Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = wall-bounded turbulence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2703 KiB  
Article
Strategy Analysis of Seamlessly Resolving Turbulent Flow Simulations
by Stefan Heinz
Aerospace 2025, 12(7), 597; https://doi.org/10.3390/aerospace12070597 - 30 Jun 2025
Viewed by 218
Abstract
Modeling of wall-bounded turbulent flows, in particular the hybridization of the Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods, has faced serious questions for decades. Specifically, there is continuous research of how usually applied methods such as detached eddy simulation (DES) and [...] Read more.
Modeling of wall-bounded turbulent flows, in particular the hybridization of the Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods, has faced serious questions for decades. Specifically, there is continuous research of how usually applied methods such as detached eddy simulation (DES) and wall-modeled LES (WMLES) can be made more successful in regard to complex, high-Reynolds-number (Re) flow simulations. The simple question is how it is possible to enable reliable and cost-efficient predictions of high-Re wall-bounded turbulent flows in particular under conditions where data for validation are unavailable. This paper presents a strict analysis of strategies for the design of seamlessly resolving turbulent flow simulations for a wide class of turbulence models. The essential conclusions obtained are the following ones: First, by construction, usually applied methods like DES are incapable of systematically spanning the range from modeled to resolved flow simulations, which implies significant disadvantages. Second, a strict solution for this problem is given by novel continuous eddy simulation (CES) methods, which perform very well. Third, the design of a computational simplification of CES that still outperforms DES appears to be very promising. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 5395 KiB  
Article
From Direct Numerical Simulations to Data-Driven Models: Insights into Mean Velocity Profiles and Turbulent Stresses in Channel Flows
by Apostolos Palasis, Antonios Liakopoulos and George Sofiadis
Modelling 2025, 6(1), 18; https://doi.org/10.3390/modelling6010018 - 23 Feb 2025
Viewed by 1520
Abstract
In this paper, we compare three mathematical models for the mean velocity and Reynolds stress profiles for fully developed pressure-driven turbulent channel flow with the aim of assessing the level of accuracy of each model. Each model is valid over the whole boundary [...] Read more.
In this paper, we compare three mathematical models for the mean velocity and Reynolds stress profiles for fully developed pressure-driven turbulent channel flow with the aim of assessing the level of accuracy of each model. Each model is valid over the whole boundary layer thickness (0 y δ), and it is formulated in terms of a law of the wall and a law of the wake. To calibrate the mathematical models, we use data obtained by direct numerical simulations (DNS) of pressure-driven turbulent channel flow in the range 182 Reτ 10,049. The models selected for performance evaluation are two models (Musker’s and AL84) originally developed based on high Reynolds boundary layer experimental data and Luchini’s model, which was developed when some DNS data were also available for wall-bounded turbulent flows. Differences are quantified in terms of local relative or absolute errors. Luchini’s model outperforms the other two models in the “low” and “intermediate” Reynolds number cases (Reτ= 182 to 5186). However, for the “high” Reynolds number cases (Reτ= 8016 and Reτ= 10,049). Luchini’s model exhibits larger errors than the other two models. Both Musker’s and AL84 models exhibit comparable accuracy levels when compared with the DNS datasets, and their performance improves as the Reynolds number increases. Full article
Show Figures

Figure 1

35 pages, 6742 KiB  
Article
Evaluation of Third-Order Weighted Essentially Non-Oscillatory Scheme Within Implicit Large Eddy Simulation Framework Using OpenFOAM
by Zhuoneng Li and Zeeshan A. Rana
Aerospace 2025, 12(2), 108; https://doi.org/10.3390/aerospace12020108 - 31 Jan 2025
Cited by 1 | Viewed by 1098
Abstract
The current study investigates the performance of implicit Large Eddy Simulation (iLES) incorporating an unstructured third-order Weighted Essentially Non-Oscillatory (WENO) reconstruction method, alongside conventional Large Eddy Simulation (LES) using the Wall-Adapting Local Eddy Viscosity (WALE) model, for wall-bounded flows. Specifically, iLES is applied [...] Read more.
The current study investigates the performance of implicit Large Eddy Simulation (iLES) incorporating an unstructured third-order Weighted Essentially Non-Oscillatory (WENO) reconstruction method, alongside conventional Large Eddy Simulation (LES) using the Wall-Adapting Local Eddy Viscosity (WALE) model, for wall-bounded flows. Specifically, iLES is applied to the flow around a NACA0012 airfoil at a Reynolds number which involves key flow phenomena such as laminar separation, transition to turbulence, and flow reattachment. Simulations are conducted using the open-source computational fluid dynamics package OpenFOAM, with a second-order implicit Euler scheme for time integration and the Pressure-Implicit Splitting Operator (PISO) algorithm for pressure–velocity coupling. The results are compared against direct numerical simulation (DNS) for the same flow conditions. Key metrics, including the pressure coefficient and reattached turbulent velocity profiles, show excellent agreement between the iLES and DNS reference results. However, both iLES and LES predict a thinner separation bubble in the transitional flow region then DNS. Notably, the iLES approach achieved a 35% reduction in mesh resolution relative to wall-resolving LES, and a 70% reduction relative to DNS, while maintaining satisfactory accuracy. The study also captures detailed instantaneous flow evolution on the airfoil’s upper surface, with evidence suggesting that three-dimensional disturbances arise from interactions between separating boundary layers near the trailing edge. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

62 pages, 9349 KiB  
Article
Fokker-Planck Central Moment Lattice Boltzmann Method for Effective Simulations of Fluid Dynamics
by William Schupbach and Kannan Premnath
Fluids 2024, 9(11), 255; https://doi.org/10.3390/fluids9110255 - 29 Oct 2024
Cited by 2 | Viewed by 1650
Abstract
We present a new formulation of the central moment lattice Boltzmann (LB) method based on a minimal continuous Fokker-Planck (FP) kinetic model, originally proposed for stochastic diffusive-drift processes (e.g., Brownian dynamics), by adapting it as a collision model for the continuous Boltzmann equation [...] Read more.
We present a new formulation of the central moment lattice Boltzmann (LB) method based on a minimal continuous Fokker-Planck (FP) kinetic model, originally proposed for stochastic diffusive-drift processes (e.g., Brownian dynamics), by adapting it as a collision model for the continuous Boltzmann equation (CBE) for fluid dynamics. The FP collision model has several desirable properties, including its ability to preserve the quadratic nonlinearity of the CBE, unlike that based on the common Bhatnagar-Gross-Krook model. Rather than using an equivalent Langevin equation as a proxy, we construct our approach by directly matching the changes in different discrete central moments independently supported by the lattice under collision to those given by the CBE under the FP-guided collision model. This can be interpreted as a new path for the collision process in terms of the relaxation of the various central moments to “equilibria”, which we term as the Markovian central moment attractors that depend on the products of the adjacent lower order moments and a diffusion coefficient tensor, thereby involving of a chain of attractors; effectively, the latter are nonlinear functions of not only the hydrodynamic variables, but also the non-conserved moments; the relaxation rates are based on scaling the drift coefficient by the order of the moment involved. The construction of the method in terms of the relevant central moments rather than via the drift and diffusion of the distribution functions directly in the velocity space facilitates its numerical implementation and analysis. We show its consistency to the Navier-Stokes equations via a Chapman-Enskog analysis and elucidate the choice of the diffusion coefficient based on the second order moments in accurately representing flows at relatively low viscosities or high Reynolds numbers. We will demonstrate the accuracy and robustness of our new central moment FP-LB formulation, termed as the FPC-LBM, using the D3Q27 lattice for simulations of a variety of flows, including wall-bounded turbulent flows. We show that the FPC-LBM is more stable than other existing LB schemes based on central moments, while avoiding numerical hyperviscosity effects in flow simulations at relatively very low physical fluid viscosities through a refinement to a model founded on kinetic theory. Full article
(This article belongs to the Special Issue Lattice Boltzmann Methods: Fundamentals and Applications)
Show Figures

Figure 1

17 pages, 911 KiB  
Article
Turbulent Micropolar Open-Channel Flow
by George Sofiadis, Antonios Liakopoulos, Apostolos Palasis and Filippos Sofos
Fluids 2024, 9(9), 202; https://doi.org/10.3390/fluids9090202 - 31 Aug 2024
Viewed by 1195
Abstract
The present paper focuses on the investigation of the turbulent characteristics of an open-channel flow by employing the micropolar model. The underlying model has already been proven to correctly describe the secondary phase of turbulent wall-bounded flows. The open-channel case comprises an ideal [...] Read more.
The present paper focuses on the investigation of the turbulent characteristics of an open-channel flow by employing the micropolar model. The underlying model has already been proven to correctly describe the secondary phase of turbulent wall-bounded flows. The open-channel case comprises an ideal candidate to further test the micropolar model as many environmental flows carry a secondary phase, the behavior of which is of great interest for applications such as sedimentation transport and debris flow. Direct Numerical Simulations (DNSs) have been carried out on an open channel for Reb = 11,200 based on mean crossectional velocity, channel height, and the fluid kinematic viscosity. The simulated results are compared against previous experimental as well as Langrangian DNS data of similar flows, with excellent agreement. The micropolar model is capable of describing the same problem but in an Eulerian frame, thus significantly simplifying the computational cost and complexity. Full article
(This article belongs to the Special Issue Modelling Flows in Pipes and Channels)
Show Figures

Figure 1

18 pages, 2451 KiB  
Article
Strategies for Enhancing One-Equation Turbulence Model Predictions Using Gene-Expression Programming
by Tony Di Fabbio, Yuan Fang, Eike Tangermann, Richard D. Sandberg and Markus Klein
Fluids 2024, 9(8), 191; https://doi.org/10.3390/fluids9080191 - 21 Aug 2024
Viewed by 1298
Abstract
This paper introduces innovative approaches to enhance and develop one-equation RANS models using gene-expression programming. Two distinct strategies are explored: overcoming the limitations of the Boussinesq hypothesis and formulating a novel one-equation turbulence model that can accurately predict a wide range of turbulent [...] Read more.
This paper introduces innovative approaches to enhance and develop one-equation RANS models using gene-expression programming. Two distinct strategies are explored: overcoming the limitations of the Boussinesq hypothesis and formulating a novel one-equation turbulence model that can accurately predict a wide range of turbulent wall-bounded flows. A comparative analysis of these strategies highlights their potential for advancing RANS modeling capabilities. The study employs a single-case CFD-driven machine learning framework, demonstrating that machine-informed models significantly improve predictive accuracy, especially when baseline RANS predictions diverge from established benchmarks. Using existing training data, symbolic regression provides valuable insights into the underlying physics by eliminating ineffective strategies. This highlights the broader significance of machine learning beyond developing turbulence closures for specific cases. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

22 pages, 5384 KiB  
Article
Continuous Eddy Simulation (CES) of Transonic Shock-Induced Flow Separation
by Adeyemi Fagbade and Stefan Heinz
Appl. Sci. 2024, 14(7), 2705; https://doi.org/10.3390/app14072705 - 23 Mar 2024
Cited by 7 | Viewed by 1642
Abstract
Reynolds-averaged Navier–Stokes (RANS), large eddy simulation (LES), and hybrid RANS-LES, first of all wall-modeled LES (WMLES) and detached eddy simulation (DES) methods, are regularly applied for wall-bounded turbulent flow simulations. Their characteristic advantages and disadvantages are well known: significant challenges arise from simulation [...] Read more.
Reynolds-averaged Navier–Stokes (RANS), large eddy simulation (LES), and hybrid RANS-LES, first of all wall-modeled LES (WMLES) and detached eddy simulation (DES) methods, are regularly applied for wall-bounded turbulent flow simulations. Their characteristic advantages and disadvantages are well known: significant challenges arise from simulation performance, computational cost, and functionality issues. This paper describes the application of a new simulation approach: continuous eddy simulation (CES). CES is based on exact mathematics, and it is a minimal error method. Its functionality is different from currently applied simulation concepts. Knowledge of the actual amount of flow resolution enables the model to properly adjust to simulations by increasing or decreasing its contribution. The flow considered is a high Reynolds number complex flow, the Bachalo–Johnson axisymmetric transonic bump flow, which is often applied to evaluate the performance of turbulence models. A thorough analysis of simulation performance, computational cost, and functionality features of the CES model applied is presented in comparison with corresponding features of RANS, DES, WMLES, and wall-resolved LES (WRLES). We conclude that CES performs better than RANS, DES, WMLES, and even WRLES at a little fraction of computational cost applied for the latter methods. CES is independent of usual functionality requirements of other methods, which offers relevant additional advantages. Full article
(This article belongs to the Special Issue Multiscale Modeling of Complex Fluids and Soft Matter)
Show Figures

Figure 1

12 pages, 1832 KiB  
Review
The Law of the Wall and von Kármán Constant: An Ongoing Controversial Debate
by Stefan Heinz
Fluids 2024, 9(3), 63; https://doi.org/10.3390/fluids9030063 - 4 Mar 2024
Cited by 4 | Viewed by 4549
Abstract
The discovery of the law of the wall, the log-law including the von Kármán constant, is seen to be one of the biggest accomplishments of fluid mechanics. However, after more than ninety years, there is still a controversial debate about the validity and [...] Read more.
The discovery of the law of the wall, the log-law including the von Kármán constant, is seen to be one of the biggest accomplishments of fluid mechanics. However, after more than ninety years, there is still a controversial debate about the validity and universality of the law of the wall. In particular, evidence in favor of a universal log-law was recently questioned by data analyses of the majority of existing direct numerical simulation (DNS) and experimental results, arguing in favor of nonuniversality of the law of the wall. Future progress requires it to resolve this discrepancy: in absence of alternatives, a reliable and universal theory involving the law of the wall is needed to provide essential guideline for the validation of theory, computational methods, and experimental studies of very high Reynolds number flows. This paper presents an analysis of concepts used to derive controversial conclusions. Similar to the analysis of observed variations of the Kolmogorov constant, it is shown that nonuniversality is a consequence of simplified modeling concepts, leading to unrealizable models. Realizability implies universality: there is no need to adjust simplified models to different flows. Full article
(This article belongs to the Special Issue Turbulent Flow, 2nd Edition)
Show Figures

Figure 1

23 pages, 15075 KiB  
Article
Turbulent Channel Flow: Direct Numerical Simulation-Data-Driven Modeling
by Antonios Liakopoulos and Apostolos Palasis
Fluids 2024, 9(3), 62; https://doi.org/10.3390/fluids9030062 - 3 Mar 2024
Cited by 3 | Viewed by 4315
Abstract
Data obtained using direct numerical simulations (DNS) of pressure-driven turbulent channel flow are studied in the range 180 Reτ 10,000. Reynolds number effects on the mean velocity profile (MVP) and second order statistics are analyzed with a view of [...] Read more.
Data obtained using direct numerical simulations (DNS) of pressure-driven turbulent channel flow are studied in the range 180 Reτ 10,000. Reynolds number effects on the mean velocity profile (MVP) and second order statistics are analyzed with a view of finding logarithmic behavior in the overlap region or even further from the wall, well in the boundary layer’s outer region. The values of the von Kármán constant for the MVPs and the Townsend–Perry constants for the streamwise and spanwise fluctuation variances are determined for the Reynolds numbers considered. A data-driven model of the MVP, proposed and validated for zero pressure-gradient flow over a flat plate, is employed for pressure-driven channel flow by appropriately adjusting Coles’ strength of the wake function parameter, Π. There is excellent agreement between the analytic model predictions of MVP and the DNS-computed MVP as well as of the Reynolds shear stress profile. The skin friction coefficient Cf is calculated analytically. The agreement between the analytical model predictions and the DNS-based computed discrete values of Cf is excellent. Full article
Show Figures

Figure 1

21 pages, 5459 KiB  
Article
A Comprehensive Evaluation of Turbulence Models for Predicting Heat Transfer in Turbulent Channel Flow across Various Prandtl Number Regimes
by Liyuan Liu, Umair Ahmed and Nilanjan Chakraborty
Fluids 2024, 9(2), 42; https://doi.org/10.3390/fluids9020042 - 3 Feb 2024
Cited by 3 | Viewed by 3440
Abstract
Turbulent heat transfer in channel flows is an important area of research due to its simple geometry and diverse industrial applications. Reynolds-Averaged Navier–Stokes (RANS) models are the most-affordable simulation methodology and are often the only viable choice for investigating industrial flows. However, accurate [...] Read more.
Turbulent heat transfer in channel flows is an important area of research due to its simple geometry and diverse industrial applications. Reynolds-Averaged Navier–Stokes (RANS) models are the most-affordable simulation methodology and are often the only viable choice for investigating industrial flows. However, accurate modelling of wall-bounded flows is challenging in RANS, and the assessment of the performance of RANS models for heated turbulent channel flow has not been sufficiently investigated for a wide range of Reynolds and Prandtl numbers. In this study, five RANS models are assessed for their ability to predict heat transfer in channel flows across a wide range of Reynolds and Prandtl numbers (Pr) by comparing the RANS results with respect to the corresponding Direct Numerical Simulation data. The models include three Eddy Viscosity Models (EVMs): standard kϵ, low Reynolds number kϵLS, and kωSST, as well as two Reynolds Stress Models (RSMs): Launder–Reece–Rodi and Speziale–Sarkar–Gatski models. The study analyses the Reynolds number effects on turbulent heat transfer in a channel flow at a Pr of 0.71 for friction Reynolds number values of 180,395,640, and 1020. The results show that all models accurately predict velocity across all Reynolds numbers, but the accuracy of mean temperature prediction drops with increasing Reynolds number for all models, except for the kωSST model. The study also analyses the Pr effects on turbulent heat transfer in a channel flow with Pr values between 0.025 and 10.0. An error analysis is performed on the results obtained from different turbulence models, and it is shown that the kωSST model has the smallest error for the predictions of the mean temperature and Nusselt number for high-Prandtl-number flows, while the low Reynolds number kϵLS model shows the smallest errors for low-Prandtl-number flows at different Reynolds numbers. An analytical solution is utilised to identify Pr effects on forced convection in a channel flow into three different regimes: analytical region, transitional region, and turbulent diffusion-dominated region. These regimes are helpful to discuss the validity of the models in relation to the Pr. The findings of this paper provide insights into the performance of different RANS models for heat transfer predictions in a channel flow. Full article
(This article belongs to the Special Issue Turbulent Flow, 2nd Edition)
Show Figures

Figure 1

28 pages, 450 KiB  
Review
The Chimera Revisited: Wall- and Magnetically-Bounded Turbulent Flows
by Nils Tångefjord Basse
Fluids 2024, 9(2), 34; https://doi.org/10.3390/fluids9020034 - 30 Jan 2024
Viewed by 2215
Abstract
This review is a first attempt at bringing together various concepts from research on wall- and magnetically-bounded turbulent flows. Brief reviews of both fields are provided: The main similarities identified are coherent (turbulent) structures, flow generation, and transport barriers. Examples are provided and [...] Read more.
This review is a first attempt at bringing together various concepts from research on wall- and magnetically-bounded turbulent flows. Brief reviews of both fields are provided: The main similarities identified are coherent (turbulent) structures, flow generation, and transport barriers. Examples are provided and discussed. Full article
(This article belongs to the Topic Fluid Mechanics)
Show Figures

Figure 1

10 pages, 544 KiB  
Article
The Asymptotic Structure of Canonical Wall-Bounded Turbulent Flows
by Stefan Heinz
Fluids 2024, 9(1), 25; https://doi.org/10.3390/fluids9010025 - 17 Jan 2024
Cited by 4 | Viewed by 2139
Abstract
Our ability to reliably and efficiently predict complex high-Reynolds-number (Re) turbulent flows is essential for dealing with a large variety of problems of practical relevance. However, experiments as well as computational methods such as direct numerical simulation (DNS) and large [...] Read more.
Our ability to reliably and efficiently predict complex high-Reynolds-number (Re) turbulent flows is essential for dealing with a large variety of problems of practical relevance. However, experiments as well as computational methods such as direct numerical simulation (DNS) and large eddy simulation (LES) face serious questions regarding their applicability to high Re turbulent flows. The most promising option to create reliable guidelines for experimental and computational studies is the use of analytical conclusions. An essential criterion for the reliability of such analytical conclusions is the inclusion of a physically plausible explanation of the asymptotic turbulence regime at infinite Re in consistency with observed physical requirements. Corresponding analytical results are reported here for three canonical wall-bounded turbulent flows: channel flow, pipe flow, and the zero-pressure gradient turbulent boundary layer. The asymptotic structure of the mean velocity and characteristic turbulence velocity, length, and time scales is analytically determined. In outer scaling, a stable asymptotic mean velocity distribution is found corresponding to a linear probability density function of mean velocities along the wall-normal direction, which is modified through wake effects. Turbulence tends to decay in this regime. In inner scaling, the mean velocity is governed by a universal log-law. Turbulence does survive in an infinitesimally thin layer very close to the wall. Full article
(This article belongs to the Special Issue Turbulent Flow, 2nd Edition)
Show Figures

Figure 1

32 pages, 10966 KiB  
Review
Breaking Boundaries in Wind Engineering: LSU WISE Open-Jet Facility Revolutionizes Solar Panel and Building Design
by Aly Mousaad Aly
Appl. Sci. 2023, 13(23), 12546; https://doi.org/10.3390/app132312546 - 21 Nov 2023
Cited by 3 | Viewed by 2704
Abstract
Experimental wind engineering is crucial for global structural design. This paper addresses limitations in aerodynamic testing, particularly in wall-bounded and small-scale scenarios. Open-jet testing, introduced as an advanced tool, overcomes turbulence modelling constraints, providing a more accurate representation of real-world conditions. The LSU [...] Read more.
Experimental wind engineering is crucial for global structural design. This paper addresses limitations in aerodynamic testing, particularly in wall-bounded and small-scale scenarios. Open-jet testing, introduced as an advanced tool, overcomes turbulence modelling constraints, providing a more accurate representation of real-world conditions. The LSU WISE open-jet facility produces complete turbulence at a large scale, eliminating the need for corrections accompanied by partial turbulence simulation. This discovery holds significant implications in wind engineering and unsteady aerodynamics. Integrating photovoltaic panels with gable-roofed buildings may not require additional structural reinforcement, with a reduction in wind uplift forces by 45–63%. Building-integrated photovoltaics (BIPV) offer design flexibility and aesthetic appeal despite potential higher upfront costs. Strategic interventions, such as design optimization and cost-effective installation methods, can enhance the economic viability of BIPV systems. Contrary to long-held beliefs, the findings challenge the notion that wind loads on structures with sharp corners are insensitive to Reynolds number. Open-jet testing produces higher peak pressures, providing real-world justification for actual damage in high-rise buildings. These results validate the author’s hypothesis regarding the underestimation of peak loads (in small-scale testing) leading to cladding failure in high-rise buildings. They emphasize the superiority of large-scale open-jet testing, underscoring its critical role in designing resilient structures. The LSU WISE open-jet facility’s unique capabilities hold immense promise for revolutionizing wind engineering, addressing grand challenges, and creating more resilient and sustainable infrastructure. Its applications span critical infrastructure, promising significant economic, societal, and educational impacts in STEM fields. Full article
Show Figures

Figure 1

14 pages, 4686 KiB  
Article
A Turbulent Inflow Generation Method for the LES of High Re Flow by Scaling Low Re Flow Data
by Lei Luo and Honghu Ji
Aerospace 2023, 10(9), 808; https://doi.org/10.3390/aerospace10090808 - 15 Sep 2023
Cited by 1 | Viewed by 1482
Abstract
The rescaling–recycling method (RRM) is usually used to generate turbulent inflow for the LES of compressible wall-bounded flows, which can lead to relatively high computational cost for high Re flows since the mesh resolution increases exponentially with Re number. A turbulent inflow generation [...] Read more.
The rescaling–recycling method (RRM) is usually used to generate turbulent inflow for the LES of compressible wall-bounded flows, which can lead to relatively high computational cost for high Re flows since the mesh resolution increases exponentially with Re number. A turbulent inflow generation method based on the scaling of low Re flow, referred as TIG-LowRe, is proposed, aiming at reducing the computational cost when applying the RRM. To validate the proposed method, the TIG-LowRe method was applied to generate turbulent inflow for the LES of a non-isothermal round jet flow at Re = 86,000. Two cases were carried out with the inflow generated based on two round pipe flows at Re = 10,000 and 24,000. The results show that the mean and fluctuating temperatures of the two cases agree well with the experimental data. In the case of low Re flow at Re = 10,000, the jet flow decays too fast along the axial direction, the mean and fluctuating axial velocities are over-predicted and the radial fluctuating velocity is under-predicted. By increasing the Re of the low Re flow to 24,000, the decay rate of the jet flow decreases and the accuracies of the mean and fluctuating axial velocities are obviously improved, while the radial fluctuating velocity shifts further away from the experimental data. The main reason for the difference between the two cases is that more fine turbulent structure of the inflow in case-Re10000 is lost than in case-Re24000 during the turbulence generation process. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

31 pages, 8327 KiB  
Article
Combined Experimental and Numerical Investigation of a Hypersonic Turbulent Boundary Layer by Means of FLDI and Large-Eddy Simulations
by Giannino Ponchio Camillo, Alexander Wagner, Takahiko Toki and Carlo Scalo
Aerospace 2023, 10(6), 570; https://doi.org/10.3390/aerospace10060570 - 20 Jun 2023
Cited by 12 | Viewed by 2663
Abstract
This work investigates a hypersonic turbulent boundary layer over a 7° half angle cone at a wall-to-total temperature ratio of 0.1, M=7.4 and Rem=4.2×106 m1, in terms of [...] Read more.
This work investigates a hypersonic turbulent boundary layer over a 7° half angle cone at a wall-to-total temperature ratio of 0.1, M=7.4 and Rem=4.2×106 m1, in terms of density fluctuations and the convection velocity of density disturbances. Experimental shock tunnel data are collected using a multi-foci Focused Laser Differential Interferometer (FLDI) to probe the boundary layer at several heights. In addition, a high-fidelity, time-resolved Large-Eddy Simulation (LES) of the conical flowfield under the experimentally observed free stream conditions is conducted. The experimentally measured convection velocity of density disturbances is found to follow literature data of pressure disturbances. The spectral distributions evidence the presence of regions with well-defined power laws that are present in pressure spectra. A framework to combine numerical and experimental observations without requiring complex FLDI post-processing strategies is explored using a computational FLDI (cFLDI) on the numerical solution for direct comparisons. Frequency bounds of 160 kHz <f<1 MHz are evaluated in consideration of the constraining conditions of both experimental and numerical data. Within these limits, the direct comparisons yield good agreement. Furthermore, it is verified that in the present case, the cFLDI algorithm may be replaced with a simple line integral on the numerical solution. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop