Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = wall-flow monoliths

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3662 KiB  
Article
Investigation of Fluid–Structure Interaction in Stenosed Bifurcated Arteries: Flow Dynamics and Conjugate Heat Transfer
by Mudassar Razzaq, Muhammad Adnan Anwar, Kaleem Iqbal and Marcel Gurris
Mathematics 2025, 13(10), 1637; https://doi.org/10.3390/math13101637 - 16 May 2025
Viewed by 363
Abstract
Atherosclerosis, marked by elevated plaque formation, occurs due to stenosis, which narrows the arterial walls and alters the natural flow path. Previous research has shown that the likelihood of high-rupture stenosis can be linked to temperature distribution variations in bifurcated arteries. In this [...] Read more.
Atherosclerosis, marked by elevated plaque formation, occurs due to stenosis, which narrows the arterial walls and alters the natural flow path. Previous research has shown that the likelihood of high-rupture stenosis can be linked to temperature distribution variations in bifurcated arteries. In this study, we employ a monolithic Arbitrary Lagrangian–Eulerian (ALE) finite element approach to model heat transfer in fluid–structure interactions within stenosed bifurcated arteries, considering the elasticity of arterial walls. We analyze unsteady, incompressible Newtonian blood flow in a two-dimensional laminar regime, focusing on key factors such as velocity, wall displacement, temperature effects, and the average Nusselt number. Our findings reveal that under pulsatile inflow conditions, minor temperature fluctuations occur under specific waveform flow boundary conditions. Additionally, greater arterial wall flexibility enhances heat transfer between the blood and vessel walls, with flow reflections further contributing to this effect. Lastly, we examine wall shear stress (WSS) at its minimum and maximum values, emphasizing the role of arterial elasticity in influencing these forces. Full article
(This article belongs to the Special Issue Theoretical and Computational Fluid Mechanics and Heat Transfer)
Show Figures

Figure 1

16 pages, 1169 KiB  
Article
A Phenomenological Fluid–Structure Interaction Study of Plaque Rupture in Stenosed Bifurcated Elastic Arteries
by Mudassar Razzaq, Muhammad Adnan Anwar, Kaleem Iqbal, Izharul Haq and Marcel Gurris
Mathematics 2025, 13(4), 621; https://doi.org/10.3390/math13040621 - 13 Feb 2025
Cited by 1 | Viewed by 769
Abstract
Atherosclerosis is an accumulation of plaque, which can result in changes in blood flow in the vicinity, leading to severe heart attack. This paper presents a phenomenological fluid–structure interaction study of plaque rupture in stenosed bifurcated elastic arteries. We use the coupled monolithic [...] Read more.
Atherosclerosis is an accumulation of plaque, which can result in changes in blood flow in the vicinity, leading to severe heart attack. This paper presents a phenomenological fluid–structure interaction study of plaque rupture in stenosed bifurcated elastic arteries. We use the coupled monolithic Arbitrary Lagrange Euler (ALE) formulation for fluids and solids. We consider the Navier–Stokes equation to govern the non-Newton blood flow and linear elastic model for walls. We treat the interface as a continuum. We utilize the stable P2P1 finite element pair for velocity and pressure discretization in space. The nonlinear discretized algebraic system is tackled using the Newton method, with the Jacobian matrices approximated via a divided differences approach. The resulting linear systems are addressed using the direct solver MUltifrontal Massively Parallel Sparse direct Solver (MUMPS). We then determine the wall shear stress (WSS) for both minimum and maximum times, accounting for elastic walls. The study’s findings enhance our understanding of the mechanisms behind plaque rupture and aid in developing better diagnostic and therapeutic strategies. Full article
Show Figures

Figure 1

31 pages, 6237 KiB  
Review
A Review of the Homogenized Lattice Boltzmann Method for Particulate Flow Simulations: From Fundamentals to Applications
by Jan E. Marquardt and Mathias J. Krause
Powders 2024, 3(4), 500-530; https://doi.org/10.3390/powders3040027 - 16 Oct 2024
Cited by 3 | Viewed by 2484
Abstract
The homogenized lattice Boltzmann method (HLBM) has emerged as a flexible computational framework for studying particulate flows, providing a monolithic approach to modeling pure fluid flows and flows through porous media, including moving solid and porous particles, within a unified framework. This paper [...] Read more.
The homogenized lattice Boltzmann method (HLBM) has emerged as a flexible computational framework for studying particulate flows, providing a monolithic approach to modeling pure fluid flows and flows through porous media, including moving solid and porous particles, within a unified framework. This paper presents a thorough review of HLBM, elucidating its underlying principles and highlighting its diverse applications to particle-laden flows in various fields as reported in literature. These include studies leading to new fundamental knowledge on the settling of single arbitrarily shaped particles as well as application-oriented research on wall-flow filters, hindered settling, and evaluation of the damage potential during particle transport. Among the strengths of HLBM are its monolithic approach, which allows seamless simulation of different fluid-solid interactions, and its ability to handle arbitrary particle shapes, including irregular and concave geometries, while resolving surface interactions to capture local forces. In addition, its parallel scheme based on the lattice Boltzmann method (LBM) results in high computational efficiency, making it suitable for large-scale simulations, even though LBM requires small time steps. Important future development needs are identified, including the addition of a lubrication force correction model, performance enhancements, such as support for hybrid parallelization and GPU, and the extension of compatible contact models to accommodate concave shapes. These advances promise expanded capabilities for HLBM and broader applicability for solving complex real-world problems. Full article
Show Figures

Figure 1

21 pages, 4395 KiB  
Review
Developments and Applications of Molecularly Imprinted Polymer-Based In-Tube Solid Phase Microextraction Technique for Efficient Sample Preparation
by Hiroyuki Kataoka, Atsushi Ishizaki, Keita Saito and Kentaro Ehara
Molecules 2024, 29(18), 4472; https://doi.org/10.3390/molecules29184472 - 20 Sep 2024
Cited by 7 | Viewed by 2660
Abstract
Despite advancements in the sensitivity and performance of analytical instruments, sample preparation remains a bottleneck in the analytical process. Currently, solid-phase extraction is more widely used than traditional organic solvent extraction due to its ease of use and lower solvent requirements. Moreover, various [...] Read more.
Despite advancements in the sensitivity and performance of analytical instruments, sample preparation remains a bottleneck in the analytical process. Currently, solid-phase extraction is more widely used than traditional organic solvent extraction due to its ease of use and lower solvent requirements. Moreover, various microextraction techniques such as micro solid-phase extraction, dispersive micro solid-phase extraction, solid-phase microextraction, stir bar sorptive extraction, liquid-phase microextraction, and magnetic bead extraction have been developed to minimize sample size, reduce solvent usage, and enable automation. Among these, in-tube solid-phase microextraction (IT-SPME) using capillaries as extraction devices has gained attention as an advanced “green extraction technique” that combines miniaturization, on-line automation, and reduced solvent consumption. Capillary tubes in IT-SPME are categorized into configurations: inner-wall-coated, particle-packed, fiber-packed, and rod monolith, operating either in a draw/eject system or a flow-through system. Additionally, the developments of novel adsorbents such as monoliths, ionic liquids, restricted-access materials, molecularly imprinted polymers (MIPs), graphene, carbon nanotubes, inorganic nanoparticles, and organometallic frameworks have improved extraction efficiency and selectivity. MIPs, in particular, are stable, custom-made polymers with molecular recognition capabilities formed during synthesis, making them exceptional “smart adsorbents” for selective sample preparation. The MIP fabrication process involves three main stages: pre-arrangement for recognition capability, polymerization, and template removal. After forming the template-monomer complex, polymerization creates a polymer network where the template molecules are anchored, and the final step involves removing the template to produce an MIP with cavities complementary to the template molecules. This review is the first paper to focus on advanced MIP-based IT-SPME, which integrates the selectivity of MIPs into efficient IT-SPME, and summarizes its recent developments and applications. Full article
(This article belongs to the Special Issue Applications of Solid-Phase Microextraction and Related Techniques)
Show Figures

Figure 1

45 pages, 57341 KiB  
Article
Multi-Objective Topology Optimization of Conjugate Heat Transfer Using Level Sets and Anisotropic Mesh Adaptation
by Philippe Meliga, Wassim Abdel Nour, Delphine Laboureur, Damien Serret and Elie Hachem
Fluids 2024, 9(5), 105; https://doi.org/10.3390/fluids9050105 - 28 Apr 2024
Cited by 3 | Viewed by 3019
Abstract
This study proposes a new computational framework for the multi-objective topology optimization of conjugate heat transfer systems using a continuous adjoint approach. It relies on a monolithic solver for the coupled steady-state Navier–Stokes and heat equations, which combines finite elements stabilized by the [...] Read more.
This study proposes a new computational framework for the multi-objective topology optimization of conjugate heat transfer systems using a continuous adjoint approach. It relies on a monolithic solver for the coupled steady-state Navier–Stokes and heat equations, which combines finite elements stabilized by the variational multi-scale method, level set representations of the fluid–solid interfaces and immersed modeling of heterogeneous materials (fluid–solid) to ensure that the proper amount of heat is exchanged to the ambient fluid by solid objects in arbitrary geometry. At each optimization iteration, anisotropic mesh adaptation is applied in near-wall regions automatically captured by the level set. This considerably cuts the computational effort associated with calling the finite element solver, in comparison to traditional topology optimization algorithms operating on isotropic grids with a comparable refinement level. Given that we operate within the constraint of a specified number of nodes in the mesh, this allows not only to improve the accuracy of interface representation and motion but also to retain the high fidelity of the numerical solutions at the grid points just adjacent to the interface. Finally, the remeshing and resolution steps both run within a highly parallel environment, which makes it possible for the proposed algorithm to tackle large-scale problems in three dimensions with several tens of millions of state degrees of freedom. The developed solver is validated first by minimizing dissipation in a flow splitter device, for which the method delivers relevant optimal designs over a wide range of volume constraints and flow rate distributions over the multiple outlet orifices but yields better accuracy compared to reference data from literature obtained using uniform meshes (in the sense that the layouts are more smooth, and the solutions are better resolved). The scheme is then applied to a two-dimensional heat transfer problem, using bi-objective cost functionals combining flow resistance and thermal recoverable power. A comprehensive parametric study reveals a complex arrangement of optimal solutions on the Pareto front, with multiple branches of symmetric and asymmetric designs, some of them previously unreported. Finally, the algorithmic developments are substantiated with several three-dimensional numerical examples tackled under fixed weights for heat transfer and flow resistance, for which we show that the optimal layouts computed at low Reynolds number, that are intrinsically relevant to a broad range of microfluidic application, can also serve as smooth solutions to high-Reynolds-number engineering problems of practical interest. Full article
Show Figures

Figure 1

18 pages, 7827 KiB  
Article
Ensuring the Energy Efficiency of Buildings through the Simulation of Structural, Organizational, and Technological Solutions for Facade Insulation
by Zeljko Kos, Ihor Babii, Iryna Grynyova and Oleksii Nikiforov
Appl. Sci. 2024, 14(2), 801; https://doi.org/10.3390/app14020801 - 17 Jan 2024
Cited by 2 | Viewed by 1859
Abstract
The article presents ways of selecting effective designs and technological and organizational solutions for the bonded thermal insulation systems of complex-shaped facades based on thermal field and flow modeling using the SolidWorks Simulation Xpress 2021 software and experimental–statistical modeling using the Compex program. [...] Read more.
The article presents ways of selecting effective designs and technological and organizational solutions for the bonded thermal insulation systems of complex-shaped facades based on thermal field and flow modeling using the SolidWorks Simulation Xpress 2021 software and experimental–statistical modeling using the Compex program. Determining optimal insulation parameters at the design stage will help eliminate the negative effects of thermal bridges at balcony junctions and reduce the cost of implementing bonded thermal insulation systems for facades with complex shapes. It has been established that the most effective approach is to insulate not the entire perimeter of the balcony slab, as required by normative documentation, but rather to insulate a sufficient portion of the exterior wall, which is equal to 750 mm, with a 30 mm insulation thickness on top of the slab and 50 mm beneath it. This insulation technology is economically feasible for modern multistory buildings with nonstandard volumetric and architectural solutions, constructed using frame–brick, frame–monolithic, or monolithic schemes without thermal breaks between the balcony slab and the monolithic floor slab, with open-type balconies, bays, or uncovered loggias. Full article
(This article belongs to the Special Issue Composite Structures - Modelling, Testing and Manufacturing)
Show Figures

Figure 1

18 pages, 17420 KiB  
Article
Prediction of Heat Transfer and Fluid Flow Effects on Entropy Generation in a Monolithic Catalytic Converter Using Large-Eddy Simulation
by Yongxiang Li, Luis Felipe Rico Cortes, Hardy Hamel, Kaushal Nishad, Luigi Biondo and Florian Ries
Entropy 2022, 24(5), 602; https://doi.org/10.3390/e24050602 - 26 Apr 2022
Cited by 3 | Viewed by 2897
Abstract
In the present work, heat transfer and fluid flow and their effects on entropy generation in a realistic catalytic converter of a Lada Niva 21214 vehicle are studied using large eddy simulation. At first, the pressure drop over the catalytic converter is measured [...] Read more.
In the present work, heat transfer and fluid flow and their effects on entropy generation in a realistic catalytic converter of a Lada Niva 21214 vehicle are studied using large eddy simulation. At first, the pressure drop over the catalytic converter is measured for dry air at constant temperature (T=298 K), different volumetric flow rates, and extrapolated to large volumetric flow rates for dry air (T=298 K) and for the exhaust gas under realistic engine conditions (T=900 K) using the Darcy–Forchheimer relation. Then, coupled heat and fluid flow phenomena inside the catalytic converter are analyzed for nonreacting isothermal conditions and nonreacting conditions with conjugate heat transfer by using the large-eddy simulation. The predicted pressure drop agrees well with the measured and extrapolated data. Based on the obtained numerical results, the characteristic flow features are identified, namely: the impinging flow with stagnation, recirculation, flow separation and laminarization within the fine ducts of the monolith, which depends on the heat transfer through temperature-dependent thermophysical properties of exhaust gas. Moreover, due to high-velocity gradients at the wall of the narrow ducts in the monolith, entropy production by viscous dissipation is observed predominantly in the monolith region. In contrast, entropy production due to heat transport is relatively small in the monolith region, while it overwhelms viscous dissipation effects in the pipe regions. Full article
(This article belongs to the Special Issue Entropy Generation Analysis in Near-Wall Turbulent Flow)
Show Figures

Figure 1

14 pages, 3194 KiB  
Article
Lateral Pressure Test of Vertical Joint Concrete and Formwork Optimization Design for Monolithic Precast Concrete Structure
by Yabin Yang, Xinxin Ding, Yungao Liu, Lianchao Deng, Feiyang Lv and Shunbo Zhao
Buildings 2022, 12(3), 261; https://doi.org/10.3390/buildings12030261 - 23 Feb 2022
Cited by 11 | Viewed by 3190
Abstract
When the vertical joints of monolithic precast concrete structures are cast by self-compacting concrete, the design of the formwork under rational lateral pressure of self-compacting concrete becomes a key technical issue. In this paper, a prototype simulation test was conducted for the pouring [...] Read more.
When the vertical joints of monolithic precast concrete structures are cast by self-compacting concrete, the design of the formwork under rational lateral pressure of self-compacting concrete becomes a key technical issue. In this paper, a prototype simulation test was conducted for the pouring of self-compacting concrete in the vertical joint of precast concrete walls. The self-compacting concrete was continuously poured from the top of vertical joints with a height of 2.8 m without any assistance such as a delivery tube. The formwork pressure of self-compacting concrete was measured at different heights with varying casting time. Results showed that the lateral pressure increased with the increase in slump-flow of fresh self-compacting concrete, reaching a peak value of about 70 kPa at a height of about 600 mm from the bottom of formwork. Compared to the concrete with a slump-flow of 550 mm, the self-compacting concrete with the slump-flow reached 655 mm and 755 mm, presenting an increase in the peak lateral pressure by 31.5% and 44.9%, respectively. A method for calculating the lateral pressure of self-compacting concrete on the joint formwork is proposed using the analysis of enveloped test curves. Under the condition with enough strength and limited deformation of the joint formwork, the optimal design of aluminum alloy formwork is determined using finite element analysis. This provides a sci-tech foundation of the optimal design to lighten the weight of joint formwork to improve the installation efficiency and reduce the manual power cost. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

11 pages, 3943 KiB  
Article
Momentum Transfer in Short-Channel Structures of Hexagonal Channel Cross-Section Shape: Experiments vs. CFD
by Katarzyna Sindera, Marzena Iwaniszyn and Przemysław J. Jodłowski
Catalysts 2021, 11(9), 1036; https://doi.org/10.3390/catal11091036 - 27 Aug 2021
Cited by 1 | Viewed by 2451
Abstract
Short-channel structures are promising catalyst carriers because it is easy to control the heat/mass transfer and fluid flow characteristics by changing their lengths. In this work, the flow resistance of hexagonal structures was investigated experimentally and numerically. The structure tested (6 mm long) [...] Read more.
Short-channel structures are promising catalyst carriers because it is easy to control the heat/mass transfer and fluid flow characteristics by changing their lengths. In this work, the flow resistance of hexagonal structures was investigated experimentally and numerically. The structure tested (6 mm long) was manufactured from AISI 316 steel using the selective laser melting technique. Due to some differences between theoretical approaches and practical results, two types of computational models were applied to analyze the pressure distribution in a short hexagonal duct. It was shown that although experimental results agree with some theoretical solutions, the channel wall thickness should not be omitted from the overall flow resistance. A comparison of short structures differing in channel length with widely used long monoliths was performed as well. Full article
(This article belongs to the Special Issue Modern Catalytic Reactor: From Active Center to Application Tests)
Show Figures

Graphical abstract

16 pages, 4027 KiB  
Review
The Issue of Soot-Catalyst Contact in Regeneration of Catalytic Diesel Particulate Filters: A Critical Review
by Luciana Lisi, Gianluca Landi and Valeria Di Sarli
Catalysts 2020, 10(11), 1307; https://doi.org/10.3390/catal10111307 - 12 Nov 2020
Cited by 59 | Viewed by 7976
Abstract
Soot-catalyst contact represents the main critical issue for an effective regeneration of catalytic (i.e., catalyst-coated) diesel particulate filters (DPFs). Most of the literature reviews on this topic have mainly been focused on studies dealing with powdered soot-catalyst mixtures. Although the results obtained on [...] Read more.
Soot-catalyst contact represents the main critical issue for an effective regeneration of catalytic (i.e., catalyst-coated) diesel particulate filters (DPFs). Most of the literature reviews on this topic have mainly been focused on studies dealing with powdered soot-catalyst mixtures. Although the results obtained on powders surely provide significant indications, especially in terms of intrinsic activity of materials towards soot oxidation, they cannot be directly extended to DPFs due to completely different soot-catalyst contact conditions generated during filtration and subsequent regeneration. In this work, attention is devoted to catalytic DPFs and, more specifically, studies on both catalyst dispersion and soot distribution inside the filter are critically reviewed from the perspective of soot-catalyst contact optimization. The main conclusion drawn from the literature analysis is that, in order to fully exploit the potential of catalytic DPFs in soot abatement, both a widespread and homogeneous presence of catalyst in the macro-pores of the filter walls and a suitably low soot load are needed. Under optimal soot-catalyst contact conditions, the consequent decrease in the temperature required for soot oxidation to values within the temperature range of diesel exhausts suggests the passage to a continuous functioning mode for catalytic filters with simultaneous filtration and regeneration, thus overcoming the drawbacks of periodic regeneration performed in current applications. Full article
(This article belongs to the Special Issue Catalytic Diesel and Gasoline Particulate Filters)
Show Figures

Graphical abstract

15 pages, 2536 KiB  
Article
Immobilization of β-Glucosidase over Structured Cordierite Monoliths Washcoated with Wrinkled Silica Nanoparticles
by Virginia Venezia, Aniello Costantini, Gianluca Landi, Almerinda Di Benedetto, Filomena Sannino and Valeria Califano
Catalysts 2020, 10(8), 889; https://doi.org/10.3390/catal10080889 - 6 Aug 2020
Cited by 13 | Viewed by 2967
Abstract
The enzymatic conversion of biomass-derived compounds represents a key step in the biorefinery flowsheet, allowing low-temperature high-efficiency reactions. β-Glucosidases are able to hydrolyze cellobiose into glucose. Wrinkled silica nanoparticles (WSNs) were demonstrated to be a good support for the immobilization of β-glucosidases, showing [...] Read more.
The enzymatic conversion of biomass-derived compounds represents a key step in the biorefinery flowsheet, allowing low-temperature high-efficiency reactions. β-Glucosidases are able to hydrolyze cellobiose into glucose. Wrinkled silica nanoparticles (WSNs) were demonstrated to be a good support for the immobilization of β-glucosidases, showing better performance than free enzymes in batch reaction; on the other hand, immobilized enzyme microreactors (IEMs) are receiving significant attention, because small quantities of reagents can be used, and favorable heat and mass transfer can be achieved with respect to conventional batch systems. In this work, we prepared, characterized, and tested structured enzymatic reactor compounds by a honeycomb monolith, a WSN washcoat, and β-glucosidases as the active phase. Powder and structured materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 physisorption, thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FT-IR). Structured catalysts were tested under both batch and continuous flow reaction conditions and compared to powder catalysts (batch reaction). The WSN washcoat was attached well onto the monolith walls, as suggested by the negligible weight loss after ultrasound treatment; the WSNs preserved their shape, porosity, and individual nature when deposited onto the monolith walls. The immobilized enzyme microreactors proved to be very efficient in hydrolysis of cellobiose to glucose, showing a complete conversion under continuous flow reaction at a batch-equivalent contact time equal to 120 min vs. 24 h obtained in the batch experiments. The apparent KM value showed a 20-fold decrease with respect to the batch process, due to the absence of external diffusive transport limitations. Full article
(This article belongs to the Special Issue Porous Materials and Catalysts)
Show Figures

Graphical abstract

25 pages, 5383 KiB  
Article
Thermal Decomposition of a Single AdBlue® Droplet Including Wall–Film Formation in Turbulent Cross-Flow in an SCR System
by Kaushal Nishad, Marcus Stein, Florian Ries, Viatcheslav Bykov, Ulrich Maas, Olaf Deutschmann, Johannes Janicka and Amsini Sadiki
Energies 2019, 12(13), 2600; https://doi.org/10.3390/en12132600 - 6 Jul 2019
Cited by 8 | Viewed by 5142
Abstract
The selective catalytic reduction (SCR) methodology is notably recognized as the widely applied strategy for NOX control in exhaust after-treatment technologies. In real SCR systems, complex unsteady turbulent multi-phase flow phenomena including poly-dispersed AdBlue® spray evolve with a wide ranging relative [...] Read more.
The selective catalytic reduction (SCR) methodology is notably recognized as the widely applied strategy for NOX control in exhaust after-treatment technologies. In real SCR systems, complex unsteady turbulent multi-phase flow phenomena including poly-dispersed AdBlue® spray evolve with a wide ranging relative velocity between the droplet phase and carrier gas phase. This results from an AdBlue® spray that is injected into a mixing pipe which is cross-flowing by a hot exhaust gas. To reduce the complexity while gaining early information on the injected droplet size and velocity needed for a minimum deposition and optimal conversion, a single droplet with a specified diameter is addressed to mimic a spray featuring the same Sauter Mean Diameter. For that purpose, effects of turbulent hot cross-flow on thermal decomposition processes of a single AdBlue® droplet are numerically investigated. Thereby, a single AdBlue® droplet is injected into a hot cross-flowing stream within a mixing pipe in which it may experience phase change processes including interaction with the pipe wall along with liquid wall–film and possible solid deposit formation. First of all, the prediction capability of the multi-component evaporation model and thermal decomposition is evaluated against the detailed simulation results for standing droplet case for which experimental data is not available. Next, exploiting Large Eddy Simulation features the effect of hot turbulent co- and cross-flowing streams on the dynamic droplet characteristics and on the droplet/wall interaction is analyzed for various droplet diameters and operating conditions. This impact is highlighted in terms of droplet evaporation time, decomposition efficiency, droplet trajectories and wall–film formation. It turns out that smaller AdBlue® droplet diameter, higher gas temperature and relative velocity lead to shorter droplet life time as the droplet evaporates faster. Under such conditions, possible droplet/wall interaction processes on the pipe wall or at the entrance front of the monolith may be avoided. Since the ammonia (NH3) gas generated by urea decomposition is intended to reduce NOX emission in the SCR system, it is apparent for the prediction of high NOX removal performance that UWS injector system which allows to realize such operating conditions is favorable to support high conversion efficiency of urea into NH3. Full article
Show Figures

Graphical abstract

14 pages, 2064 KiB  
Article
Polystyrene-co-Divinylbenzene PolyHIPE Monoliths in 1.0 mm Column Formats for Liquid Chromatography
by Sidratul Choudhury, Laurence Fitzhenry, Blánaid White and Damian Connolly
Materials 2016, 9(3), 212; https://doi.org/10.3390/ma9030212 - 18 Mar 2016
Cited by 14 | Viewed by 7000
Abstract
The reversed phase liquid chromatographic (RP-HPLC) separation of small molecules using a polystyrene-co-divinylbenzene (PS-co-DVB) polyHIPE stationary phases housed within 1.0 mm i.d. silcosteel columns is presented within this study. A 90% PS-co-DVB polyHIPE was covalently attached to [...] Read more.
The reversed phase liquid chromatographic (RP-HPLC) separation of small molecules using a polystyrene-co-divinylbenzene (PS-co-DVB) polyHIPE stationary phases housed within 1.0 mm i.d. silcosteel columns is presented within this study. A 90% PS-co-DVB polyHIPE was covalently attached to the walls of the column housing by prior wall modification with 3-(trimethoxysilyl) propyl methacrylate and could withstand operating backpressures in excess of 200 bar at a flow rate of 1.2 mL/min. Permeability studies revealed that the monolith swelled slightly in 100% acetonitrile relative to 100% water but could nevertheless be used to separate five alkylbenzenes using a flow rate of 40 µL/min (linear velocity: 0.57 mm/s). Remarkable column-to-column reproducibility is shown with retention factor variation between 2.6% and 6.1% for two separately prepared columns. Full article
(This article belongs to the Special Issue Porous Monolithic Materials for Applications in Separation Science)
Show Figures

Figure 1

Back to TopTop