuel production from waste cooking oil via pyrolytic catalysis cracking over modified Thai dolomite catalysts. Carbon Resour. Convers. 2022, 5, 177–184. [Google Scholar] [CrossRef]
- Tamim, R.; Prasetyoko, D.; Jovita, S.; Ni’mah, Y.L.; Nugraha, R.E.; Holilah, H.; Bahruji, H.; Yusop, R.; Asikin-Mijan, N.; Jalil, A.A.; et al. Low temperature pyrolysis of waste cooking oil using marble waste for bio-jet fuel production. Renew. Energy 2024, 232, 121135. [Google Scholar] [CrossRef]
- Tamim, R.; Prasetyoko, D.; Jovita, S.; Subagyo, R.; Ni’mah, Y.L.; Holilah, H.; Bahruji, H.; Asikin-Mijan, N.; Jalil, A.A.; Hartati, H.; et al. Ni-activated marble waste nanoparticles for catalyzed pyrolysis of waste cooking oil into hydrocarbon. Renew. Energy 2025, 248, 123128. [Google Scholar] [CrossRef]
- Nhien, L.C.; Long, N.V.D.; Lee, M. Novel hybrid reactive distillation with extraction and distillation processes for furfural production from an actual xylose solution. Energies 2021, 14, 1152. [Google Scholar] [CrossRef]
- Richel, A.; Maireles-Torres, P.; Len, C. Recent advances in continuous reduction of furfural to added value chemicals. Curr. Opin. Green Sustain. Chem. 2022, 37, 100655. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A.; Moreno-Tost, R.; Maireles-Torres, P. Selective Furfural Hydrogenation to Furfuryl Alcohol Using Cu-Based Catalysts Supported on Clay Minerals. Top. Catal. 2017, 60, 1040–1053. [Google Scholar] [CrossRef]
- Guerrero-Torres, A.; Jiménez-Gómez, C.P.; Cecilia, J.A.; García-Sancho, C.; Franco, F.; Quirante-Sánchez, J.J.; Maireles-Torres, P. Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals: Influence of the synthesis method on the catalytic performance. Top. Catal. 2019, 62, 535–550. [Google Scholar] [CrossRef]
- García, A.; Sanchis, R.; Llopis, F.J.; Vázquez, I.; Pico, M.P.; López, M.L.; Álvarez-Serrano, I.; Solsona, B. Ni Supported on Natural Clays as a Catalyst for the Transformation of Levulinic Acid into γ-Valerolactone without the Addition of Molecular Hydrogen. Energies 2020, 13, 3448. [Google Scholar] [CrossRef]
- García, A.; Saotta, A.; Miguel, P.J.; Sánchez-Tovar, R.; Fornasari, G.; Allegri, A.; Torres-Olea, B.; Cecilia, J.A.; Albonetti, S.; Dimitratos, N.; et al. Promoter Effect of Pt on Zr Catalysts to Increase the Conversion of Furfural to γ-Valerolactone Using Batch and Continuous Flow Reactors: Influence of the Way of the Incorporation of the Pt Sites. Energy Fuels 2024, 38, 9849–9861. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, X.; Wang, H.; Liu, H.; Rabeah, J.; Brückner, A.; Shi, F.; Gong, M.; Yang, X. Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst. Nat. Commun. 2021, 12, 6840. [Google Scholar] [CrossRef]
- Zhong, X.; Wei, Y.; Sadjadi, S.; Liu, D.; Li, M.; Yu, T.; Zhuang, G.; Yuan, P. Base-free oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over palygorskite-supported bimetallic Pt–Pd catalyst. Appl. Clay Sci. 2022, 226, 106574. [Google Scholar] [CrossRef]
- Zhong, X.; Yuan, P.; Wei, Y.; Liu, D.; Losic, D.; Li, M. Coupling Natural Halloysite Nanotubes and Bimetallic Pt–Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Appl. Mater. Interfaces 2022, 14, 3949–3960. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Yuan, P.; Sadjadi, S.; Liu, D.; Wei, Y. Palygorskite-supported ruthenium catalysts for the efficient selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran. Appl. Clay Sci. 2023, 242, 107023. [Google Scholar] [CrossRef]
- Wang, F.; Yan, C.; Jiang, R.; Chen, Y.; Wei, Y.; Cao, Y.; Guan, W.; Huo, P.; Zhang, Y. Highly efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over halloysite nanotubes-templated nitrogen-doped carbon supported bimetallic AuPd catalyst. Appl. Clay Sci. 2023, 235, 106872. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, L.; Li, Y.; Cao, Y.; Guan, W.; Pan, J.; Zhang, Z.; Zhang, Y. Oxygen Vacancy-Induced Metal–Support Interactions in AuPd/ZrO2 Catalysts for Boosting 5-Hydroxymethylfurfural Oxidation. Inorg. Chem. 2023, 62, 15277–15292. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Y.; Li, Y.; Guan, W.; Xia, Q.; Cao, M.; Huo, P.; Zhang, Y. Oxygen vacancy-driven strong metal-support interactions on AuPd/TiO2 catalysts for high-efficient air-oxidation of 5-hydroxymethylfurfural. Chem. Eng. J. 2023, 476, 146874. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Xia, Q.; Liu, Y.; Guan, W.; Chen, Y. Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using a Natural Mineral Vermiculite-Loaded Gold–Palladium Bimetallic Catalyst. Catalysts 2024, 14, 949. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Xia, Q.; Chen, Y.; Kong, L.; Yan, X.; Guan, W.; Pan, J. Ambient temperature catalyzed air-oxidation of 5-hydroxymethylfurfural via ternary metal and oxygen vacancies. Green Energy Environ. 2025, 10, 1568–1582. [Google Scholar] [CrossRef]
- Silva, M.J.d.; da Silva Andrade, P.H. The Heteropolyacid-Catalyzed Conversion of Biomass Saccharides into High-Added-Value Products and Biofuels. Processes 2024, 12, 2587. [Google Scholar] [CrossRef]
- Yang, F.; Weng, J.; Ding, J.; Zhao, Z.; Qin, L.; Xia, F. Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite. Renew. Energy 2020, 151, 829–836. [Google Scholar] [CrossRef]
- Kiani, F.; Mazloom, G.; Ghani, M.; Banisharif, F. Acid-modified mineral bentonite as catalyst for efficient furfural formation from glucose. Biomass Convers. Biorefin. 2024, 14, 11617–11631. [Google Scholar] [CrossRef]
- Adila, Z.; Trisunaryanti, W.; Triyono, T. Modification of Natural Zeolite from Klaten, Indonesia Using Ammonium Chloride by Ion-Exchange and Its Application as Catalyst in Ethanol Dehydration to Produce Diethyl Ether. Indones. J. Chem. 2024, 24, 505–518. [Google Scholar] [CrossRef]
- Ye, X.; Shi, X.; Jin, B.; Zhong, H.; Jin, F.; Wang, T. Natural mineral bentonite as catalyst for efficient isomerization of biomass-derived glucose to fructose in water. Sci. Total Environ. 2021, 778, 146276. [Google Scholar] [CrossRef]
- Ren, J.; Ye, X.; Shi, X.; Xu, H.; Wu, L.; Wang, T. N-Doped natural albite mineral as green solid catalyst for efficient isomerization of glucose into fructose in water. React. Chem. Eng. 2022, 7, 1786. [Google Scholar] [CrossRef]
- Long, S.; Huang, Z.; Du, Q.; Tang, P.; Xian, X.; Du, F.; Li, Y. Glucose isomerization into fructose with CaO-MgO mixed oxides and dolomite(ore)-derived base CaO/MgO catalysts in water under mild conditions. Fuel 2024, 370, 131754. [Google Scholar] [CrossRef]
- Barros, F.J.S.; Cecilia, J.A.; Moreno-Tost, R.; de Oliveira, M.F.; Rodríguez-Castellón, E.; Luna, F.M.T.; Vieira, R.S. Glycerol Oligomerization Using Low Cost Dolomite Catalyst. Waste Biomass Valorization 2020, 11, 1499–1512. [Google Scholar] [CrossRef]
- Tian, H.; Shao, Y.; Liang, C.; Xu, Q.; Zhang, L.; Zhang, S.; Liu, S.; Hu, X. Sulfated attapulgite for catalyzing the conversion of furfuryl alcohol to ethyl levulinate: Impacts of sulfonation on structural transformation and evolution of acidic sites on the catalyst. Renew. Energy 2020, 162, 1576–1586. [Google Scholar] [CrossRef]
- Lai, F.; Yan, F.; Wang, Y.; Li, C.; Cai, J.; Zhang, Z. Tungstophosphoric acid supported on metal/Si-pillared montmorillonite for conversion of biomass-derived carbohydrates into methyl levulinate. J. Clean. Prod. 2021, 314, 128072. [Google Scholar] [CrossRef]
- Meng, X.; Su, H.; Song, R.; Su, J.; Bian, J. Solvent-Free Aldol Condensation of Cyclopentanone with Natural Clay-Based Catalysts: Origin of Activity & Selectivity. Catalysts 2023, 13, 530. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Li, X.; Mu, B.; Liu, H.; Xia, C.; Wang, A.; Huang, Z. Natural attapulgite supported nano-Ni catalysts for the efficient reductive amination of biomass-derived aldehydes and ketones. Green Synth. Catal. 2024, 5, 42–50. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Activation of natural mordenite by various acids: Characterization and evaluation in the transformation of limonene into p-cymene. Mol. Catal. 2018, 450, 95–103. [Google Scholar] [CrossRef]
- Makarouni, D.; Lycourghiotis, S.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Transformation of limonene into p-cymene over acid activated natural mordenite utilizing atmospheric oxygen as a green oxidant: A novel mechanism. Appl. Catal. B Environ. 2018, 224, 740–750. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. The Influence of Calcination on the Physicochemical Properties of Acidactivated Natural Mordenite. Curr. Catal. 2020, 9, 138–147. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Transformation of limonene into high added value products over acid activated natural montmorillonite. Catal. Today 2020, 355, 757–767. [Google Scholar] [CrossRef]
- Makarouni, D.; Kordulis, C.; Dourtoglou, V. Solvent-Driven Selectivity on the One-Step Catalytic Synthesis of Manoyl Oxide Based on a Novel and Sustainable “Zeolite Catalyst–Solvent” System. Catal. Lett. 2022, 152, 1298–1307. [Google Scholar] [CrossRef]
- Makarouni, D.; Dimitriadi Evgenidi, C.; Kordulis, C.; Dourtoglou, V. Catalytic conversion of biomass-derived compounds to high added value products using an acid treated natural mordenite. Sustain. Chem. Pharm. 2023, 33, 101125. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Shanmugam, R.; Basha, A.C.; Sriariyanun, M.; Shanmugam, S.R.; Venkatachalam, P. An Overview of Solid Acid Catalysts in Lignocellulose biorefineries. Catalysts 2025, 15, 432. [Google Scholar] [CrossRef]
- Nikolopoulos, N.; Geitenbeek, R.G.; Whiting, G.T.; Weckhuysen, B.M. Unravelling the effect of impurities on the methanol-to-olefins process in waste-derived zeolites ZSM-5. J. Catal. 2021, 396, 136–147. [Google Scholar] [CrossRef]
- Mamani-De La Cruz, L.F.; Churata, R.; Valencia-Huaman, A.G.; Fuentes-Mamani, S.H.; Almirón, J. Comparison of the Synthesis Method of Zeolite Catalysts Based on Pozzolan, Pumice, and Ignimbrite Applied to the Sustainable Pyrolysis of Polymers. Sustainability 2025, 17, 2986. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lycourghiotis, S.; Kordouli, E. Biomass Conversion to Value-Added Chemicals and Fuels Using Natural Minerals as Catalysts or Catalytic Supports. Catalysts 2025, 15, 1006. https://doi.org/10.3390/catal15111006
Lycourghiotis S, Kordouli E. Biomass Conversion to Value-Added Chemicals and Fuels Using Natural Minerals as Catalysts or Catalytic Supports. Catalysts. 2025; 15(11):1006. https://doi.org/10.3390/catal15111006
Chicago/Turabian StyleLycourghiotis, Sotiris, and Eleana Kordouli. 2025. "Biomass Conversion to Value-Added Chemicals and Fuels Using Natural Minerals as Catalysts or Catalytic Supports" Catalysts 15, no. 11: 1006. https://doi.org/10.3390/catal15111006
APA StyleLycourghiotis, S., & Kordouli, E. (2025). Biomass Conversion to Value-Added Chemicals and Fuels Using Natural Minerals as Catalysts or Catalytic Supports. Catalysts, 15(11), 1006. https://doi.org/10.3390/catal15111006

